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Mosquitoes are considered humanity’s most dangerous animal due to their 
capability to transmit a large number of deadly viruses and parasites, causing 
millions of illnesses and deaths annually, along with enormous economic loss 
(WHO 2020, Bradshaw et al. 2016). Among the 3,500 known mosquito species, 
however, only a few are vectors of these pathogens.

A vector is a mosquito that is able to pick up, amplify and transmit a pathogen 
from one vertebrate to another through blood feeding (Marcondes 2019). 
Only female mosquitoes are hematophagous (blood-feeders) and are therefore 
responsible for all mosquito-borne disease transmission. Yet not all female 
mosquitoes can transmit pathogens and some are better at it than others: the 
ability of any given mosquito to transmit disease from one vertebrate to another 
depends on its behaviour, how it fits into the ecosystem of the human-built and 
the natural world, and its internal biology. Each of these factors can be targeted 
with vector control strategies to interrupt the transmission of disease.

One way of reducing mosquito populations is to alter environmental factors 
necessary for mosquito breeding or to apply chemicals that target f lying adults 
(adulticiding) or immature aquatic larval stages (larviciding). However, as we 
will see as we explore successes and failures of mosquito control, many chemi-
cal tools seem to have reached the end of their effectiveness as a stand-alone 
strategy. Despite decades of chemical control efforts over the past 50 years, the 
world has faced the intensification of dengue outbreaks, the re-emergence of 
yellow fever, the spread of chikungunya and Zika and the emergence of zoonotic 
diseases accompanied by the geographical expansion of major vectors (Wilder-
Smith et al. 2017). Vector control departments are now faced with a challenge 
to expand beyond immediate prevention of human disease towards a global 
approach that encompasses the biology, behaviour and biodiversity of mosquito 
species, their ecology and what makes them effective or ineffective vectors—in 
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order to formulate a realistic, multi-faceted, environmentally friendly and effi-
cient mosquito control strategy.

This chapter reviews what has been done so far to control Aedes aegypti, 
current challenges raised by the expansion of Aedes albopictus and growing threats 
of zoonotic viruses, and what innovations are under development to reduce 
mosquito-borne transmission of viruses. French overseas territories and the 
Americas are the focus here due to the special challenges they are facing to 
control mosquito vectors.

Controlling Aedes species in urban areas: 
Aedes aegypti and Aedes albopictus

Aedes aegypti and Aedes albopictus are the main urban vectors of arboviruses, the 
arthropod-borne viruses of yellow fever, dengue, chikungunya and Zika that 
threaten more than 3 billion people living in Aedes-infected areas worldwide 
(Wilder-Smith et al. 2017). Aedes species are optimally adapted for transmitting 
viruses from human to human: they can carry multiple arboviruses, are 
anthropophilic (prefer humans for blood feeding), bite during the day and feed 
multiple times, f ly only short distances and prefer to breed in small human-made 
containers. Additionally, Aedes eggs are resistant to desiccation, giving them the 
advantage of spreading their offspring to new territories worldwide through 
human travel and commercial trade (Kraemer et al. 2019, Marcondes 2019).

Even though the two dominant Aedes vector species look very similar, 
their biology, ecology, behaviour and history of colonization reveal important 
differences. Ae. aegypti originated from forests of the western part of Africa and 
began spreading around the world through the transatlantic slave trade in the 
sixteenth century (Powell et al. 2018). This forest-dwelling species adapted 
to urban areas by becoming more anthropophilic and breeding specifically in 
human-made containers such as cisterns and buckets. This urban mosquito is 
closely tied to human habitation in all steps of its life cycle and is found less 
abundantly in rural areas and rarely in natural breeding sites. Ae. aegypti has 
colonized urban areas of subtropical and tropical regions around the world and is 
the main vector of the yellow fever virus, along with dengue viruses, and more 
recently chikungunya and Zika viruses.

Aedes albopictus, the Asian tiger mosquito, originates from forests in Asia and 
has become the world’s most invasive mosquito species, colonizing all areas of the 
planet over the last 30 years within its preferred temperature range. Even though 
its ecological niche seems similar to that of Ae. aegypti, this species tends to be 
more rural, develops in a larger variety of natural and human-made breeding sites 
and adapts to a wide range of temperatures due to its capacity to lay cold-resistant 
eggs that can survive winter temperatures during its diapause stage (Paupy et al. 
2009). Ae. albopictus is also less selective about hosts and can be found feeding 
on animals as well as humans. It does not transmit dengue and yellow fever 
quite as efficiently as Ae. aegypti and has until recently been considered more of 
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a nuisance than a public health concern. However, Ae. albopictus revealed its true 
colours during the 2006–2007 chikungunya outbreak that hit the Indian Ocean 
Islands, Central Africa, India and Italy. Ae. Albopictus’ growing distribution to 
more temperate latitudes and its ability to transmit about 26 different arboviruses 
between human and animal hosts makes it a growing threat in temperate regions 
(Paupy et al. 2009).

In some areas, the ranges of these two species overlap, sharing resources, often 
laying eggs in the same breeding sites and intermingling in ways that were never 
possible in their native ranges. Ae. albopictus has largely displaced the longer-
established Ae. aegypti in many areas in the southeastern United States, creating 
complex interactions of competition, cross-mating and evolutionary pressures 
between these two invasive species (Bargielowski et al. 2013). The ongoing 
expansion of these two species to new locations in urban and rural communities 
makes them a central concern for public health. Due to the similarities between 
these species, control methods are often the same regardless of the presence of 
one or both species in the area.

Vector control: where, when and who?

The most familiar stage of the mosquito, the winged adult, is the form that is 
responsible for disease transmission. However, the mosquito’s life cycle involves 
both aquatic and aerial stages, all of which can be targeted by mosquito control 
methods for preventing disease. The World Health Organization (WHO) 
provided the first guidelines for dengue control and prevention, including vector 
management, in the 1990s, but the importance of Aedes control took a new turn 
with the strong support given to the Global Vector Control Response by member 
states during the World Health Assembly in 2017 (WHO 1997, UNICEF/
UNDP/World Bank/WHO 2017). These guidelines include protocols for 
environmental management of natural and human-made mosquito breeding 
sites, chemical and biological control agents for treatment of larval and adult 
stages and best practices for encouraging community engagement (WHO 2012). 
Mosquito control activities are most successful when multiple approaches are 
combined and coordinated with other health, environmental and community 
sectors to produce an integrated approach to mosquito management.

Vector control measures targeting the aquatic larval and pupal stages focus 
on the removal of human-made containers where Aedes mosquitoes prefer to lay 
eggs, or these watery habitats can be treated with chemical or biological com-
pounds (i.e. Bacillus thuringiensis) to arrest development or kill immature stages 
and consequently reduce adult population density (Achee et al. 2015). Preventive 
measures such as the regular removal of stagnant water (locations A–E, in Figure 
14.1) or covering water storage containers are strongly recommended (control 
measures 1–5 in Figure 14.1). Deployment of larvivorous fish or copepods alone 
or in combination with other methods has shown low levels of efficacy (Lazaro 
et al. 2015, Han et al. 2015).
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FIGURE 14.1  Suitable habitats for Aedes species and vector control methods. Aedes albop-
ictus and Ae. aegypti breed in human environments. Ae. albopictus also develops in more 
natural habitats such as ponds, plants that hold water or tree holes (A). Both species are 
often found breeding in flower pots (B), gutters (C), water containers (D) and water col-
lected in garbage of all sorts such as tyres, fridges and discarded containers (E). To reduce 
vector–human contact, several measures are used by people and public health authorities. 
Source reduction eliminates suitable places for females to lay eggs by properly covering 



﻿﻿Mosquito control  217

water storage (1, 2), removing stagnant water (3), cleaning household premises (4), avoid-
ing garbage accumulation (5) and treating large ponds or reservoirs. To prevent human–
vector contact, people at high risk can stay under bed nets even though Aedes mosquitoes 
are daytime biters, and screening can be installed in windows (6). Additionally, insecticide 
spatial spraying is performed indoors (7), outdoors (8–9) and occasionally by aircraft (10). 
The successful control of Aedes mosquitoes is based on the coordinated efforts of com-
munities and public health authorities and by educating the youngest generation to take 
an active role in prevention (1). Illustration by Vincent Jacquet.
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Interventions against adults aim to kill them in their aerial stage or interrupt 
female biting to prevent human–vector contact. Measures that target adult fer-
tility and their ability to produce viable eggs aim to reduce future generations 
that may transmit disease (control measures 6–10 in Figure 14.1). Various adult 
behaviours can be targeted, including mating, host-seeking, blood-feeding, rest-
ing and egg-laying (oviposition). Current Aedes adult control in most countries 
around the world is based primarily on spraying chemical insecticides formulated 
for outdoor application via trucks or hand-operated backpacks or in targeted 
locations where adults can be found resting, such as vegetation for Aedes albop-
ictus or indoor areas for Aedes aegypti (Achee et al. 2015, Faraji and Unlu 2016). 
Aircraft are also occasionally used as an emergency method (Britch et al. 2018, 
Likos et al. 2016).

An appropriate combination of vector control measures that target both 
immature and adult stages of the life cycle is recommended for maximizing 
density reduction and interrupting eventual virus transmission (Hierlihy et al. 
2019). In areas with endemic arbovirus transmission, a low density of mosqui-
toes is achieved by routine larval control year round, with vector control teams 
implementing breeding site removal or treatment. During periods of high arbo-
virus transmission or epidemics, chemical applications, both indoor and outdoor, 
are used to control adults and reduce mosquito–human contact. Community 
involvement and participation in reducing breeding sites in urban areas requires 
sustained education and dedicated social mobilization (location 1, Figure 14.1). 
A combination of routine surveillance of mosquito breeding activity and disease 
cases in humans and potential animal hosts is essential for triggering early control 
strategies for preventing widespread disease transmission.

The decision of when, where and how to control mosquito populations is best 
made through integrated entomological and epidemiological surveillance as part 
of a comprehensive management plan (UNICEF/UNDP/World Bank/WHO 
2017, Roiz et al. 2018). Without the commitment of political, operational and 
community stakeholders, such a plan cannot be sustainably developed, validated, 
funded and implemented (Horstick et al. 2010). Furthermore, local governance 
and operational policies are structured differently depending on local transmis-
sion patterns and the available human capacity and resources. In the end, the 
successful early interruption of disease transmission depends on interagency pre-
paredness and coordinated actions (Roiz et al. 2018).

Success stories in Aedes aegypti and disease control

The efficacy of vector control is measured at different steps: lowering density 
and/or human–vector contact, epidemiological impact and its sustainability over 
time. There is some evidence that mosquito density can be reduced for a period of 
time thereby preventing epidemics, but few studies have rigorously demonstrated 
the long-range efficacy of vector control interventions (Wilson et al. 2015, 
Bowman et al. 2016). Part of the challenge is demonstrating effectiveness of a 
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specific vector control strategy in a treatment area compared to a similar control 
area with no such intervention. Such experimental protocols are hard to justify 
during a public health emergency since the control area could be exposed to 
higher risk of infection and disease. This is part of the reason why clear evidence 
on the epidemiological impacts of vector control is scarce. However, there are 
three examples of sustainable success stories in interrupting yellow fever and 
dengue transmission.

Several reports claim stories of successfully eradicating yellow fever in the 
early 1900s in the Americas and the Caribbean when the yellow fever virus 
and its transmission by Aedes aegypti was first described (Soper 1963). Following 
reports of early successes in reducing urban yellow fever cases and the discov-
ery of DDT (dichlorodiphenyltrichloroethane) as an effective tool in this effort, 
the Rockefeller Foundation embarked on a worldwide yellow fever and malaria 
eradication programme in the 1940s (Soper 1963). Combining vaccination with 
mosquito control, the Rockefeller programme paved the way for modern vector 
control techniques by relying on large-scale indoor residual spraying of DDT. 
The effects on Ae. aegypti populations were drastic and the species was believed 
to be eradicated in the Americas. For a decade no record of either the mosquito 
or any of the diseases it carried was published.

However, a subsequent progressive recolonization of the mosquito across 
the continent brought dengue fever and other arboviruses with it (Soper 1963). 
Pockets of urban yellow fever outbreaks were controlled with vaccination. 
Malathion and other organophosphorus compounds became the new adulticides 
of choice, combined with removing larval breeding sites and engaging com-
munity through education campaigns. During outbreaks, outdoor spraying of 
insecticides was favoured over indoor residual spraying.

The return of Ae. aegypti was accompanied by an increase in dengue 
outbreaks, as all four dengue serotypes colonized the Americas. One country 
was an exception: for 15 years from 1981 to 1997 Cuba managed to remain 
free of dengue and recorded very low densities of this mosquito. During this 
period in Cuba an intense programme of surveillance and control was enforced 
in two phases by combining adult and larval control. The first phase involved 
massive ultra-low volume (ULV) spraying of malathion by aerial and ground 
application both indoors and outdoors. Phase two involved nationwide breeding 
source removal with education programmes for the general population and law 
enforcement that focused on limiting suitable conditions for larval development 
in backyards and houses. This combination of vector control methods was 
accompanied by an emphasis on entomological surveillance, source reduction 
and larval control (Armada Gessa and Figueredo González 1986). However, in 
1997 an increase in vector density, most likely due to weakening in surveillance, 
along with the introduction of foreign infections, caused the re-emergence of 
dengue on the island (Kourí et al. 1998).

Another example of success occurred in Singapore during the 1960s, when 
authorities combined strict larval control with law enforcement after the 
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emergence of dengue transmission in the island city-state (Ooi et al. 2006). The 
programme resulted in low incidence of disease and low entomological indices 
for 15 years. However, since the 1980s, dengue cases have increased in the city 
despite low mosquito numbers. Several reasons are hypothesized to explain this 
disease expansion: the absence of immunity, reduced vector surveillance for 
case detection, introduction of foreign cases, and possibly a shift in mosquito 
behaviour.

Aside from these examples, worldwide Aedes vector control efforts have not 
succeeded in sustainably reducing the arbovirus burden in recent decades.

Reasons for failure: chemical and social

These experiences present many lessons to inform future surveillance and control 
strategies. Investigating the reasons for what has failed to sustain long-term 
effects is crucial to developing strategies for stopping the transmission of Aedes-
borne diseases. The massive elimination campaigns of the 1940s in the Americas 
relied heavily on chemical control methods and top-down organization, neither 
of which are feasible or sustainable today. The authoritarian campaigns were 
successful for a period of time but led to neglected surveillance and vector 
control programmes once the vector was thought to be eradicated. Ae. aegypti has 
now recolonized all of South America, reaching all the way to its southernmost 
temperature limit in Argentina where it recolonized the capital, Buenos Aires, 
in 1991 (Zanotti et al. 2015).

With our current understanding of the long-term environmental consequences 
of chemical insecticides, the mass spraying of DDT and similar materials is no 
longer an acceptable strategy, and not only because of environmental concerns. 
Indeed, chemical control methods for both larvae and adults are reaching the end 
of their effective use for sustainable control because Aedes populations worldwide 
are becoming resistant to a wide range of compounds. Early evidence of resistance 
was found with DDT, followed by resistances to a range of organophosphates 
including the larvicide temephos (Moyes et al. 2017). Malathion remains a useful 
compound for mosquito control, but its toxicity to mammals restricts its use. The 
biological insecticide Bacillus thuringiensis var. israelensis, for which no resistance 
has yet been observed, has largely replaced temephos.

Pyrethroids, then, have become the insecticide of choice: inexpensive, 
harmless to wildlife, and applicable indoors as spatial and residual spray, outdoors 
as ultra-low volume (UVL) aerosol, and even impregnated in cloth material. 
These advantages are leading to a monotherapy conducive to the widespread 
development of resistance (Moyes et al. 2017). In addition, since 2010, pyrethroids 
are the only approved compounds for adult insect control in the European Union. 
In the absence of any alternative, some areas such as French overseas territories 
have arrived at a chemical control dead-end.

Aside from the widespread mosquito resistance, the method of spraying large 
quantities of insecticide in the environment is itself controversial because of the 
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lack of evidence for efficacy, high cost, slow operational response, low com-
munity acceptance, and the potential impacts on non-target organisms in the 
environment (Esu et al. 2010, Knauer et al. 2017). Selective pressures exerted 
on Aedes populations from vector control are compounded when the same pyre-
throid insecticides are used against pest mosquitoes, found in household insec-
ticides and impregnated gardening and personal protection materials, driving 
pyrethroid resistance even further and possibly preventing its reversal (Macoris 
et al. 2018, Gray et al. 2018).

We have arrived at the point where both chemicals and the methods for apply-
ing them may be ineffective for controlling Aedes, with few acceptable alternatives 
existing. At the very least, chemical applications for emergency tools could be 
regained by mandating non-chemical alternatives for non-emergency situations, 
or by developing novel compounds that target the vectors with other modes of 
action and that are more selective for mosquitoes (Dusfour et al. 2019). In the 
absence of novel tools that are validated, recommended or available, one possibility 
is to increase the use of pyrethroid-impregnated materials (in window curtains, 
for example) and the reinstatement of indoor residual spraying with pyrethroids 
(Samuel et al. 2017, Banks et al. 2015). These options are less harmful for the 
environment as they are localized to the indoors and effective against non-resistant 
strains of Ae. aegypti which prefer to rest indoors. For Ae. albopictus mosquitoes that 
tend to rest outside households, these alternatives would not be effective. In the 
absence of efficient compounds against adults, the only other effective options are 
the application of larvicides or the alteration of larval breeding sites for large-scale 
mosquito population control. Typically, water collection areas or containers are 
drained to eliminate putative breeding sites, covered to prevent egg-laying, filled 
in with sand to keep moisture for gardens without stagnant water or manipulated 
in such a way that mosquito larvae cannot develop or grow.

Because Aedes females prefer to lay eggs in small human-made containers of 
water, households (especially those without reliable piped water) are an impor-
tant source of breeding grounds for the mosquito. Community engagement, 
therefore, is essential for comprehensive larval control. However, such engage-
ment has not shown long-lasting success outside of the Cuban and Singaporean 
examples, both of which involved strong, authoritarian enforcement. Even 
though education and promotion plans were integrated into strategies, top–
down approaches push the population to rely on authorities and to ignore their 
own personal role and responsibility in source reduction (Perez-Guerra et al. 
2009, Mieulet and Claeys 2014). This behaviour is exacerbated by the belief that 
neighbours are not doing enough and individual efforts are made in vain (Ibarra 
et al. 2014). The mosquito is generally and universally hated mainly because of its 
bite: people are often more motivated by the nuisance they cause than by diseases 
they transmit (Dickinson and Paskewitz 2012). Reducing Aedes breeding sites, 
however, does not always have a direct and noticeable effect on the perception 
of overall nuisance, since bites may continue even from a diminished population 
or from other mosquito species. In contexts where other, more critical health 
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and safety concerns dominate, mosquito-borne diseases may not take priority 
in the lives of the community so that communication tools developed by vec-
tor control authorities may be ignored or misunderstood (Mieulet and Claeys 
2014, Anderson et al. 2020). Being sensitive to local beliefs and instilling a basic 
understanding of disease transmission and the mosquito life cycle are also criti-
cal for mobilizing the population to act as participants in mosquito control and 
participate in bottom-up interventions (Ibarra et al. 2014, Paz-Soldán et al. 2011, 
Frank et al. 2017). Developing effective social strategies to support vector con-
trol strategies has therefore become a key recommendation and the WHO has 
published recommendations for guiding and supporting socially sensitive vector 
control teams (Bartumeus et al. 2019, Parks and Lloyd 2005).

A team of vector control specialists cannot possibly monitor all potential 
breeding sites when larvae can develop into adults in only two weeks under 
optimal temperature conditions; therefore, involving communities in control and 
surveillance is essential for efficiently covering or disrupting all possible breeding 
sites (Gubler and Clark 1996). Successful examples of community engagement also 
highlight the importance of regular surveillance protocols to monitor mosquito 
activity, disease incidence and mosquito resistance and then sustain these efforts 
over time (Bardach et al. 2019, Sulistyawati et al. 2019). This integrated approach 
has been advocated for decades but requires intensive and constant efforts from 
all stakeholders, even during periods when there is no disease transmission. The 
best results require political commitment, sustainable allocation of resources for 
planning and surveillance, as well as the training of public health authorities as 
part of an integrated and holistic approach for mosquito control. Despite decades 
of Aedes vector control experiences, widespread comprehensive and sustained 
strategies of mosquito control are not currently the norm in most endemic areas 
(Roiz et al. 2018). As a consequence, sound strategies have by and large failed to 
be implemented or sustained (Gubler 2005, Roiz et al. 2018, WHOPES 2010).

In the face of dramatic recent increases in dengue and other arboviruses, 
few success stories and little solid evidence for effective mosquito control, many 
questions are left open about the future prevention of vector-borne diseases 
(Bowman et al. 2016). For decades, the challenges and the calls for action have 
been stated in publications and reports—yet dengue remains a neglected disease. 
With a 30-fold increase in the past 50 years, dengue is finally being taken seriously 
(UNICEF/UNDP/World Bank/WHO 2017, WHO 2012). The re-emergence 
of yellow fever, the Zika outbreak and the emergence of other novel sylvatic 
arboviruses carry a warning to authorities and the public about an imminent 
threat. Aedes-borne arbovirus transmission is finally drawing the attention of 
researchers to develop new tools for surveillance and control.

The future of control against Aedes and disease

The global community is facing new challenges in controlling arboviruses. 
At the same time, modern vector control is still placed firmly in the dream 
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of past successes, expecting old tools and old methods to be efficient against 
new diseases, impacting only the targeted vector, while being environmentally 
friendly, sustainable and acceptable by communities all over the globe. Clearly, 
new tools and strategies are urgently needed.

As the number of available and effective compounds continues to decrease, 
it is of primary importance to regain the efficacy of pyrethroids and avoid 
further development of resistance. Integrated vector control must include 
monitoring insecticide resistance and measuring current insecticide efficacy in 
a comprehensive plan (Dusfour et al. 2019). Available control compounds are 
scarce but remain crucial for emergency control during outbreaks. As mentioned 
earlier, the efficacy of spatial sprays is debatable but pyrethroids could be used for 
indoor residual spraying or impregnation of materials. To reduce the selection 
pressure for resistance, alternative tools must be developed, validated and 
deployed.

To ensure the quality and effectiveness of proposed products and tools, 
the WHO has established the Prequalification Team (PQT), which replaces 
the WHO Pesticide Evaluation Scheme (WHOPES). The PQT supports the 
development, evaluation and adoption of novel control methods. An independent 
Vector Control Advisory Group provides additional guidance to product 
developers, innovators and researchers, including guidelines on the acquisition 
of epidemiological data, study design and new vector interventions. This group 
also provides advice to the WHO Strategic and Technical Advisory Group for 
neglected tropical diseases.

Based on the failure to maintain long-term successes in past control efforts 
and the expanded knowledge that the research and vector control communities 
have accumulated over the years, a more integrated view of vector strategies 
and technological advances has led to a suite of novel tools and new methods to 
implement them. While professional teams are still mainly responsible for imple-
mentation, the general public is now involved at an early stage, becoming an 
obvious and necessary component to establish and sustain vector control knowl-
edge and practices in the affected communities (Kolopack et al. 2015, Ernst et 
al. 2015). Research in citizen and social sciences such as anthropology are also 
accompanying the expanded use of social networks and integrating mobile and 
geospatial technologies for providing new potential for vector control (Sousa et 
al. 2017, Hamer et al. 2018). Better understanding of the community’s percep-
tion, knowledge, practices, beliefs and reluctance/acceptance of mosquito control 
is crucial for developing appropriate local communication and media messages 
(McNaughton 2012). Education must be sustainably implemented beginning at 
a young age, and adapted to local beliefs, habits and infrastructure. People must 
mobilize not only for vector control but also for surveillance in cooperation with 
a coordinated public health framework.

The research and development of new tools for targeting vector species is 
revealing more efficient and environmentally friendly techniques. One category 
is based on the knowledge of the vector’s biology, behaviour and ecology to trap 
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or otherwise prevent it from coming into contact with people. For example, 
there are autodissemination traps, which exploit the cryptic behaviour of 
oviposition, when adult mosquitoes pick up a residue of larvicide that they then 
spread to other breeding sites (Maoz et al. 2017). Toxic baits that contain a sugar-
insecticide compound target behaviours of both adult male and female sugar-
feeding (Revay et al. 2014). Those tools are currently under evaluation, and even 
though some have proven their efficacy in reducing mosquito density, none have 
yet demonstrated epidemiological successes. These tools are relatively easy to 
implement and can be widely distributed, although their chemical composition 
may require authorization in areas where they are not commercially available. 
The fact that such tools rely on community involvement may factor into their 
chances of success (Faraji and Unlu 2016). Other tools such as the trapping of 
large numbers of adults through attractant compounds and behaviour-modifying 
compounds have shown promise in lab tests. However, better attractant 
compounds are still needed to demonstrate significant reductions in mosquito 
density (Degener et al. 2015, Obermayr et al. 2015).

The second category of novel control technologies relies on genetic modifi-
cation (GM) of the mosquito (Qsim et al. 2017). The objective here is to pro-
duce non-fertilized eggs or non-viable offspring, thereby reducing the density of 
future generations. The sterile insect technique can be achieved through several 
methods. One method focuses on producing sterile males by irradiation (SIT); 
another relies on genetically modified mosquitoes to carry a lethal gene (RIDL); 
a third method utilizes insect incompatibilities with Wolbachia-modified mosqui-
toes (IIT) (Crawford et al. 2020, Kittayapong et al. 2019, Thomas et al. 2000). 
The last has the advantage of inhibiting arbovirus multiplication and interrupt-
ing its transmission (Ryan et al. 2019). In addition, the RNA interference tech-
nique is being tested for mosquito control as both SIT and insecticidal tools 
(Giesbrecht et al. 2020). Whether alone or in combination, SIT, RIDL and IIT 
mosquitoes have proven to be of some efficacy in controlling insects in field 
trials, but so far such techniques have shown only preliminary evidence for con-
trolling disease (Crawford et al. 2020, Bellini et al. 2013, Carvalho et al. 2015, 
Kittayapong et al. 2019).

The general public and government agencies are often sceptical about geneti-
cally modified or altered mosquito technologies and more evidence for their 
efficacy is needed before they can become part of a public campaign to improve 
their acceptance (Ernst et al. 2015, Kolopack et al. 2015). Such concerns were 
heightened with the discovery in Brazil that genetically modified Ae. aegypti 
transferred some of their GM genes into the wild population (Evans et al. 2019). 
In Europe, GM mosquitoes are highly regulated and access to such technology is 
controlled and limited. Because mosquitoes irradiated to produce sterile offspring 
(SIT) are not considered genetically modified, some have been used and tested 
in Italy and in Reunion Island, France. Guidelines and principles for evaluating 
fertility-altered mosquitoes are different from one country to another (Panjwani 
and Wilson 2016). In any case, all methods targeting mosquito fertility entail 
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significant costs to maintain dedicated infrastructure and personnel for long-
term mosquito mass-rearing and release (Meghani and Boëte 2018). At present, 
none of the new tools are fully validated or widely available, leaving traditional 
insecticides and source reduction methods as the sole pillars for controlling mos-
quitoes in the context of disease epidemics.

Zoonotic and epizootic mosquito control

While urban vectors and their associated arboviruses are at the centre of con-
trol efforts in both temperate and tropical areas, a growing concern is arising 
around zoonotic diseases. Viruses (and other pathogens) cycle between forest-
dwelling mosquitoes and wild animals. Viruses such as Zika can be transmitted 
to humans when the virus enters an urban cycle with Aedes mosquitoes or it 
can be aided by bridge mosquitoes like Ae. albopictus that move between rural 
and urban habitats (Pereira et al. 2020). Many of these viruses infect humans as 
accidental and dead-end hosts, meaning that the virus may infect a human but 
is insuff iciently amplif ied in the human body to be transmitted to another mos-
quito (Weaver and Reisen 2010, Wilder-Smith et al. 2017). Such is the case for 
West Nile virus, Usutu, Eastern equine encephalitis and Serogroup California 
viruses, which have all attracted attention in Europe and North America in 
the last few years (Gill et al. 2019, Lindsey et al. 2020, Vilibic-Cavlek et al. 
2019, Calzolari et al. 2020). West Nile virus is of particular concern, and has 
received more research since its arrival and expansion in North America in the 
late 1990s.

With the emergence of more viruses using humans as dead-end hosts, con-
trolling transmission has become an important challenge. The culprit mos-
quito species do not all belong to the genus Aedes, with Coquillettidia, Culex and 
Culiseta also implicated, mosquitoes with vastly different ecologies and some 
already recognized as nuisance pests (Sherwood et al. 2020, Hesson et al. 2019, 
Martinet et al. 2019). Several of these latter mosquito species transmit viruses 
to humans with varying abilities. Their physiological and ecological require-
ments are as different as are their life cycles over the seasons. Unlike Aedes, few 
are container-breeders, for example, creating complications for integrated vec-
tor control strategies in areas they coinhabit with other vectors. Such mosqui-
toes do not transmit disease as readily in their urban cycles, with the effect that 
there is not as much research about ways to include their habits in integrated 
vector control plans.

Controlling these other vector mosquitoes therefore presents diff icult chal-
lenges. Personal protection and prevention measures such as topical repellents 
are recommended along with larval control; controlling adults or releas-
ing sterile males are not recommended against West Nile virus (Hongoh et 
al. 2016, Campagna, Trudel and INSPQ 2018, CDC 2019b). Reduction of 
West Nile vectors by larvicides or adulticides often depends on mass spray-
ing, a decidedly old-fashioned technique. Strategies tend to be implemented 
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in emergency mode relying on tools already in place for controlling nuisance 
or other vector mosquitoes (CDC 2019a, Werth 2019). With such outbreaks 
occurring with increasing frequency and greater severity, the means of con-
trolling target mosquitoes or otherwise reducing disease transmission should 
be carried out with consideration for environmental impacts. To complicate 
matters, some of these species are already resistant to insecticides, leaving their 
eff icacy unproven in both reducing mosquito numbers and transmitting dis-
eases (Scott et al. 2015, Dunbar et al. 2018). Novel control methods need to be 
developed but the knowledge of these species is scarce, leaving the f irst-line 
strategy one of heightening people’s awareness of using personal protections 
and developing eff icient surveillance tools (Kading et al. 2020, Hongoh et al. 
2016, Lindsey et al. 2020).

Conclusion

Since the discovery of the mosquito’s capacity to transmit pathogens that cause 
diseases, humanity has tried to control these vectors to reduce the disease 
burden. The vectorial systems involve hosts, vectors and pathogens in the 
natural environment in a complex interplay that is constantly evolving under 
selective pressures. To reach a point where people and mosquitoes can achieve 
a sustainable and acceptable equilibrium that simultaneously preserves human 
health and protects the environment, one must aim to integrate all aspects of 
the ecology of mosquito-borne disease with the habits of the few mosquitoes 
that transmit those diseases. Just as the Aedes aegypti mosquito has fully adapted 
to living with humans, people must learn to adapt their own habits and 
urban environments to minimize their exposure to this and other dangerous 
mosquitoes. Targeted and integrated approaches for reducing the transmission 
of urban mosquito diseases have been advocated for decades but are unevenly 
applied due to their costs, limited human capacity, community apathy and 
weakness of the political will that is required to sustain these efforts during 
interepidemic periods. With the rising threat of mosquito-borne diseases, these 
approaches must be strengthened and adapted if we want to reduce pathogen 
transmission.
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