
HAL Id: hal-03371935
https://hal.science/hal-03371935

Submitted on 9 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Canonical proof-objects for coinductive programming:
infinets with infinitely many cuts

Abhishek De, Luc Pellissier, Alexis Saurin

To cite this version:
Abhishek De, Luc Pellissier, Alexis Saurin. Canonical proof-objects for coinductive programming:
infinets with infinitely many cuts. PPDP 2021: 23rd International Symposium on Principles and
Practice of Declarative Programming, Sep 2021, Tallinn, Estonia. pp.1-15, �10.1145/3479394.3479402�.
�hal-03371935�

https://hal.science/hal-03371935
https://hal.archives-ouvertes.fr

Canonical proof-objects for coinductive programming: infinets
with infinitely many cuts

Abhishek De
∗

Université de Paris, IRIF, CNRS

Paris, France

abhishek.de@irif.fr

Luc Pellissier

LACL, Université Paris Est Créteil

Créteil, France

luc.pellissier@lacl.fr

Alexis Saurin

Université de Paris, IRIF, CNRS

Paris, France

alexis.saurin@irif.fr

ABSTRACT

Non-wellfounded and circular proofs have been recognised over the

past decade as a valuable tool to study logics expressing (co)inductive

properties, e.g. 𝜇-calculi. Such proofs are non-wellfounded sequent

derivations together with a global validity condition expressed in

terms of progressing threads. While the cut-free fragment of circular

proofs is satisfactory, cuts are poorly treated and the non-canonicity

of sequent proofs becomes a major issue in the non-wellfounded

setting. The present paper develops for 𝜇MLL (multiplicative linear

logic with fixed points) the theory of infinets – proof-nets for non-

wellfounded proofs. Our structures handles infinitely many cuts

therefore solving a crucial shortcoming of the previous work [19].

We characterise correctness, define a more complete cut-reduction

system and proving a cut-elimination theorem. To that end, we also

provide an alternate cut reduction for non-wellfounded sequent

calculus.

KEYWORDS

circular proofs, non-wellfounded proofs, fixed points, muMALL,

linear logic, proof-nets, induction and coinduction

ACM Reference Format:

Abhishek De, Luc Pellissier, and Alexis Saurin. 2021. Canonical proof-objects

for coinductive programming: infinets with infinitely many cuts. In Pro-

ceedings of the 23rd Symposium on Principles and Practice of Declarative

Programming, PPDP 2021, Tallinn, Estonia, September 6–8, 2021. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/NNNNNNN.NNNNNNN

1 INTRODUCTION

Coinductive programming. Computation over finitary data can be

handled in declarative programming by inductive types: termina-

tion of computation is then guaranteed by the fact that the program

is typable. Coinductive programming is a generalization of pro-

gramming that provides a natural way to reason about coinductive

data-types, lazy predicates, concurrent communicating predicates,

etc. In such programs, termination is replaced by productivity: while

the computation is not guaranteed to terminate, arbitrarily large

∗
This author has received funding from the European Union’s Horizon 2020 research

and innovation programme under the Marie Skłodowska-Curie grant agreement No

754362.

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

PPDP ’21, September 6–8, 2021, Tallinn, Estonia

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8689-0. . . $15.00

https://doi.org/10.1145/NNNNNNN.NNNNNNN

CoInductive Stream := Cons : nat→ Stream→ Stream.

CoFixpoint f0 (n : nat) : Stream := Cons n (f0 (n+1)).

CoFixpoint f1 (n : nat) : Stream := let s := f1 (n+1) in

Cons n (match s with Cons h t ⇒ Cons h t end).

CoFixpoint f2 (n : nat) : Stream := let s := f2 (n+1) in

(match s with Cons h t ⇒ Cons n (Cons h t) end).

CoFixpoint f3 (n : nat) : Stream := let s := f3 (n+1) in

(match s with Cons h t ⇒ Cons h (Cons n t) end).

Figure 1: Some productive and non-productive definitions

prefixes of the result can nonetheless be computed in a finite num-

ber of steps. Proof assistants such as Agda and Coq which supports

coinductive programs traditionally employ a strict type checker that

checks for a guard condition. Guardedness is a sufficient but not

necessary condition to ensure productivity: productivity is unde-

cidable, hence designing tractable guard conditions that can accept

more and more productive programs is an important area of re-

search. In Figure 1, we consider several Coq coinductive definitions,
whose behaviour varies wildly:

– f0 is the only valid Coq coinductive definition; (f0 n) computes

the stream of natural numbers starting from n.
– f1 is a productive term, even though it is rejected by Coq type-
checker as it fails to pass its guard condition. It computes the

same stream as f0.
– f2 is not productive, but one can introduce a commutation rule:

match 𝑒1 with 𝑝⇒ Cons (ℎ, 𝑡) ⇝ Cons (ℎ, match 𝑒1 with 𝑝⇒ 𝑡)
(if pattern 𝑝 does not occur free in ℎ and symmetrically with 𝑡)

to make it so; it is then equivalent to f1.
– f3 is not productive: producing the first element of (f3 n) re-

quires to already have produced the first element of each stream

(f3 k) for k > n.

As we can see, even minor differences in the code, which seemingly

makes no logical difference, can cause a type checker to behave

very differently. Our goal G is two-fold:

∗ extend the guard condition so that more programs are

accepted;

∗ provide a more canonical representation of programs so

that productivity is more robust.

Proof theory of fixed point logics can tell us about the computational

behaviour of these programs: following the guiding principles of the

Curry-Howard correspondence, co·inductive types can be encoded

https://doi.org/10.1145/NNNNNNN.NNNNNNN
https://doi.org/10.1145/NNNNNNN.NNNNNNN

PPDP ’21, September 6–8, 2021, Tallinn, Estonia Abhishek De, Luc Pellissier, and Alexis Saurin

as formulas of the 𝜇-calculus, and programs as proofs in such a

logic.

To the notable exception of Santocanale, circular proofs were

originally introduced [9, 11, 35–37] with provability and verifica-

tion purposes in mind, yielding systems such as 𝜇LK. These systems

allow for non-wellfounded branches in sequent derivations. Allow-

ing unrestricted use of those non-wellfounded branches leads to

logical inconsistency, as any sequent can be derived (see fig. 8a): a

global validity criterion is needed to sieve the logically valid proofs

from the unsound ones, and it corresponds to the aforementioned

guard condition for coinductive sequent proofs. Such sequent proof

systems are not well-suited to study the equality of proofs, hence

we need to move to a more structural system. A natural candidate

would be intuitionistic natural deduction with fixed points, another

one is linear logic proof nets. We will use linear logic, as its con-

nectives are rich enough to allow to encode many types purely

logically.

Productivity, from a proofs/programs perspective. In 𝜇MALL (linear

logic extended with least and greatest fixed points), one can repre-

sent the type of nats and streams asN = 𝜇𝑋 .1⊕𝑋 and S = 𝜈𝑌 .N⊗𝑌 .1
We can represent natural numbers as well as the successor function

as cut-free proofs: respectively 𝜋𝑘 , 𝑘 ∈ N of type ⊢ N and 𝜋succ
of type N ⊢ N presented in fig. 2. Also, naturals are duplicable

resources i.e. there is a proof 𝜋dup of N ⊢ N ⊗ N. Recall that cuts re-
duction corresponds to computation so 𝜋dup is cut with 𝜋𝑘 reduces

to the pair 𝜋𝑘 ⊗ 𝜋𝑘 .

𝜋0 =

(1)
⊢ 1

(⊕1)⊢ 1 ⊕ N
(𝜇)

⊢ N

𝜋k+1 =

𝜋𝑘

⊢ N
(⊕2)⊢ 1 ⊕ N
(𝜇)

⊢ N

𝜋succ =

(Ax)
N ⊢ N

(⊕2)
N ⊢ 1 ⊕ N

(𝜇)
N ⊢ N

𝜋dup =

𝜋0

⊢ N
𝜋0

⊢ N
(⊗)

⊢ N ⊗ N
(⊥)

1 ⊢ N ⊗ N
N ⊢ N ⊗ N

𝜋succ

N ⊢ N
𝜋succ

N ⊢ N
(⊗)

N,N ⊢ N ⊗ N
(O)

N ⊗ N ⊢ N ⊗ N
(Cut)

N ⊢ N ⊗ N
(N)

1 ⊕ N ⊢ N ⊗ N
(𝜈)

N ⊢ N ⊗ N

Figure 2: 𝜇MALL∞ encodings of nat and their basic functions

Similarly, one can represent streams of nats as cut-free non-

wellfounded derivations of ⊢ S (e.g. in fig. 3 𝜋𝑛from represents the

streams of successive nats starting from𝑛) and functions on streams

(e.g. 𝜋Cons represents the cons on streams): in those derivations, we

may have infinitely deep branches as for 𝜋𝑛from whose right-most

branch is infinite.

One can encode the above coinductive programs as circular
derivations

2
ofN ⊢ S, as shown in fig. 4:Φ0,Φ1,Φ2 andΦ3 represent

respectively f0, f1, f2 and f3. To compute the value of f0(n) one

would need to consider the proof obtained by cutting Φ0 with 𝜋𝑛

1
While we use a one-sided presentation of the sequent calculus in the technical

developments of this paper, as common with classical LL, we show the encoding of the

above programs using two-sided sequents for clarity: 𝐹1, . . . , 𝐹𝑛 ⊢ 𝐺1, . . . ,𝐺𝑚 should

be read as ⊢ 𝐹⊥
1
, . . . , 𝐹⊥

𝑛 ,𝐺1, . . . ,𝐺𝑚 as usual and left inference rules are written via

the right rule of their dual connective.

2
Notice that derivations for the Φ𝑖 s contain back-edges, denoting the fact that the

derivation tree is infinite but regular.

𝜋𝑛from = 𝜋Cons =

𝜋𝑛

𝜋𝑛+1 𝜋𝑛+2from
(𝜈) (⊗)

⊢ S
(⊗)

⊢ N ⊗ S
(𝜈)

⊢ S

(Ax)
N ⊢ N

(Ax)
S ⊢ S

(𝜈),(⊗)
N, S ⊢ S

Figure 3: 𝜇MALL∞ encodings of basic functions on streams

which will induce an infinite cut-reduction sequence converging
to 𝜋𝑛from; the same happens when reducing a cut between Φ1 and

𝜋𝑛 : those are productive. On the other hand, if 𝜋 ′ is obtained by

cutting Φ2 with 𝜋𝑛 every derivation that is reached by reduction

sequence from 𝜋 ′ will have a cut as its last inference: cut cannot be
eliminated from that proof, it is a non-productive computation.

3

Interestingly, the difference between Φ1 and Φ2 is limited to the

relative order of the (𝜈) (⊗) inferences and the (𝜇) (O) depicted in

green and red on fig. 4 and that difference, altogether with non-

wellfoundedness of the sequent derivations, will make the difference

between a productive and a non-productive cut-elimination. A

simpler example of the same phenomenon will be given in fig. 8b

and 8c and discussed below. Therefore the desideratum is a proof

paradigm such that the representations of f1 and f2 are the same

(say 𝑅𝑒𝑝 (f1) = 𝑅𝑒𝑝 (f2) = 𝐾) and cut elimination productive in 𝐾

cut against 𝑅𝑒𝑝 (n) for all 𝑛.

Φ0 = 𝜋dup

N ⊢ N ⊗ N

(Ax)
N ⊢ N

𝜋succ

N ⊢ N N ⊢ S
(Cut)

N ⊢ S
(𝜈),(⊗)

N,N ⊢ S
(O)

N ⊗ N ⊢ S
(Cut)

N ⊢ S

Φ1 =
𝜋dup

N ⊢ N ⊗ N

𝜋succ

N ⊢ N N ⊢ S
(Cut)

N ⊢ S

(Ax)
N ⊢ N

𝜋Cons
(𝜇),(O)

S ⊢ S
(𝜈),(⊗)

N, S ⊢ S
(Cut)

N,N ⊢ S
(O)

N ⊗ N ⊢ S
(Cut)

N ⊢ S

Φ2 =
𝜋dup

N ⊢ N ⊗ N

𝜋succ

N ⊢ N N ⊢ S
(Cut)

N ⊢ S

(Ax)
N ⊢ N 𝜋Cons

(𝜈),(⊗)
N,N, S ⊢ S

(𝜇),(O)
N, S ⊢ S

(Cut)
N,N ⊢ S

(O)
N ⊗ N ⊢ S

(Cut)
N ⊢ S

Φ3 =

𝜋dup

N ⊢ N ⊗ N

𝜋succ

N ⊢ N N ⊢ S
(Cut)

N ⊢ S

(Ax)
N ⊢ N

(Ax)
N ⊢ N

(Ax)
S ⊢ S

(𝜈),(⊗)
N, S ⊢ S

(𝜈),(⊗)
N,N, S ⊢ S

(X)
N,N, S ⊢ S

(𝜇),(O)
N, S ⊢ S

(Cut)
N,N ⊢ S

(O)
N ⊗ N ⊢ S

(Cut)
N ⊢ S

Figure 4: 𝜇MALL∞ encodings of f0, f1, f2 and f3 from fig. 1

3
Indeed, to produce the first element of the stream the green (𝜈) (⊗) inferences, one
first needs to make the red (𝜇) (O) inferences interact over the cut but this requires
first partially eliminating the cut of the derivation at the source of the back-edge,

which is essentially the proof we started with: this infinite chain of dependencies

causes the non-productivity.

Canonical proof-objects for coinductive programming: infinets with infinitely many cuts PPDP ’21, September 6–8, 2021, Tallinn, Estonia

⊢ 𝜙𝛼𝑖𝑙 ,𝜓𝛽𝑖𝑖 (𝜈)⊢ 𝜙𝛼𝑖𝑙 , 𝜈𝑌 .𝜓𝛽𝑖 (𝜇)⊢ 𝜙𝛼𝑖𝑙 ,𝜓𝛽
⊢ 𝜙𝛼𝑖𝑟𝑖𝑙 ⊢ 𝜙𝛼𝑖𝑟𝑖𝑟 (𝜈⊗)⊢ 𝜙𝛼𝑖𝑟

(⊗)⊢ (𝜙 ⊗ 𝜙)𝛼𝑖 ,𝜓𝛽 (𝜈)⊢ 𝜙𝛼 ,𝜓𝛽

⊢ 𝜙𝛼𝑖𝑙𝑖𝑟 ⊢ 𝜙𝛼𝑖𝑙𝑖𝑙 (𝜈⊗)⊢ 𝜙𝛼𝑖𝑙

⊢ 𝜙𝛼𝑖𝑟 ,𝜓𝛽𝑖𝑖 (𝜈)⊢ 𝜙𝛼𝑖𝑟 , 𝜈𝑌 .𝜓𝛽𝑖 (𝜇)⊢ 𝜙𝛼𝑖𝑟 ,𝜓𝛽 (⊗)⊢ (𝜙 ⊗ 𝜙)𝛼𝑖 ,𝜓𝛽 (𝜈)⊢ 𝜙𝛼 ,𝜓𝛽

Figure 5: Two proofs of ⊢ 𝜈𝑋 .𝑋 ⊗ 𝑋, 𝜇𝑋 .𝜈𝑌 .𝑋

Proof-nets. As we have seen, some seemingly irrelevant differences

(the relative order of the application of rules) induce widely varying

behaviour in 𝜇MALL sequent calculus. This phenomenon is related

to the fact that the sequent calculus for LL is non-canonical: a LL
proof may be reduced to two cut-free proofs 𝜋1 and 𝜋2 which are

different but guaranteed to be equal up to irrelevant permutations

of inference rules
4
. In other words, the permutations are denota-

tionally trivial i.e. J𝜋1K = J𝜋2K in any semantics. Proof-nets [28]

were devised to overcome this sequentiality. A proof-net can be

seen as a graph whose nodes are inference rules, which are thus

not ordered, and consequently less sequential than sequent cal-

culus proofs. As they are canonical, proof-nets are well-suited to

represent computation.

Infinets. In [19], the authors defined infinets, canonical objects that

capture exactly the equivalence classes of pre-proofs under the

equivalence by (possibly infinite) permutation of inferences (a.k.a.

permutative equivalence). Compared to MLL, more structure is

needed in order to have suitable non-wellfounded proof structures

for 𝜇MLL∞.

𝜙𝛼𝑖𝑙 𝜙𝛼𝑖𝑟 𝜓𝛽𝑖𝑖

⊗

𝜙𝛼

𝜈

𝜓𝛽𝑖

𝜈

𝜓𝛽

𝜇

Figure 6: First at-

tempt at infinets

Consider the two 𝜇MLL∞ proofs

in fig. 5, omitting the indices for

the time being.They are not permuta-

tively equivalent: no permutation will

change the contents of the premises of

a tensor. However, if we try by simply

forgetting the order of inferences and

keeping only the subformula ordering

and the back-edges, we end up in the

same structure (cf. fig. 6); which means this proof-net equivalence

would be coarser than permutation equivalence. Indeed, the fact

that𝜓 resides with one of the many possible infinite branch is lost

in translation: in order to be faithful, more structure in the form

of “infinite axioms” is present in infinets. Just as usual axioms en-

capsulate the information which formulas end up in which leaf of

the proof tree, infinite axioms encapsulate the information which

formulas end up in which infinite branch of the non-wellfounded

proof tree.

4
Normalisation for LL sits thus in the middle between classical sequent calculus LK —

in which a proof (Lafont’s critical pair) can be reduced to any two proofs of the same

sequent — and natural deduction [27, 33] or 𝜆-calculus [13] normalisation which are

confluent.

The non-canonicity of sequent calculus manifests itself more crit-

ically in the non-wellfounded setting: productivity of cut-elimination

is not preserved by permutative equivalence [5], as already noticed

with fig. 4. The two pre-proofs in figs. 8b and 8c witness the same

phenomenon with simpler proof objects (they use neither additive

nor multiplicative connectives, only fixed points): they are permu-

tatively equivalent but cut-elimination is productive only in the

latter (fig. 11). However they have the same infinet on which the

cut-reduction rules that we propose can be applied (fig. 20). Con-

sequently, we believe that infinets are the proper framework for

dealing with unrestricted cuts and more expressive validity con-

ditions (such as bouncing-validity). Understanding the impact of

those permutations and how to quotient them properly is a deep

motivation for this work and for our investigation of proof-nets

for non-wellfounded proofs: we aim at benefiting from the canon-

icity of proof-nets to improve the dynamics of non-wellfounded

derivation wrt. cut-elimination.

Infinitely many cuts. The handling of the cuts in [19] has been rudi-

mentary: only finitely many cuts are considered and cut-elimination

is basically interpreted as an infinitary abstract rewriting system

with a metric: at first, one guesses the normal form (a.k.a. big-step)

then, a transfinite reduction sequence of small steps is shown to

converge to the big-step in the limit. To guess the limit, one has

to sacrifice some structure viz. 𝜂-expand all axioms rendering the

calculus without atoms. This is a strong limitation when one see

that examples as simple as Φ0,Φ1 and Φ2 contain infinitely many

cuts. We construe G in terms of proof-nets:

(1) Devise proof-nets for 𝜇MLL∞.

(2) Devise cut-elimination rules for them.

(3) Provide cut-elimination result whichwould correspond

to standard guard condition.

(4) Extend the validity condition preserving productivity

of cut-elimination.

(5) Restrict the canonical proof object in such a way that

they are sufficiently expressive and yet the extended

validity is decidable.

The present paper provides a full treatment of cuts and axioms

for non-wellfounded proof-nets thereby achieving the first three of

the above stated goals.

Organisation of the contributions. This work strengthens the def-

inition for non-wellfounded proof structures—and their correct-

ness criterion—to accommodate infinitely many cuts: in this situ-

ation, some infinite axioms are only virtually present, and made

explicit through cut-elimination. Our main contribution is the cut-

elimination result for infinets with atoms and infinitely many cuts

by reconciling the locality of the big-step and non-locality of the

small-step. To prove that result we need to provide an alternate cut

reduction system of 𝜇MLL∞ sequent calculus. The contributions

are summarised in fig. 7.

In section 2, we recall the necessary background on non-wellfounded

proof theory and proof-nets. In section 3, we provide a new cut-

elimination result for 𝜇MLL∞ sequent calculus which is an alter-

native to Baelde et al [5, 6] cut-elimination and is better suited for

PPDP ’21, September 6–8, 2021, Tallinn, Estonia Abhishek De, Luc Pellissier, and Alexis Saurin

Sequentialisation

(Theorem 2)

Desequentialisation

(Proposition 5)

Pre-proofs

(Def. 4)

Valid pre-proofs

a.k.a proofs

(Def. 8)

Cut-free proofs

Non-wellfounded

proof structures

(Def. 22)

Infinets

(Def. 27)

Valid Infinets

(Def. 28)

Cut-free valid

infinets

Cut Elimination

(Theorem 1)
Cut Elimination

(Theorem 3)

Figure 7: Schemata of the contributions

proof-nets. In section 4, we informally discuss the necessary struc-

ture (visitable paths, infinite real axioms, infinite virtual axioms)

that have to be added to MLL proof-nets in order to faithfully rep-

resent 𝜇MLL∞ pre-proofs. In section 5, we formalize this intuition

and define non-wellfounded proof structures. We state the correct-

ness criterion in section 6, which leads us to develop and adapt the

theory of kingdoms to non-wellfounded structures, an additional

contribution of the work. This allows us to provide a sequentiali-

sation procedure extending that of [19]. We introduce a new cut

reduction system in section 7 and establish the cut-elimination

theorem by showing productivity of cut-reduction for valid infinets.

Section 8 concludes with future directions. A full version with all

the proofs is available at [18].

2 BACKGROUND

Before we begin, we will introduce some notations that will be used

throughout the paper.

Language theoretic notations. We denote the empty word by 𝜖 .

Let 𝑥,𝑦 be two words. The greatest common prefix of 𝑥 and 𝑦 is

denoted by 𝑥 ∩𝑦. For any finite set of alphabets, Σ, Σ∞ denotes the

set of finite and infinite words made of letters from Σ. Given a set

of words, 𝐿, the prefix-closure of 𝐿 is denoted by 𝐿.

Graph theoretic terms. A multigraph is graph is a graph which

can have multiple edges between two vertices. A hypergraph is a

generalization of a graph in which an edge can join any number of

vertices i.e. an edge is a non-empty subset of of the set of vertices.

A hybridgraph is a hypergraph where the normal edges i.e. edges

joining exactly two vertices are distinguished from the rest of the

edges. We will now recall some terms from the infinite graph theory.

An infinite graph (𝑉 , 𝐸) with 𝑉 = {𝑥0, 𝑥1, 𝑥2, . . . } and 𝐸 =

{𝑥0𝑥1, 𝑥1𝑥2, . . . } is called a ray. The subrays of a ray are called

its tails. An end of an infinite graph 𝐺 = (𝑉 , 𝐸) is an equivalence

class of the rays in 𝐺 , where two rays are considered equivalent if,

for every finite set 𝑆 ⊆ 𝑉 , both have a tail in the same component

of 𝐺 − 𝑆 .

2.1 Multiplicative linear logic with fixed points

𝜇MALL∞, the non-wellfounded extension of MALL, the multiplica-

tive additive fragment of linear logic, with least and greatest fixed

points operators, was introduced in [6, 23]. In this paper, we only

consider the unit-freemultiplicative fragmentwhichwe call 𝜇MLL∞.

In this section, we recall some basic definitions.

Definition 1. Given two disjoint infinite sets of atoms A =

{𝐴, 𝐵, . . . }, and of propositional variablesV = {𝑋,𝑌, . . . }, 𝜇MLL∞

pre-formulas are given by the following grammar (where 𝐴 ∈ A,

𝑋 ∈ V):

𝜙,𝜓 ::= 𝐴 | 𝐴⊥ | 𝑋 | 𝜙O𝜓 | 𝜙 ⊗𝜓 | 𝜇𝑋 .𝜙 | 𝜈𝑋 .𝜙
𝜇, 𝜈 bind the variable 𝑋 in 𝜙 . Free and bound variables, as well as

capture-avoiding substitution are defined as usual. The subformula

ordering is denoted ≤. A closed pre-formula (i.e. no free variables), is

called a formula.

We define negation, (•)⊥, as a meta-operation on pre-formulas

(with 𝑋⊥ = 𝑋) and will use it only on formulas. As it is not part of

the syntax, we do not need any positivity condition on the fixed-

point expressions. As expected, the least and greatest fixed point

are the dual of each other.

The system is classical, hence, it is enough to consider a one-

sided proof system. However, in order to keep track of progressing

(a.k.a. valid) threads and also while translating into proof nets, it

is useful to distinguish occurrences of the same formula within a

sequent. A 𝜇MLL∞ sequent is an expression ⊢ Δ where Δ is a finite

set of pairwise disjoint formula occurrences. We will now define

these terms introduced.

Definition 2. An (in)finite address is an (in)finite word in

{𝑙, 𝑟 , 𝑖}∞. Negation extends over addresses as the morphism satisfying

𝑙⊥ = 𝑟 , 𝑟⊥ = 𝑙 , and 𝑖⊥ = 𝑖 . If 𝛽 is a prefix of 𝛼 then 𝛼 is sub-address

of 𝛽 . Finally, 𝛼 and 𝛽 are said to be disjoint if 𝛼 ∩ 𝛽 is not equal to

𝛼 or 𝛽 .

Definition 3. A formula occurrence (denoted by 𝐹,𝐺, ...) is

given by a formula𝜙 and a finite address𝛼 , written𝜙𝛼 . Let addr(𝜙𝛼) =
𝛼 . Operations on formulas extend to occurrences: 𝜙𝛼

⊥ = 𝜙⊥
𝛼⊥ ; for

★ ∈ {O, ⊗}, 𝐹 ★𝐺 = (𝜙★𝜓)𝛼 if 𝐹 = 𝜙𝛼𝑙 and𝐺 = 𝜓𝛼𝑟 ; for 𝜎 ∈ {𝜇, 𝜈},
𝜎𝑋 .𝐹 = (𝜎𝑋 .𝜙)𝛼 if 𝐹 = 𝜙𝛼𝑖 . Substitution of occurrences forgets ad-

dresses i.e. (𝜙𝛼) [𝜓𝛽/𝑋] = (𝜙 [𝜓/𝑋])𝛼 . We say that occurrences are

disjointwhen their addresses are. Given two occurrences𝜙𝛼 ,𝜓𝛽 ,𝜙𝛼 is

called a suboccurrence of𝜓𝛽 (written𝐺 ⊑ 𝐹) if 𝜙 is FL-subformula

of𝜓 and 𝛼 is a subaddress of 𝛽 . Finally, ⌈•⌉ denotes the address erasure
operation on occurrences.

Canonical proof-objects for coinductive programming: infinets with infinitely many cuts PPDP ’21, September 6–8, 2021, Tallinn, Estonia

We are now ready to define the derivation trees of 𝜇MLL∞.

Definition 4. A pre-proof of 𝜇MLL∞ is a possibly infinite tree

generated from the inferences of unit-free multiplicative linear logic

and the following rules:

⊢ 𝐺 [𝜇𝑋 .𝐺/𝑋],Δ
(𝜇)⊢ 𝜇𝑋 .𝐺,Δ

⊢ 𝐺 [𝜈𝑋 .𝐺/𝑋],Δ (𝜈)⊢ 𝜈𝑋 .𝐺,Δ

Given a pre-proof, 𝜋 , addr(𝜋) ⊆ {𝑙, 𝑟 , 𝑖}∞ is largest set of addresses

s.t. if a finite address 𝛼 ∈ addr(𝜋) then for some 𝜙 , 𝜙𝛼 either occurs

in an axiom or occurs infinitely often in an infinite branch in 𝜋 with

addr(𝐹) = 𝛼 ; and if an infinite address 𝛼 ∈ addr(𝜋) then there is an

infinite branch 𝛽 of 𝜋 such that every finite prefix of 𝛼 is an address

of an occurrence appearing in 𝛽 .

Example 1. The three derivations in fig. 8 are pre-proofs, as are

the two in fig. 5. We draw back-edges between two sequents with

the same underlying formulas as a way to represent regular proofs:

the derivation above the pointing sequent is equal to the one above

the pointed one, up to address renaming. If we call 𝜋 the first proof

in fig. 5, we have that addr(𝜋) = 𝛼.(𝑖 (𝑙 + 𝑟))𝜔 ∪ 𝛽𝑖𝜔 .

Infinitary proof systems depart peculiarly from their wellfounded

counterparts: in spite of the rules being locally sound, it is possible

to derive any sequent, as in Figure 8a. We impose a global validity

criterion on pre-proofs. Valid pre-proofs are simply called proofs.

Definition 5. Let𝛾 = (𝑠𝑖)𝑖∈𝜔 be an infinite branch of a pre-proof.

A thread of 𝛾 is a sequence 𝜏 = {𝐹𝑖 }𝑖∈𝜔 such that there exists 𝑗 ≥ 0

such that for all 𝑖 < 𝜔 , we have 𝐹𝑖 ∈ 𝑠𝑖+𝑗 and either 𝐹𝑖 is suboccurrence
of 𝐹𝑖+1 or 𝐹𝑖 = 𝐹𝑖+1. We denote the sequence of formulas {⌈𝐹𝑖 ⌉}𝑖∈𝐼
by ⌈𝜏⌉.

Definition 6. A thread is said to be straight if it is not ultimately

constant. A straight thread is said to be valid if the set Inf (𝜏) of
formulas occurring infinitely often in 𝜏 , admits a minimum 𝐹𝑚𝑖𝑛 wrt

the subformula ordering and 𝐹𝑚𝑖𝑛 is a 𝜈-formula.

Definition 7. An infinite branch of a pre-proof is called real if

it has at least one straight thread and virtual otherwise. It is valid if

it has a valid thread.

Definition 8. Let 𝜋 be a 𝜇MLL∞ pre-proof. It is straight-thread

valid if all its infinite branches are valid.

Remark 1. Observe that a proof does not have virtual branches.

Furthermore, if a pre-proof has virtual branches, then it has infinitely

many cuts.

Example 2. Consider the first pre-proof (say 𝜋) in fig. 5. The left-

most branch contains two threads: one following the formula 𝜙 , the

other the formula𝜓 . The first one is straight and valid, the second is

not: accordingly, this branch is supported by a valid thread. As it is

also the case of the other infinite branches, 𝜋 is a proof.

2.2 Proof-nets

Proof-nets are geometrical proof objects introduced by Girard that

eliminates two forms of bureaucracy which differentiates sequent

proofs: irrelevant syntactical features and the order of inference

rules.

Proof-nets are usually defined as vertex labelled, edge labelled

directed multigraphs. In this section we present MLL proof-nets in

a formalism due to Curien [14] which is useful to lift proof-nets to

𝜇MLL∞.

We begin by recalling that the syntax tree of anMLL formula

occurrence 𝐹 induces a prefix closed language, L𝐹 ⊂ {𝑙, 𝑟 , 𝑖}∗ s.t.
there is a natural bijection between L𝐹 and the branches of the

tree.

Definition 9. A partial syntax tree, 𝐹𝑈 , is a subtree of the

syntax tree of the formula occurrence, 𝐹 , s.t.𝑈 ⊆ L𝐹 and𝑈 represents

a bar of the syntax tree of 𝐹 i.e. any𝑢,𝑢 ′ ∈ 𝑈 are pairwise disjoint and

for every 𝑢𝑎𝑣 ∈ 𝑈 , there is a 𝑣 ′ s.t. 𝑢𝑎⊥𝑣 ′ ∈ 𝑈 . For 𝑢 ∈ 𝑈 , we denote

by (𝐹,𝑢) the unique suboccurrence of 𝐹 with the address addr(𝐹).𝑢.

We illustrate a schematic partial syntax tree in fig. 9a.MLL proof
nets without cuts can be seen as a forest of partial syntax trees of

the occurrences in the conclusion sequent and axiom links between

their leaves (cf. fig. 9b). To incorporate cuts we need to add the

partial syntax tree of the cut occurrences (along with the axioms

links involving their leaves) and links between dual cut occurrences.

Definition 10. AnMLLproof-structure is a 3-tuple ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ)

where:

– for all 𝑖 ∈ 𝐼 , 𝐹𝑈𝑖

𝑖
is a partial syntax tree; {𝐹𝑖 }𝑖∈𝐼 is called the set of

doors.

– 𝔎 is the set of cuts i.e. a (possibly empty) set of disjoint subsets of

{𝐹𝑖 }𝑖∈𝐼 of the form {𝐶,𝐶⊥}; and,
– Θ is the set of axiom links i.e. a partition of the set of leaves, L =⋃

𝑖∈𝐼 {𝛼𝑖𝑢𝑖 | addr(𝐹𝑖) = 𝛼𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 } such that each cell is pair of

dual addresses i.e. of the form {𝛼𝑖𝑢𝑖 , 𝛼 𝑗𝑢 𝑗 } such that ⌈(𝐹𝑖 , 𝑢𝑖)⌉ =⌈
(𝐹 𝑗 , 𝑢 𝑗)

⌉⊥
.

Not all proof-structures are meaningful and we need to impose a

correctness criterion. For the rest of the section fix a proof-structure

R = ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ).

Definition 11. A switching, 𝑠𝑤 , of R is set of functions {𝑠𝑤𝑖 :

𝑃𝑖 → {𝑙, 𝑟 }}𝑖∈𝐼 s.t. for every 𝑖 ∈ 𝐼 , 𝑃𝑖 ⊆ 𝑈𝑖 and ⌈(𝐹𝑖 , 𝑝)⌉ is a O-

formula for all 𝑝 ∈ 𝑃𝑖 .

Definition 12. Let 𝑠𝑤 be a switching of R. Let 𝑢 be a substring

of a word 𝑤 in 𝑈𝑖 . Then, 𝑢 is said to be unbroken if for all 𝑗 ∈
{1, . . . , 𝑛 − 1}, 𝑠𝑤𝑖 (𝑣𝑢1 . . . 𝑢 𝑗) ≠ 𝑢 𝑗+1 where 𝑢 = 𝑢1 . . . 𝑢𝑛 and 𝑣𝑢 is

a prefix of𝑤 for some word 𝑣 .

Fix a switching, 𝑠𝑤 , of R. Let SW ⊆ L2
such that (𝑥,𝑦) ∈ SW

iff either 𝑥 = 𝑦 or one of the following holds:

– 𝑤 = 𝑥 ∩ 𝑦 ≠ 𝜖 . Let 𝑤𝑢 = 𝑥 and 𝑤𝑣 = 𝑦. Then, 𝑢 and 𝑣 are

unbroken;

– 𝑥 = 𝛼𝑢 and 𝑦 = 𝛼 ′𝑣 such that addr(𝐶) = 𝛼, addr(𝐶⊥) = 𝛼 ′,
{𝐶,𝐶⊥} ∈ 𝔎 and 𝑢, 𝑣 are unbroken.

Observe that SW is an equivalence. If we see the elements of L as

the collection of leaves of the partial syntax trees of a proof net,

cells of SW are the connected components of that proof net under

the switching 𝑠𝑤 and without axiom links.

Definition 13. The orthogonal graph of R for the switch-

ing, 𝑠𝑤 , (denoted 𝐺𝑠𝑤 (R)) is the undirected bipartite (multi)graph,

(Θ, [SW], 𝐸), where Θ is the set of axioms of R, [SW] is the set of
equivalence classes of SW and (𝑥,𝑦) ∈ 𝐸 iff 𝑥 ∩ 𝑦 ≠ ∅.

PPDP ’21, September 6–8, 2021, Tallinn, Estonia Abhishek De, Luc Pellissier, and Alexis Saurin

.

.

.

⊢ (𝜇𝑋 .𝑋)𝛽𝑖 (𝜇)⊢ (𝜇𝑋 .𝑋)𝛽

.

.

.

⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖 , 𝜙𝛼 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛽⊥ , 𝜙𝛼
(cut)⊢ 𝜙𝛼

(a) An unsound pre-proof, 𝜙 is arbitrary.

(ax)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛼 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛼 , (𝜇𝑌 .𝑌)𝛽 ⊢ (𝜈𝑌 .𝑌)𝛽⊥
(cut)⊢ (𝜈𝑋 .𝑋)𝛼

(b) Non-productive cut-elimination

(ax)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛼 , (𝜇𝑌 .𝑌)𝛽 ⊢ (𝜈𝑌 .𝑌)𝛽⊥
(cut)⊢ (𝜈𝑋 .𝑋)𝛼

(c) Productive cut-elimination

Figure 8: Non-wellfounded derivations. 𝛼 and 𝛽 are arbitrary addresses.

𝐹

𝑈

𝑈

L𝐹

(a) A schematic partial syntax tree

Axiom Links

Doors

Partial

Syntax

Trees

(b) A schematic proof-net

Figure 9: Illustration of partial syntax trees and proof-nets

Definition 14. A proof-structure R is said to be DR-correct if

for switchings 𝑠𝑤 ofR,𝐺𝑠𝑤 (R) is connected and acyclic. A DR-correct

proof-structure is called a proof-net.

The process of translating a proof-net into a proof is called

sequentialisation. The process of translating a proof into a proof-

net is called desequentialisation. Note that the former is a non-

deterministic procedure.

Finally we recall the notion of kingdoms from [8]. Viewed as

graphs, a sub-net is a subgraph of a proof-net that is also a proof-

net. The kingdom of a formula occurrence, 𝐹 , in a proof-net is the

upward-closed sub-net starting from 𝐹 .

Definition 15. Let R be a proof-net. Given 𝐹𝑖 and 𝑢 ∈ 𝑈𝑖 , the
kingdom, 𝑘 (𝐹𝑖 , 𝑢), of (𝐹𝑖 , 𝑢) is the smallest sub-net of R with (𝐹𝑖 , 𝑢)
as one of its doors. We define a relation on the set of occurrences

{(𝐹𝑖 , 𝑢) | 𝑢 ∈ 𝑈𝑖 , 𝑖 ∈ 𝐼 } by 𝑋 ≪ 𝑌 iff 𝑋 ∈ 𝑘 (𝑌).

Proposition 1 ([7]). The relation ≪ is a partial order for any

proof-net.

3 CUT-ELIMINATION IN 𝜇MLL∞ SEQUENT

CALCULUS

In finitary proof theory, cut elimination may proceed by reducing

topmost cuts but there is no such thing, in general, as a topmost cut

in non-wellfounded proof-theory. Previous cut-elimination results

relied on reduction of bottom-most cuts [5, 6, 23, 25] using a gener-

alized cut-rule, the multicut, which abstracts over a finite subtree

made of cut (and axiom) rules. In those approaches, when two cuts

are immediately above one another, they are merged instead of

being permuted. The following is an example of a multicut rule: the

red lines indicate the context and the blue lines indicate two cuts

that have been merged.

⊢ 𝐹 ′, 𝐺 ⊢ 𝐺⊥, 𝐻 ⊢ 𝐻⊥, 𝐾 ′
(mcut)

⊢ 𝐹, 𝐾

A less sequential approach to cut-elimination. While the multicut

brings uniformity in the treatment of cut-elimination in sequent cal-

culus, it is not well-suited for our purpose of developing a canonical

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋]
(𝜇)

⊢ Γ, 𝜇𝑋 .𝐹

⊢ 𝐹⊥ [𝜈𝑋 .𝐹⊥/𝑋],Δ
(𝜈)

⊢ 𝜈𝑋 .𝐹⊥,Δ
(Cut)

⊢ Γ,Δ

⊢ Γ, 𝐹 [𝜎𝑋 .𝐹/𝑋],𝐺
(𝜎)

⊢ Γ, 𝜎𝑋 .𝐹,𝐺 ⊢ 𝐺⊥,Δ
(Cut)

⊢ Γ, 𝜎𝑋 .𝐹,Δ
↓c ↓c

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋] ⊢ 𝐹⊥ [𝜈𝑋 .𝐹⊥/𝑋],Δ
(Cut)

⊢ Γ,Δ

⊢ Γ, 𝐹 [𝜎𝑋 .𝐹/𝑋],𝐺 ⊢ 𝐺⊥,Δ
(Cut)

⊢ Γ, 𝐹 [𝜎𝑋 .𝐹/𝑋],Δ
(𝜎)

⊢ Γ, 𝜎𝑋 .𝐹,Δ

Γ,𝐺⊥
⊢ Δ, 𝐹 ,𝐺 ⊢ Σ, 𝐹⊥

(cut)
⊢ Δ, Σ,𝐺

(cut)
⊢ Γ,Δ, Σ

(Ax)
⊢ 𝐴, 𝐵⊥

𝜋

⊢ 𝐵, Γ
(Cut)

⊢ 𝐴, Γ
↓c ↓c

Γ,𝐺⊥ ⊢ Δ, 𝐹 ,𝐺
(cut)

⊢ Γ,Δ, 𝐹 ⊢ Σ, 𝐹⊥
(cut)

⊢ Γ,Δ, Σ

𝜋

⊢ 𝐵, Γ
(Loc(𝜄))

⊢ 𝐴, Γ

Figure 10: Main cases for 𝜇MLL∞ cut reduction, −→c. (With

𝜎 ∈ {𝜇, 𝜈} and 𝜄 st. 𝜄 (𝐴) = 𝐵, 𝜄 (𝐻) = 𝐻 for 𝐻 ∈ Γ.)

and parallel treatment of cuts in non-wellfounded proof systems. It

is indeed better-suited to use the usual cut-rule to draw a compari-

son between cut-reductions in sequent systems and in proof-nets,

as we will do in the last sections of the paper. To serve this purpose,

we develop here an alternative approach to cut-elimination for non-

wellfounded proof which avoids the use of the multicut but on the

standard cut instead and we will prove a new cut-elimination result

in this case. We shall simply retain however a degenerated case of

the multi-cut, the unary case, used to perform lazily the cut-axiom

reduction and relocation of addresses. Indeed, as we work with

explicit occurrences, the cut/ax case is as follows:

(ax)
⊢ 𝐹,𝐺⊥

𝜋

⊢ 𝐺, Γ
(cut)

⊢ 𝐹, Γ

with ⌈𝐹 ⌉ = ⌈𝐺⌉, which cannot simply be reduced to

𝜋

⊢ 𝐹, Γ as the

occurrences do not match (in fact, the addresses of 𝐹 and 𝐺 are

disjoint). Instead of substituting occurrences in 𝜋 (which is a non-

wellfounded object), we treat this substitution lazily, in the form of

an explicit substitution [1] adding the following unary inference

rule:
𝑠 ′

(Loc(𝜄))
𝑠

where 𝜄 is a one-to-one map from 𝑠 to 𝑠 ′ such that for

all 𝐹 ∈ 𝑠 , 𝜄 (𝐹) ≡ 𝐹 . In the rest of the paper, when writing 𝜇MLL∞,

we mean 𝜇MLL∞ extended with (Loc(𝜄)).

Definition 16 (𝜇MLL∞ cut reduction). The reduction system

−→c is obtained by extending the usualMLL reduction system with

fixed points reductions, cut-commutation rules and a new cut-axiom

rules introducing Loc(𝜄) depicted in fig. 10 on p.6

Canonical proof-objects for coinductive programming: infinets with infinitely many cuts PPDP ’21, September 6–8, 2021, Tallinn, Estonia

𝜋 −→4

c

(ax)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽

(ax)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛽⊥ , (𝜇𝑌 .𝑌)𝛾 (cut)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛼𝑖 , (𝜇𝑌 .𝑌)𝛾
𝜋

⊢ (𝜈𝑌 .𝑌)𝛾⊥
(cut)⊢ (𝜈𝑋 .𝑋)𝛼𝑖 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛼

−→3

c

(ax)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (Loc)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛼𝑖 , (𝜇𝑌 .𝑌)𝛾
𝜋

⊢ (𝜈𝑌 .𝑌)𝛾⊥
(cut)⊢ (𝜈𝑌 .𝑌)𝛼𝑖 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛼

Figure 11: A productive sequence of cut-elimination

Example 3. Consider the sequent-calculus pre-proof 𝜋 in fig. 8c.

We draw a finite reduction sequence of it in fig. 11. We see that after

finitely many steps, it reduces to a proof that is a reduction of 𝜋 above

a 𝜈 rule. Note that this is impossible to do with the pre-proof in fig. 8b,

as any commutation would necessitate to place a 𝜇 below the cut.

The previous cut-reduction system admits infinitary cut-elimination:

Theorem 1. If 𝜋0 is a 𝜇MLL∞ proof, there is sequence of 𝜇MLL∞

proofs (𝜋𝑖)𝑖∈𝜔 with 𝜋𝑖 −→c 𝜋𝑖+1 (strongly) converging to a cut-free
𝜇MLL∞ proof 𝜋 ′.

4 TRIPS AND VISITABLE PATHS

In this section, by looking at examples, we study what structure

present in sequent-calculus pre-proofs needs to be computed so as

to translate them as proof structures.

Infinite axioms. Proof-nets are customarily obtained from a proof

by forgetting the order of inference rules. In section 2.2 we exposed

a proof-net as a set of formula occurrences, together with an order

(the subformula ordering, representing which formula was deduced

from which other formulas) and distinguished sets of formulas,

representing the conclusions, axioms, and cuts. In particular, an

axiom is just a set of two dual formulas. As discussed in section 1,

this set of data is not sufficient for desequentializing infinite proofs

(cf fig. 5): indeed, in the sequent calculus, an arbitrary formula 𝐹 can

be added to a proof of a sequent ⊢ 𝜈𝑋 .𝑋 ; 𝐹 can be seen as justified by
the infinite sequence of unfoldings. As such, we need to introduce

infinite axioms as in [19] which are sets of finitely many formulas

and sequences of unfoldings. Before defining our proof-objects, we

thus need to define these sequences of unfolding and how they

can participate in infinite axioms. We will thus define two mirror

objects: s-trips in pre-proofs and visitable paths in proof-structures.

As a first approximation, infinite axioms are the infinite branches

of pre-proofs, which we can picture graphically as a cell “above” an

undirected ray of 𝜈 nodes (which corresponds to a straight thread

in the corresponding proof) which can also be above an arbitrary

number of formulas. We have drawn such a picture for the pre-

proofs in figs. 12a, 12d and 12g respectively in figs. 12b, 12e and 12h.

As we will see, this approximation does not allow to faithfully

represent all pre-proofs, and we need to consider infinite axioms of

more general kind.

Visitable paths. Consider the proof structure in fig. 12b, the naive

desequentialisation of the pre-proof in fig. 12a. There is an infinite

axiom “above” the undirected ray of 𝜈 nodes (which corresponds to

a straight thread) and there is an undirected ray, 𝜌 , of alternating

axioms and cuts. Observe that every 𝐴 introduced by a cut resides

with the straight thread in the only infinite branch in fig. 12a: this

is lost in translation. Since infinite axioms capture the invariant of

an infinite branch, 𝜌 should be included in the infinite axiom in a

correct desequentialisation as in fig. 12c. Paths like 𝜌 alternating

through axioms and cuts are called visitable paths.

Visitable paths can be formed using tensor nodes as well: a

similar situation as above can be reproduced using tensors and a

fixed point formula. Consider the proof structure in fig. 12e, the

naive desequentialisation of the pre-proof in fig. 12d. Here as well

the visitable path of alternating axioms and tensors (in red) should

be included in the infinite axiom above the undirected ray of 𝜈

nodes.

Trips. When translating pre-proofs into proof structures, one needs

to compute the visitable paths on pre-proofs.We therefore introduce

the sibling notion of s-trips.

Definition 17. Given a pre-proof 𝜋 , a trip starting from 𝐹1 is a

sequence 𝜏 = {(𝑠𝑖 , 𝐹𝑖 , 𝑑𝑖)}𝑖∈𝜔 where 𝑠𝑖 is a sequent in 𝜋 , 𝐹𝑖 ∈ 𝑠𝑖 and
𝑑𝑖 ∈ {↑, ↓} such that 𝑑1 = ↑ and for every 𝑖 < 𝜔 exactly one of the

following holds:

– 𝑑𝑖 = 𝑑𝑖+1 = ↑, 𝑠𝑖+1 is a premise of 𝑠𝑖 and 𝐹𝑖+1 ⊑ 𝐹𝑖 .

– 𝑑𝑖 = 𝑑𝑖+1 = ↓, 𝑠𝑖 is a premise of 𝑠𝑖+1 and 𝐹𝑖 ⊑ 𝐹𝑖+1.
– 𝑑𝑖 = ↑, 𝑑𝑖+1 = ↓, 𝑠𝑖 = 𝑠𝑖+1 = {𝐹𝑖 , 𝐹𝑖+1} and 𝑠𝑖 is conclusion of a

(ax) rule.
– 𝑑𝑖 = ↓, 𝑑𝑖+1 = ↑, 𝑠𝑖 and 𝑠𝑖+1 are the premises of a (cut) rule on 𝐹𝑖
and 𝐹𝑖+1.

– 𝑑𝑖 = ↓, 𝑑𝑖+1 = ↑, 𝑠𝑖 and 𝑠𝑖+1 are the premises of a (⊗) rule on 𝐹𝑖 and
𝐹𝑖+1.

Furthermore 𝜏 satisfies that for every 𝑖, 𝑗 < 𝜔 , there does not exist a

sequent, 𝑠 , in 𝜋 such that 𝐹𝑖O𝐹 𝑗 ∈ 𝑠 .
Informally, a trip is sequence of pointed sequents (i.e. sequents

with a principal formula occurrence) with directions tracing a path

bouncing on axioms and cuts or tensors. Furthermore, it does not

go through two premises of a O rule: which stated in terms of

proof-nets corresponds to switching paths. Observe that straight

threads are basically trips which have finitely many terms of the

form (𝑠, 𝐹 , ↓).
Definition 18. An s-trip is a trip which has infinitely many

terms of the form (𝑠, 𝐹 , ↓). A pre-proof is said to be simple if it does

not contain any s-trips.

The coloured lines in the pre-proofs of fig. 12 indicate s-trip.

Proposition 2. Let {(𝑠𝑖 , 𝐹𝑖 , 𝑑𝑖)}𝑖∈𝜔 be a trip of a pre-proof 𝜋 .

Then there exists an infinite branch that has infinitely many com-

mon terms with (𝑠𝑖)𝑖∈𝜔 . Furthermore, if there exist two such infinite

branches 𝛾1 and 𝛾2 then 𝛾1 = 𝛾2 after finitely many terms.

From proposition 2 we can associate a unique maximal infinite

branch with a trip. An s-trip correspond to a visitable path and the

PPDP ’21, September 6–8, 2021, Tallinn, Estonia Abhishek De, Luc Pellissier, and Alexis Saurin

(ax)
⊢ 𝐴, 𝐴⊥

★

⊢ 𝐴,𝜈𝑋 .𝑋 (𝜈)⊢ 𝐴,𝜈𝑋 .𝑋 (cut)
★ ⊢ 𝐴,𝜈𝑋 .𝑋

(a)

.

.

.

𝐴 𝐴⊥ 𝐴 𝐴⊥ · · ·
ax ax

ax∞𝑟

cut cut

𝜈

𝜈𝑋 .𝑋

𝜈

(b) Naive desequentialisation of fig. 12a

.

.

.

𝐴 𝐴⊥ 𝐴 𝐴⊥ · · ·
ax ax

ax∞𝑟

cut cut

𝜈

𝜈𝑋 .𝑋

𝜈

(c) Desequentialisation of fig. 12a

★

⊢ 𝐴⊥, 𝐻
(ax)

⊢ 𝐴, 𝐴⊥
⊗

⊢ 𝐻, 𝐴⊥ ⊗ 𝐴, 𝐴⊥
(O)

𝐻O(𝐴⊥ ⊗ 𝐴), 𝐴⊥
(𝜈)

★ ⊢ 𝐻, 𝐴⊥

(d) 𝐻 = 𝜈𝑋 .𝑋O(𝐴⊥ ⊗ 𝐴)

.

.

. 𝐴⊥

.

.

.

𝐴 𝐴⊥

𝐴 𝐴⊥

𝐴

ax

ax

ax

ax∞𝑟
⊗

O

𝜈
⊗

O

𝜈

⊗

O

𝐻

𝜈

(e) Naive desequentialisation of fig. 12d

.

.

. 𝐴⊥

.

.

.

𝐴 𝐴⊥

𝐴 𝐴⊥

𝐴

ax

ax

ax

ax∞𝑟

⊗

O

𝜈
⊗

O

𝜈

⊗

O

𝐻

𝜈

(f) Desequentialisation of fig. 12d

(ax)
⊢ 𝐴, 𝐴⊥

(ax)
⊢ 𝐴, 𝐴⊥

★

⊢ 𝐴, 𝐴⊥
(cut)

⊢ 𝐴, 𝐴⊥
(cut)

★ ⊢ 𝐴, 𝐴⊥

(g)

𝐴 𝐴⊥ 𝐴 𝐴⊥ .
.
.

𝐴⊥ 𝐴 𝐴⊥ 𝐴
.
.
.

ax ax

cut cut
ax ax

cut cut

(h) Naive desequentialisation of fig. 12g

𝐴 𝐴⊥ 𝐴 𝐴⊥ .
.
.

𝐴⊥ 𝐴 𝐴⊥ 𝐴
.
.
.

ax ax

cut cut
ax ax

ax∞𝑣

cut cut

(i) Desequentialization of fig. 12g

Figure 12: Naive and faithful desequentialisations of 𝜇MLL∞ simple pre-proofs. Back-edges are depicted using pointers (★). Red

and blue curves indicate trips.

infinite branch associated with it corresponds to the infinite axiom

above the corresponding visitable path.

Virtual infinite axioms. Consider the pre-proof 𝜋 in fig. 12g. It proves

a sequent ⊢ 𝐴,𝐴⊥
by never operating on these formulas but delay-

ing infinitely this treatments using cuts. From this perspective, it

could be desequentialised naively as in fig. 12h. The pre-proof has

two maximal s-trips (following each formula as they are cut and

introduced by finite axioms), just as the proof-structure has two

visitable paths.

Nonetheless, we can argue as before that an infinite axiom should

be atop the two visitable paths, representing that the two formulas

𝐴 and 𝐴⊥
are infinitely pushed away together: viewed in this way,

the pre-proof 𝜋 represents an infinitely cut-expanded axiom.

However we have no infinite branch in the proof-structure

of fig. 12h to support an infinite axiom. We need to introduce a new

kind of infinite axiom as in fig. 12i which is not “above an infinite

ray” — we call it a virtual axiom. We will thus distinguish between

infinite axioms that are supported by a straight thread (which we

will call real axioms) and infinite axioms supported by visitable

paths (virtual axioms). Just as real infinite axioms, virtual axioms

can also contain formula occurrences with finite addresses (indeed,

consider 𝜋 with an arbitrarily formula added in the conclusion

sequent and pushed through all the cuts). In both cases, an infinite

axiom is the invariant (under permutation of inference rules) of an

infinite branch (in a pre-proof), but while real axioms are invariant

of straight branches, virtual one are invariants of virtual branches.

𝜋

⊢ 𝐴, 𝐴⊥

★

⊢ 𝐴,𝜈𝑋 .𝑋 (𝜈)⊢ 𝐴,𝜈𝑋 .𝑋 (cut)
★ ⊢ 𝐴,𝜈𝑋 .𝑋

Figure 13: Let 𝜋 be the proof in fig. 12g

Higher order. A final difficulty arises in the process of inventing

infinitary proof structures. Consider the pre-proof in fig. 13: it

consists of an infinite sequence of unfolding of a fixpoint such that,

between two unfoldings, a cut introduces the infinite pre-proof 𝜋

of conclusion ⊢ 𝐴,𝐴⊥
studied in the last paragraph: as said there, it

can be interpreted as an infinitely expanded axiom.

Let us imagine what the procedure to desequentialise the pre-

proof in fig. 13 would look like, in particular to compute the visitable

Canonical proof-objects for coinductive programming: infinets with infinitely many cuts PPDP ’21, September 6–8, 2021, Tallinn, Estonia

paths and the infinite axioms. Typically one can imagine starting by

tracing the sequents in such a way that they mimic the dynamics

of an s-trip thereby recognising the infinitely many visitable paths

from the infinitely many s-trips (each occurrence of 𝜋 generating

two maximal s-trips).

We introduced s-trips (in pre-proofs) so as to provide a counter-

part to visitable paths (in proof structures) hence the proof structure

desequentialised from the pre-proof in fig. 13 would also contain an-

other visitable path: its corresponding s-trip (drawn in blue in fig. 13)

which bounces through each copy of 𝜋 by going up the blue trip

and down the red trip of fig. 12g, and keeps going up. This visitable

path resides with the undirected 𝜈-ray in a real axiom.

Such a trip is not encompassed by def. 17: it would be an higher

order trip that interleaves regular progression between sequents

with full trips.

Definition 19. Given a pre-proof 𝜋 , an higher order trip start-

ing from 𝐹1 is a sequence 𝜏 = {(𝑠𝑖 , 𝐹𝑖 , 𝑑𝑖)}𝑖∈𝜔 where 𝑠𝑖 is a sequent

in 𝜋 , 𝐹𝑖 ∈ 𝑠𝑖 and 𝑑𝑖 ∈ {↑, ↓, ↑𝜔 , ↓𝜔 } such that 𝑑1 = ↑ and for every

𝑖 < 𝜔 exactly one of the following holds:

– either 𝑑𝑖 = ↑𝜔 , 𝑑𝑖+1 = ↓𝜔 , 𝑠𝑖 = 𝑠𝑖+1 and there exist trips 𝜎 starting

from 𝐹𝑖 and𝜎
′
starting from 𝐹𝑖+1 that have the same infinite branch

associated with them; or,

– it falls in one of the conditions of def. 17.

Furthermore for every 𝑖, 𝑗 < 𝜔 , there does not exist a sequent, 𝑠 , in 𝜋

such that 𝐹𝑖O𝐹 𝑗 ∈ 𝑠 .

To such trips correspond higher order visitable paths in proof-

structures. Although our results scale to proof-structure containing

such paths, to keep the presentation simple, we will not consider

them, and thus consider only consider pre-proofs without higher

order trips.

We bookend this discussion by summarizing the terms intro-

duced: they go by pair, one in a pre-proof, and its corresponding

notion in proof-structures.

Pre-proofs Non-wellfounded Proof Structures

Axioms Finite axiom links

Real branches (def. 7) Real axioms

Virtual branches (def. 7) Virtual axioms

Trips (def. 17) Visitable paths

Higher order trips (def. 19) Higher order visitable paths

In the next section, wewill define the notions for proof-structures.

Remark 2. The infinets introduced in [19] do not have this crucial

additional structure of visitable paths (rendering the original defini-

tion of 𝜇MLL∞ proof structures in that paper incomplete), which can

feature even in proof structures with finitely many cuts.

5 NON-WELLFOUNDED PROOF STRUCTURES

In section 4 we have exposed the concepts necessary to define non-

wellfounded proof structures (nwfps) and to desequentialize pre-

proofs as if our proof-structures were infinite graphs. We formalise

the definitions in this section.

Simple nwfps. In section 2.2 we formally exposeMLL proof-nets

as 3-tuples of the form ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ). These objects generalises

to the non-wellfounded setting in the following way:

Firstly, the syntax tree of a 𝜇MALL formula occurrence 𝐹 is the

(possibly infinite) unfolding tree of the Fischer-Ladner graph of 𝐹 .

So the partial syntax trees 𝐹
𝑈𝑖

𝑖
could be potentially infinite.

Secondly, we might have infinitely many cut occurrences; so 𝐼

could potentially be infinite.

Thirdly, recall from section 4 that we have three kinds of ax-

ioms: finite, real, and virtual. So, in 𝜇MLL∞, the set Θ of axioms

is partitioned as Θ𝑓 ⊎ Θ𝑟 ⊎ Θ𝑣 where, if we set L =
⋃

𝑖∈𝐼 {𝛼𝑖𝑢𝑖 |
addr(𝐹𝑖) = 𝛼𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 }:
– Θ𝑓 is the set of finite axioms: its elements are pairs of finite dual

addresses fromL. They are links between leaves of partial syntax

trees denoted by ax in fig. 12.

– Θ𝑟 is the set of real axioms: the invariant (under permutation

of inferences) of an infinite branch of a pre-proof supported

by a straight thread. Its elements necessarily contain at least

one infinite address and might contain visitable paths. They are

denoted by
ax∞𝑟 in figs. 12c and 12f.

– Θ𝑣 is the set of virtual axioms: the invariant (under permutation

of inferences) of an infinite branch of a pre-proof supported by a

visitable thread. Its elements necessarily contain visitable paths

and might contain finite addresses from L. They are denoted by

ax∞𝑣 in fig. 12i.

Hence Θ is a partition over L ∪𝑉 where𝑉 is the set of visitable

paths.

An nwfps is defined in two steps: first, we define a simple nwfps.

Then, an nwfps is nothing but a simple nwfps and its visitable

paths.

Definition 20. A simple nwfps is a 5-tuple ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟 ,Θ𝑣)

which respectively comprises of a set of partial syntax trees, a set of

cuts, a set of finite axioms, a set of real axioms such that:

– {𝐹𝑖 }𝑖∈𝐼 \
⋃

𝜅∈𝔎 𝜅 is finite.

– Θ𝑓 ⊎Θ𝑟 ⊎Θ𝑣 is a partition of the set L =
⋃

𝑖∈𝐼 {𝛼𝑖𝑢𝑖 | addr(𝐹𝑖) =
𝛼𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 } such Θ𝑓 has only elements containing finite dual

addresses, elements of Θ𝑟 necessarily contain an infinite address

and elements of Θ𝑣 do not contain an infinite address.

Example 4. Consider the structure in fig. 12f. It defines a simple

nwfps ({𝐻𝑈1 , (𝐴⊥
𝛽
)𝑈2 }, ∅, {𝜃𝑛}𝑛≥0, {{(𝑖𝑙)𝜔 }}, ∅) such that 𝛼 and 𝛽

are disjoint, 𝑈1 = (𝑖𝑙)∗ .𝑖𝑟 (𝑙 + 𝑟) + (𝑖𝑙)𝜔 , 𝑈2 is simply {𝜖}, 𝜃0 =

{𝛼𝑖𝑟2, 𝛽} and for every 𝑛 > 0, 𝜃𝑛 = {(𝑖𝑙)𝑛−1𝑖𝑟2, (𝑖𝑙)𝑛−1𝑖𝑟𝑙}.

Visitable ends. The simple nwfps correspond to [19, def. 18]. On

top of it we add the visitable paths and augment the axioms to make

general nwfps.

Observe that permutation of inference rules in a pre-proof can

induce a permutation of terms in its trips. However, if we only take

the principal formulas of a trip (without repetition), this sequence is

invariant. Further observe that this sequence is fixed by only stating

the points of alternation of directions i.e. the cuts and tensors for ↓
to ↑ and the finite axioms for ↑ to ↓. Hence 𝑉 is a set of sequences

of alternating tensors (or cuts) and finite axioms. We must impose

a sanity condition since any such sequence cannot be a visitable

path.

Definition 21. Given a simple nwfps, a visitable path is an

infinite sequence {𝑡𝑖 }𝑖∈N such that if 𝑖 is odd then 𝑡𝑖 is either a tensor

formula occurrence (𝐹 𝑗 , 𝑢) for some 𝑗 ∈ 𝐼 and𝑢 ∈ 𝑈 𝑗 or an element of

PPDP ’21, September 6–8, 2021, Tallinn, Estonia Abhishek De, Luc Pellissier, and Alexis Saurin

𝔎 and if 𝑖 is even then 𝑡𝑖 ∈ Θ𝑓 . Further, there exists a pair of infinite

sequences of addresses, ({𝑙𝑖 }𝑖∈N,{𝑟𝑖 }𝑖∈N)such that for every 𝑖 ∈ N:
– If 𝑡2𝑖−1 = (𝐹 𝑗 , 𝑢) is a tensor formula, then 𝑢 is a prefix of 𝑙𝑖 and 𝑟𝑖 .

– If 𝑡2𝑖−1 = {𝐶,𝐶⊥}, then addr(𝐶) and addr(𝐶⊥) are prefixes of 𝑙𝑖
and 𝑟𝑖 respectively.

– {𝑟𝑖 , 𝑙𝑖+1} ⊆ 𝑡2𝑖 .
Two visitable paths {𝑡𝑖 }𝑖∈N and {𝑡 ′

𝑖
}𝑖∈N are equivalent if there exists

𝑚 ∈ N such that for all 𝑖 ≥ 𝑚, 𝑡𝑖 = 𝑡
′
𝑖
. Their equivalence classes are

called visitable ends.

Remark 3. In def. 21, the choice to start from tensors or cuts instead

of axioms is arbitrary.

Definition 22. Anwfps is a 6-tupleR = ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,𝑉 ,Θ𝑟 ,Θ𝑣)

which respectively comprises of a set of partial syntax trees, a set of

cuts, a set of finite axioms, a set of real axioms, a set of visitable

ends, a set of real axioms, and a set of virtual axioms such that the

following holds, where L =
⋃

𝑖∈𝐼 {𝛼𝑖𝑢𝑖 | addr(𝐹𝑖) = 𝛼𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 }:
– S = ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 , {𝜃 ∩ L | 𝜃 ∈ Θ𝑟 } , {𝜃 ∩ L | 𝜃 ∈ Θ𝑣}\{∅})

is a simple nwfps, the underlying simple nwfps of R.
– 𝑉 is the set of visitable ends of S.
– Θ𝑓 ⊎ Θ𝑟 ⊎ Θ𝑣 is a partition of the set L ∪ 𝑉 where elements of

Θ𝑟 contain at least one infinite address, and, elements of Θ𝑣 do not

contain infinite addresses and contain at least one visitable end.

The visible paths that are used to specify the infinite axioms of

a nwfps are defined on the underlying simple nwfps (which is the

simple nwfps with same components, and the paths removed in all

the real and virtual axioms). In the same way, higher-order paths

can be defined on nwfps
5
.

Example 5. In fig. 12f, we have the visitable path 𝜌 = {𝑡𝑛}𝑛∈N∗

such that

𝑡𝑛 =


𝜃 ′ 𝑛 = 1;

𝜃 ⌊ 𝑛
2
⌋ 𝑛 is odd;

(𝐵1, (𝑖𝑙) ⌊
𝑛
2
⌋𝑖𝑟) 𝑛 is even.

Check that every other visitable path we can produce is a suffix of this.

Hence there is only one visitable end (say, [𝜌]). Observe that we need
to augment 𝜃0 by adding this visitable end i.e. 𝜃0 = {{(𝑖𝑙)𝜔 , [𝜌]}.
There are no virtual axioms, hence Θ𝑣 = ∅. Check that Θ𝑓 ∪Θ𝑟 ∪Θ𝑣

is a partition of 𝛼𝑈1 ∪ 𝛽𝑈2 ∪ {[𝜌]}.

𝜙𝛼

𝜙𝛽

loc

Figure 14: loc changes the address of 𝜙 from 𝛼 to 𝛽 .

Recall from section 3 we are in an extended system i.e. 𝜇MLL∞

with (Loc(𝜄)). Hence we need add new relocation cells with one

premise and one conclusion, changing the addresses (as illustrated

in fig. 14). Formally nwfps have one more component loc: a bijec-
tion between a finite subset 𝐿 of L and a finite subset 𝐶 of doors

such that the underlying formulæ of the image and the antecedent

5
These paths can then participate in real and virtual axioms in more general notions

of structure. The nwfps studied here are just the second level of a hierarchy that starts

with simple nwfps.

are equal. However, since the geometry of nwfps is completely

unaffected by the presence of finitely many loc nodes we will ignore
them.

Desequentialization. Desequentialization of a 𝜇MLL∞ pre-proof

cannot be done inductively as in MLL since the objects we are

constructing are potentially infinite. We translate each component

sequentially. Careful readers can observe that some of those proce-

dures could be infinitary.

Definition 23. Let 𝜋 be a pre-proof of the 𝜇MLL∞ sequent ⊢ Γ.

The desequentialization of𝜋 is a nwfps ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,𝑉 ,Θ𝑟 ,Θ𝑣)

satisfying the following conditions and is denoted by Deseq(𝜋).
– for any cut in𝜋 that introduces two occurrences,𝐶 and𝐶⊥

, {𝐶,𝐶⊥} ∈
𝔎.

– {𝐹𝑖 }𝑖∈𝐼 = Γ ∪⋃
𝜅∈𝔎 𝜅.

– for every 𝑖 ∈ 𝐼 ,𝑈𝑖 = addr(𝐹𝑖)−1addr(𝜋).
– for every axiom linking (𝐹𝑖 , 𝑢𝑖) to (𝐹 𝑗 , 𝑢 𝑗), {addr(𝐹𝑖) .𝑢𝑖 , addr(𝐹 𝑗).𝑢 𝑗 } ∈
Θ𝑓 .

– for every maximal s-trips in 𝜋 , we collect the points of alternation

of directions which gives us a sequence of cuts or tensor and axioms.

This gives us a set of visitable path, which in turn will give us a set

of visitable ends, 𝑉 .

– for every real infinite branch 𝛾 in 𝜋 , 𝜃 ∈ Θ is the largest subset of

L ∪𝑉 such that:

– for every addr(𝐹)𝑢 ∈ 𝜃 , either 𝑢 = 𝑢1𝑢2 . . . is an infinite word

and {(𝐹,𝑢1 . . . 𝑢𝑖)}𝑖∈𝜔 is a straight thread of 𝛾 ; or 𝑢 is a finite

word and (𝐹,𝑢) occurs in infinitely many sequents along 𝛾 .

– for every 𝑣 ∈ 𝜃 ∩𝑉 there exists a trip 𝜌 associated with 𝛾 such

that 𝑣 is obtained from 𝜌 .

– For every virtual infinite branch, 𝛾 , in 𝜋 , 𝜃 ∈ Θ is the largest subset

of L ∪𝑉 such that:

– for every addr(𝐹)𝑢 ∈ 𝜃 , 𝑢 is a finite word and (𝐹,𝑢) occurs in
infinitely many sequents along 𝛾 .

– for every 𝑣 ∈ 𝜃 ∩𝑉 there exists a trip 𝜌 associated with 𝛾 such

that 𝑣 is obtained from 𝜌 .

Proposition 3. The desequentialisation of a simple pre-proof is a

simple nwfps with no virtual axioms.

Example 6. If we desequentialize the proof in fig. 12d we get the

nwfps described in examples 4 and 5.

6 CORRECTNESS CRITERION

In this section, we develop a correctness criterion on nwfps, strength-

ening the correctness criterion in [19] to account for visitable paths.

It has two conditions:

DR-correctness: The orthogonal graph is acyclic and connected.

Lock-freeness:No infinite set of nodes forms an ideal in kingdom

inclusion order.

DR-correctness. Because 𝜇MLL∞ containsMLL, DR-correctness is
necessary. The reason why it is not sufficient is more subtle: the

presence of infinitely many vertices in a nwfps leads to pathological

cases where in order to sequentialise a certain vertex needs to wait

for infinitely many vertices to sequentialise.

Def. 11 to 14 lifts to simple nwfps. Therefore for a nwfps with

no visitable paths, DR-correctness as stated in [19] means that, for

every switching, the orthogonal graph is acyclic and connected.

Canonical proof-objects for coinductive programming: infinets with infinitely many cuts PPDP ’21, September 6–8, 2021, Tallinn, Estonia

.

.

. 𝐴⊥

.

.

.

𝐴 𝐴⊥

𝐴 𝐴⊥

𝐴

ax

ax

ax

ax∞𝑟

⊗

O

𝜈
⊗

O

𝜈

⊗

O

𝐻

𝜈

(a) The result of the switching 𝑠𝑤

{𝛽,𝛼𝑖𝑟 2 } {𝛼𝑖𝑟𝑙,𝛼𝑖𝑙𝑖𝑟 2 } {𝛼𝑖𝑙𝑖𝑟𝑙,𝛼 (𝑖𝑙)2𝑖𝑟 2 } · · ·

· · ·

{𝛼 (𝑖𝑙)𝜔 }

{𝛽 } {𝛼𝑖𝑟 2,𝛼𝑖𝑟𝑙 } {𝛼𝑖𝑙𝑖𝑟 2,𝛼𝑖𝑙𝑖𝑟𝑙 } {𝛼 (𝑖𝑙)𝜔 }

(b) The simple orthogonal graph wrt. 𝑠𝑤

{𝛽,𝛼𝑖𝑟 2 } {𝛼𝑖𝑟𝑙,𝛼𝑖𝑙𝑖𝑟 2 } {𝛼𝑖𝑙𝑖𝑟𝑙,𝛼 (𝑖𝑙)2𝑖𝑟 2 } · · ·

· · ·

𝜌

{𝛼 (𝑖𝑙)𝜔 ,𝜌 }

{𝛽 } {𝛼𝑖𝑟 2,𝛼𝑖𝑟𝑙 } {𝛼𝑖𝑙𝑖𝑟 2,𝛼𝑖𝑙𝑖𝑟𝑙 } {𝛼 (𝑖𝑙)𝜔 }

(c) The orthogonal graph wrt. 𝑠𝑤

Figure 15: Illustrating DR-correctness on fig. 12f

However, visitable paths need to be incorporated into orthogonal

graphs; so, just as we first defined simple nwfps on which visitable

paths are defined, information needed for general nwfps, we first

define simple orthogonal graphs of simple nwfps, and enrich them

into orthogonal graphs. Given a nwfps R we call an orthogonal

graph of its underlying simple nwfps a simple orthogonal graph
of R.

Proposition 4. Let 𝐺𝑠𝑤
0

(R) be a simple orthogonal graph of R)
for some switching 𝑠𝑤 . There is a one-one correspondence between

𝐸R =
⋃

𝑠𝑤{𝜌 | 𝜌 is an end in 𝐺𝑠𝑤
0

(R)} and the set of visitable ends
of R.

Definition 24. Given a simple orthogonal graph 𝐺𝑠𝑤
0

(R) =

(Θ, [SW], 𝐸0) of R, the orthogonal graph (denoted 𝐺𝑠𝑤 (R)) is
the undirected hybridgraph (Θ′, [SW], 𝐸0, 𝐸1) such that Θ′

is Θ aug-

mented with visitable paths (hence 𝐸0 is unchanged) and for every

𝜃 ∈ Θ𝑟 ∪ Θ𝑣 that contains a visitable end, {𝜃 } ∪ 𝑆 ∈ 𝐸1 where

𝑆 ⊆ Θ ∪ [SW] is the set of all nodes appearing in every end of 𝜃 . A

pure path in 𝐺𝑠𝑤 (R) is path comprised of only 𝐸0 or 𝐸1 but not

both.

Definition 25. A nwfps, R, is said to be DR-correct if for any
switching 𝑠𝑤 , between any two nodes of 𝐺𝑠𝑤 (R) there is exactly one

pure path.

𝐴⊥ 𝐴

𝐴 𝐴⊥ 𝐴⊥ 𝐴

. . .
. . .

. . . 𝐴 𝐴⊥ 𝐴⊥ 𝐴

ax

ax ax

ax ax𝑝2

O

𝑝1

O O⊗

⊗ ⊗⊗

𝑡2

⊗
𝑡1

⊗O

𝜈

O

𝜈

O

𝜈𝑋 .𝑋O(𝐴⊥ ⊗ (𝐴 ⊗ (𝐴⊥O𝐴)))
𝜈

Figure 16: A DR-correct nwfps exhibiting kingdoms

Example 7. We illustrate DR-correctness on the nwfps depicted in

fig. 12f. There are infinitely many switchings but they can be boiled

down to three cases: (i) only finitely many Os switch to the left (ii)

only finitely many Os switch to the right (iii) infinitely many Os

switches to both left and right. We illustrate the particular case when

all the Os are switched to the right. This switching 𝑠𝑤 is depicted in

fig. 15a.

The corresponding simple orthogonal graph is depicted in fig. 15b.

It has two connected components and one of them has an infinite

path (denoted by 𝜌). The orthogonal graph has an extra hyperedge

illustrated by the cyan region in fig. 15c. Observe that there is exactly

one pure path between two nodes.

Lock-freeness. The lock-freeness condition as stated in [19] (for

finitely many cuts) lifts straighforwardly from simple nwfps to

nwfps. We reformulate the condition through non-wellfounded

substructures (sub-nwfps) and kingdoms.

Firstly we note that def. 15 and proposition 1 can easily be refor-

mulated for DR-correct nwfps.

Example 8. The nwfps in fig. 16 is DR-correct. The kingdom𝐾 (𝑝1)
and 𝐾 (𝑡2) are drawn in cyan and magenta. Observe that 𝑡1 ≪ 𝑝1 ≪
𝑡2 ≪ 𝑝2 ≪ · · ·

Definition 26. A nwfps is lock-free if {𝑚 | 𝑛 ≪ 𝑚} is finite
for all 𝑛.

The kingdom of a node in a nwfps is the set of nodes that are

sequentialised after it in every sequentialisation. Hence, the lock-

freeness condition states that, every node is included in finitely

many kingdoms i.e. there is only finitely many nodes that need to

be desequentialised before it.

Definition 27. A nwfps is an infinet if it is DR-correct and

lock-free.

Proposition 5. Let 𝜋 be a pre-proof. Deseq(𝜋) is an infinet.

PPDP ’21, September 6–8, 2021, Tallinn, Estonia Abhishek De, Luc Pellissier, and Alexis Saurin

Sequentialisation. We now give an informal description of the core-

cursive definition of sequentialisation. The technique in [19] basi-

cally follows the standard procedure for MLL but with a guarantee

of fairness preventing a situation where the exploration of a branch

is forgotten since the sequentialisation of another branch is forever

prioritised. Fairness is ensured by time-stamping the doors of the in-

finet with elements ofN∪{∞}, which dictates that at any particular
step the node with the least time-stamp is to be sequentialised.

We strengthen this time-stamping to account for infinitely many

cuts. Given an infinet, we treat cuts as tensors: a “quasi” infinet

(say R) with potentially infinitely many conclusions. We carefully

initialize the time-stamping such that infinitely many numbers are

free to be used as time-stamps at later stages of the sequentialisation.

Consider 𝑡R which injectively time-stamps every maximal door

in the ≪ ordering by powers of two
6
and every other door by∞.

Seqentialise(R, 𝑡R) chooses the door, 𝐹 , with least time-stamp,

applies the corresponding rule on the finite prefix of the sequentiali-

sation being built, and relaunches Seqentialise(R ′, 𝑡R′) for every
sub-infinet, R ′

and the time-stamping that results from removing

𝐹 from R.

Theorem 2. Given an infinet, R, and a proper time-stamping, 𝑡R ,
Deseq(Sequentialise(R, 𝑡R)) = R.

7 CUT-ELIMINATION FOR VALID INFINETS

We now provide the main result of this paper: cut-elimination on

infinets. As discussed in section 1, validity is sufficient (but not

necessary, see figs. 8b and 8c) for its productivity. We retain the

notion of validity in the sequent calculus and simply lift def. 8 to

nwfps.

Definition 28. A nwfps R is valid if Θ𝑣 = ∅ and for 𝜃 ∈ Θ𝑟 ,

there is 𝛼𝑢 ∈ 𝜃 such that addr(𝐹𝑖) = 𝛼 and (𝐹𝑖 , 𝑣) is a 𝜈-formula for

infinitely many prefixes 𝑣 of 𝑢.

Proposition 6. 𝜋 is a proof iff Deseq(𝜋) is a valid infinet.

Cut-reduction rules. The cut-elimination procedure for infinets is

adapted fromMLL: during cut-elimination, finite axioms interact

with cuts by annihilating one another, replaced by a wire. To sat-

isfy our stated goal, we thus need to define cut-elimination rules

also for infinite axioms. Consider the infinet, R, in fig. 17a. The

straightforward adaptation of the finitary rule makes no sense, as

it would result in reducing R to the object in fig. 17b which is not

an infinet: first, it would require to put a structure S atop of an

infinite path of 𝜈-cells; second, the types of this infinite path do not

match
7
. To justify a better rule, let us see the situation in sequent

calculus: consider a sequentialisation 𝜋 as in fig. 18 of R (where

Deseq(𝜋 ′) = S and Γ = {𝐴1, . . . , 𝐴𝑛}).
The infinite axiom is represented in 𝜋 by the infinite branch and

the only way to make it interact with 𝜋 ′ (in the way S interacts

with the infinite axiom) using the rules in def. 16 is by commuting

the cut with one 𝜈-rule. Iterating such permutations builds the

infinite sequence of proofs of fig. 18 which all desequentialise to R.

6
This labelling is arbitrary: any cofinite sequence in place of powers of two works.

7
Along the undirected 𝜈-ray, the types ought to remain equal to 𝜈𝑋 .𝑋 , but change to

𝐴⊥
above.

This sequence converges (as a tree) to the proof in fig. 17c, where

𝜋 ′ has been deleted and Γ is supported by the infinite branch. De-

sequentialised, this yields the proof-structure in fig. 17d. So, an

infinitary axiom and a cut interact by removing the whole subin-

finet “above” the cut. Now recall that the kingdom of an occurrence

is the subinfinet that is always sequentialised above it . Hence, the

subinfinet that has to be erased is indeed a kingdom. Although this

operation will be represented by a single rule it does not corre-

spond to one step of cut-elimination in the sequent calculus but to

an infinite sequence of permutations.

Definition 29. The cut-reduction rules are the ones illustrated

in fig. 19 and the usual ⊗/O rule ofMLL cut reduction. A sequence

of infinets, (R𝑖)𝑖⩾0, is called a reduction sequence if for all 𝑖 ,

R𝑖 →𝜅 R𝑖+1 for some cut 𝜅 in R𝑖 .

Proposition 7. Cut-reduction on infinets is confluent.

Limits of reduction sequences. To prove that an infinite sequence of

these reductions converges to some infinet, it is possible to define a

topology on the set of infinets, which accounts for the cuts moving

upwards during the cut-reduction procedure, by giving weights to

cuts. One way to achieve it is to consider the heights of the cuts

in a sequentialisation: basically, we use a sequentialisation to give

a tree-like ordering to a proof-structure, and hence, a notion of

distance compatible with the reduction. This method works for

straight thread valid infinets, as we have theorem 1 for the sequent

calculus.

Thus, infinitary cut-elimination is carried out in valid and cor-

rect nwfps: correctness to use the tree topology of the sequential-

isations (𝜋 and 𝜋 ′ are at a distance ≤ 2
−ℎ

if they coincide up to

height ℎ); validity to ensure productivity.

As the reductions we introduced for infinets do not correspond to

a single step of cut-reduction in the sequent calculus, we introduce

a new reduction in the sequent calculus. We define the family of

relations {⇒ℎ | ℎ ∈ N} on 𝜇MLL∞ proofs such that 𝜋0 ⇒ℎ 𝜋
′
if

the restrictions of 𝜋0 and 𝜋
′
below height ℎ coincide and

– either 𝜋 ′ is the limit of an infinite sequence (𝜋𝑖)𝑖⩾0 such that for

all 𝑖 ≥ 0, 𝜋𝑖+1 is obtained from 𝜋𝑖 by a permutation

– or there exists a finite sequence (𝜋𝑖)𝑖⩽𝑛 such that for all 𝑖 ≤ 𝑛−1,

𝜋𝑖+1 is obtained from 𝜋𝑖 by a permutation of an inference rule,

and 𝜋 ′ can be obtained from 𝜋𝑛 by an external cut-reduction.

Definition 30. We say that 𝜋 ⇒ℎ 𝜋
′
is a sequentialisation of

a reduction, R →𝜅 R ′
, if Deseq(𝜋) = R and Deseq(𝜋 ′) = R ′

and

ℎ is maximal (i.e. for every ℎ′ > ℎ, 𝜋 ⇏ℎ′ 𝜋
′
).

We also extend Def. 30 to define a sequentialisation of a reduction

sequence.

Lemma 1. Let R0 be valid and (R𝑖)𝑖⩾0 be a reduction sequence.

Every sequentialisation of (R𝑖)𝑖⩾0 has a limit which is a proof. Fur-

thermore, the limits 𝜋 and 𝜋 ′ of two sequentialisations of the reduction
sequence satisfy Deseq(𝜋) = Deseq(𝜋 ′).

Definition 31. Let R0 be valid and (R𝑖)𝑖⩾0 be a reduction se-

quence.The limit of (R𝑖)𝑖⩾0 is the desequentialisation of the limit of

a sequentialisation of (R𝑖)𝑖⩾0.

Canonical proof-objects for coinductive programming: infinets with infinitely many cuts PPDP ’21, September 6–8, 2021, Tallinn, Estonia

𝐴
.
.
.S

𝐴1 · · · 𝐴𝑛 𝐴⊥
cut

ax∞𝑟

𝜈𝑋 .𝑋

𝜈

𝜈𝑋 .𝑋

𝜈

(a) R: a cut with an infinite axiom

𝐴⊥ ...

𝐴1 · · ·

S

𝐴𝑛

𝜈𝑋 .𝑋

𝜈

𝜈𝑋 .𝑋

𝜈

(b) Naive cut-elimination in R

𝜋 =

.

.

.
(𝜈)⊢ Γ, 𝜈𝑋 .𝑋
(𝜈)⊢ Γ, 𝜈𝑋 .𝑋
(𝜈)⊢ Γ, 𝜈𝑋 .𝑋

(c) The normal proof 𝜋

.

.

.

𝐴1 · · · 𝐴𝑛

ax∞𝑟

𝜈𝑋 .𝑋

𝜈

𝜈𝑋 .𝑋

𝜈

(d) Desequentialisation of 𝜋

Figure 17: Exhibiting the necessity of the kingdom erasure rule

𝜋 =

𝜋 ′

⊢ Γ, 𝐴⊥

.

.

.
(𝜈)⊢ 𝜈𝑋 .𝑋,𝐴
(𝜈)⊢ 𝜈𝑋 .𝑋,𝐴
(Cut)⊢ Γ, 𝜈𝑋 .𝑋 ∼

𝜋 ′

⊢ Γ, 𝐴⊥

.

.

.
(𝜈)⊢ 𝜈𝑋 .𝑋,𝐴
(Cut)⊢ Γ, 𝜈𝑋 .𝑋

(𝜈)⊢ Γ, 𝜈𝑋 .𝑋

∼

𝜋 ′

⊢ Γ, 𝐴⊥ .
.
.
(Cut)⊢ Γ, 𝜈𝑋 .𝑋

(𝜈)⊢ Γ, 𝜈𝑋 .𝑋
(𝜈)⊢ Γ, 𝜈𝑋 .𝑋 ∼ · · ·

Figure 18: A productive infinite reduction

Fair sequences. Just as in the sequent calculus, not every reduction

sequences converge towards a cut-free infinet: it is possible to never

reduce some cuts.

Definition 32. A reduction sequence (R𝑖)𝑖⩾0 is fair if for every
𝑖 ≥ 0 and 𝑟 such that R𝑖 →𝑟 R ′

, there is some 𝑗 ≥ 𝑖 , such that 𝑟

cannot be reduced in R 𝑗 , i.e. there is no infinet, R ′′
such that R 𝑗 →𝑟

R ′′
.

Example 9. Consider the desequentialisation of the pre-proofs in

figs. 8b and 8c and the steps of cut reduction on it in fig. 20 using the

rules in fig. 19. Observe it closely resembles the reduction sequence in

example 3.

Theorem 3. Let R0 be a valid infinet and (R𝑖)𝑖⩾0 be a fair reduc-
tion sequence. Its limit is a valid cut-free infinet.

8 CONCLUSION

We have developed the parallel syntax of non-wellfounded proof

theory by generalizing the non-wellfounded proof structures in [19]

to account for the presence of infinitely many cuts; and provided a

cut-elimination result on these structures. Indeed the requirement

of containing only finitely many cuts in [19] prevents one to con-

sider any circular pre-proof having a cut between the target and the

source of a back-edge, as in fig. 8c. With our present generalisation

and confluent cut-elimination, we hope to contribute to a better

understanding of non-wellfounded proofs, from both syntactic and

semantic points of view.

Related works. Several strands of research around non-wellfounded

and circular proofs and their computational correspondence with

(co)recursive programming are related to the present work:

Expressing theories with circular proofs is a fruitful research

direction: various logical or computational settings can be expressed

with circular proofs, to formalise some sort of infinite behaviour [16,

17, 21]. In addition, circular proofs also help understanding the

meta-theory of traditional fixed-point logics such as the linear-time

or modal 𝜇-calculus [3, 22, 23].

Validity criteria are the subject of active investigations. For in-

stance, Baelde et al.[5] introduced bouncing-validity in which the ge-

ometry of threads ismore complexvalidatingmore non-wellfounded

derivations. On the other hand, more restricted criteria can be in-

teresting, even though they validate fewer circular derivations, as

they can be less costly to check [32, 38].

The denotational semantics of circular proofs is yet to be fully

understood and is a challenging direction [25, 29, 35]. Recent results

on the relational semantics of finitary proofs of 𝜇𝐿𝐿 [24, 29] allowed

to make progress in interpreting circular proofs as well.

Interactive and automated theorem proving are impacted by

circular proofs – which use a form of implicit induction– [4, 12,

26, 30, 34], be it for building automated proofs of (co)inductive

statements or for easing the manipulation of coinduction in proof

assistants such as Coq. This active research topic can be impacted

by advances on validity conditions or on the fine-grained structure

of circular proofs [10, 20] or approaches such as copatterns [2].

Alternative styles for handling non-wellfounded proofs are

actively researched to provide solutions to some of the limitations of

sequent proofs: various logical frameworks could provide solutions

to some of the limitations of sequent proofs. In addition to our line

of work on proof-nets, an interesting direction is that of Das on

designing deep-inference proof systems for circular reasoning in

his StrIP project [15].

The present work – devising proof-nets for non-wellfounded

proof theory – nestles itself naturally in the last category, but is also

related to other approaches: (i) proof-nets are closer to semantics

than sequent proofs and infinets can potentially impact the under-

standing of the denotational invariants of non-wellfounded proofs

and the design of their denotational semantics; (ii) the bouncing-

validity condition will strongly benefit from less sequential proof

structures and (iii) infinets would serve as better models of coin-

ductive programs.

Future Work. In order to model coinductive programs and provide

less stringent guard conditions we have successfully overcome the

first three steps: devise the canonical proof-objects and their cut-

rules, and provide a cut-elimination result on these objects. There

are two directions from here: (i) improve our cut-elimination result

by handling more flexible validity conditions (ii) define the circular

counterpart to infinets which would both be sufficiently expressive

PPDP ’21, September 6–8, 2021, Tallinn, Estonia Abhishek De, Luc Pellissier, and Alexis Saurin

𝜙⊥
𝛼⊥

Γ Δ

Δ −→{𝜙,𝜙⊥ }

𝑘 (𝜙𝛼)

Γ 𝜙𝛼
cut

ax∞𝑟

ax∞𝑟
(𝐹 ′)𝛼𝑖 (𝐹 ′⊥)𝛼⊥𝑖 (𝐹 ′)𝛼𝑖 (𝐹 ′⊥)𝛼⊥𝑖

(𝜇𝑋 .𝐹)𝛼
𝜇

(𝜈𝑋 .𝐹⊥)𝛼⊥ −→{𝜇𝑋 .𝐹,𝜈𝑋 .𝐹⊥ }

𝜈

cut

cut

𝜙𝛽

𝜙𝛼
𝜙⊥
𝛽⊥ 𝜙𝛽 −→{𝜙,𝜙⊥ }

ax

cut

𝜙𝛼

loc

Figure 19: Cut reduction rules for 𝜇MLL∞ infinets. 𝑘 (𝜙𝛼) denotes the kingdom of the occurrence 𝜙𝛼 .

𝜈𝑋 .𝑋𝛼𝑖𝑖
𝜇𝑌 .𝑌𝛽𝑖 𝜈𝑌 .𝑌𝛽⊥

ax

𝜈𝑋 .𝑋𝛼𝑖

𝜈

𝜈𝑋 .𝑋𝛼

𝜈

𝜇𝑌 .𝑌𝛽

𝜇

cut

→𝑟

𝜈𝑋 .𝑋𝛼𝑖𝑖
𝜇𝑌 .𝑌𝛽𝑖 𝜈𝑌 .𝑌𝛽⊥𝑖𝑖 𝜇𝑍 .𝑍𝛾𝑖

R

ax ax

𝜈𝑋 .𝑋𝛼𝑖

𝜈

𝜈𝑋 .𝑋𝛼

𝜈

𝜈𝑌 .𝑌𝛽⊥𝑖

𝜈

cut

𝜇𝑍 .𝑍𝛾

𝜇

cut

→𝑟

𝜈𝑌 .𝑌𝛽⊥𝑖𝑖 𝜇𝑍 .𝑍𝛾𝑖

R

ax

𝜈𝑌 .𝑌𝛽⊥𝑖

𝜈

𝜈𝑌 .𝑌𝛼𝑖𝑖

loc

𝜈𝑌 .𝑌𝛼𝑖

𝜈

𝜈𝑋 .𝑋𝛼

𝜈

𝜇𝑍 .𝑍𝛾

𝜇

cut

(→𝑟)𝜔
𝜈𝑋 .𝑋

𝜈𝑌 .𝑌

𝜈

Figure 20: Cut reduction on the desequentialisation of the

pre-proofs in figs. 8b and 8c

𝜈𝑋 .𝑋𝛼𝑖𝑖
𝜇𝑌 .𝑌𝛽𝑖 𝜈𝑌 .𝑌𝛽⊥

ax

𝜈𝑋 .𝑋𝛼𝑖

𝜈

𝜈𝑋 .𝑋𝛼

𝜈

𝜇𝑌 .𝑌𝛽

𝜇

cut

Figure 21: A circular infinet

and have decidable validity. A synthesis of these two will give us

the desideratum. We will sketch a few ideas using an example.

Consider the desequentialisation of the pre-proofs in figs. 8b

and 8c. They are same infinet fig. 20. Pre-empting circular infinetswe

represent the recurring subnet using a back-edge in fig. 21. However

this formulation is hypothetical and there are two impediments to

our desired goal:

– In order to satisfactorily adapt bouncing-validity one would

need to provide a cut-elimination result independent of cut-

elimination in the seqeunt calculus. This will possibly require

new proof techniques and one approach will be to investigate

other cut-elimination proof methods developed in the infinitary

setting, for instance Mints’ continuous cut-elimination [31].

– Circular infinets are not exactly the class of nets that are the dese-

quentialisation of some circular proof since circularity of proofs

is not preserved by permutations of inferences. Furthermore, if

one imposes restrictions on infinets like allowing only regular

partial syntax trees, they lose a lot of expressiveness since a fi-

nite description of visitable paths is not clear. In future work, we

plan to do a comparative study of various finitely representable

classes of infinets and their decidable questions.

REFERENCES

[1] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. 1991.

Explicit Substitutions. Journal of Functional Programming 1, 4 (1991), 375–416.

[2] Andreas Abel and Brigitte Pientka. 2013. Wellfounded recursion with copat-

terns: a unified approach to termination and productivity. In ACM SIGPLAN

International Conference on Functional Programming, ICFP’13, Boston, MA, USA -

September 25 - 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.). ACM, 185–196.

https://doi.org/10.1145/2500365.2500591

[3] Bahareh Afshari, Gerhard Jäger, and Graham E. Leigh. 2019. An Infinitary

Treatment of Full Mu-Calculus. In Logic, Language, Information, and Computation,

Rosalie Iemhoff, Michael Moortgat, and Ruy de Queiroz (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 17–34.

[4] Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, and Claus-Peter Wirth.

2003. How to Prove Inductive Theorems? QUODLIBET!. In Automated Deduction

- CADE-19, 19th International Conference on Automated Deduction Miami Beach,

FL, USA, July 28 - August 2, 2003, Proceedings (Lecture Notes in Computer Science,

Vol. 2741). Springer, 328–333. https://doi.org/10.1007/978-3-540-45085-6_29

[5] David Baelde, Amina Doumane, Denis Kuperberg, and Alexis Saurin. 2020.

Bouncing threads for circular and non-wellfounded proofs. (2020). https:

//arxiv.org/abs/2005.08257.

[6] David Baelde, Amina Doumane, and Alexis Saurin. 2016. Infinitary Proof Theory:

the Multiplicative Additive Case. In 25th EACSL Annual Conference on Computer

Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France (LIPIcs,

Vol. 62). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 42:1–42:17. http:

//www.dagstuhl.de/dagpub/978-3-95977-022-4

[7] Marc Bagnol, Amina Doumane, and Alexis Saurin. 2015. On the Dependencies

of Logical Rules. In Foundations of Software Science and Computation Structures -

18th International Conference, FoSSaCS 2015, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April

11-18, 2015. Proceedings. 436–450. https://doi.org/10.1007/978-3-662-46678-0_28

[8] G. Bellin and J. van de Wiele. 1995. Subnets of Proof-Nets in MLL
-
. In Proceedings

of the Workshop on Advances in Linear Logic. Cambridge University Press, USA,

249–270.

[9] James Brotherston. 2005. Cyclic Proofs for First-Order Logic with Inductive

Definitions. In Automated Reasoning with Analytic Tableaux and Related Methods,

Bernhard Beckert (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 78–92.

[10] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. 2012.

A Generic Cyclic Theorem Prover. In Programming Languages and Systems - 10th

Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13, 2012. Proceedings

(Lecture Notes in Computer Science, Vol. 7705). Springer, 350–367. https://doi.org/

10.1007/978-3-642-35182-2_25

[11] James Brotherston and Alex Simpson. 2010. Sequent calculi for induction and in-

finite descent. Journal of Logic and Computation 21, 6 (10 2010), 1177–1216. https:

//doi.org/10.1093/logcom/exq052 arXiv:https://academic.oup.com/logcom/article-

pdf/21/6/1177/2787531/exq052.pdf

[12] Alan Bundy. 2001. The Automation of Proof by Mathematical Induction. In

Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press, 845–

911.

[13] Alonzo Church and J. B. Rosser. 1936. Some Properties of Conversion. Trans.

Amer. Math. Soc. 39, 3 (1936), 472–482. http://www.jstor.org/stable/1989762

https://doi.org/10.1145/2500365.2500591
https://doi.org/10.1007/978-3-540-45085-6_29
https://arxiv.org/abs/2005.08257
https://arxiv.org/abs/2005.08257
http://www.dagstuhl.de/dagpub/978-3-95977-022-4
http://www.dagstuhl.de/dagpub/978-3-95977-022-4
https://doi.org/10.1007/978-3-662-46678-0_28
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1093/logcom/exq052
https://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/21/6/1177/2787531/exq052.pdf
https://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/21/6/1177/2787531/exq052.pdf
http://www.jstor.org/stable/1989762

Canonical proof-objects for coinductive programming: infinets with infinitely many cuts PPDP ’21, September 6–8, 2021, Tallinn, Estonia

[14] Pierre-Louis Curien. 2006. Introduction to linear logic and ludics, part II. ,

44 pages.

[15] Anupam Das. 2019. Structure vs. Invariants in Proofs: project announce-

ment. (2019). Talk at CiSS-19, http://www.cse.chalmers.se/~bahafs/CiSS2019/

programme.html.

[16] Anupam Das, Amina Doumane, and Damien Pous. 2018. Left-Handed Complete-

ness for Kleene algebra, via Cyclic Proofs. In LPAR (EPiC Series in Computing,

Vol. 57). EasyChair, 271–289.

[17] Anupam Das and Damien Pous. 2017. A Cut-Free Cyclic Proof System for Kleene

Algebra. In Automated Reasoning with Analytic Tableaux and Related Methods,

Renate A. Schmidt and Cláudia Nalon (Eds.). Springer International Publishing,

Cham, 261–277.

[18] Abhishek De, Luc Pellissier, and Alexis Saurin. [n. d.]. Elimi-

nating infinitely many cuts in non-wellfounded MLL proof-nets.

([n. d.]). https://hal.archives-ouvertes.fr/hal-03235591 Available at:

https://hal.archives-ouvertes.fr/hal-03235591.
[19] Abhishek De and Alexis Saurin. 2019. Infinets: The Parallel Syntax for Non-

wellfounded Proof-Theory. In TABLEAUX 2019, Serenella Cerrito and Andrei

Popescu (Eds.). Springer International Publishing, 297–316. https://doi.org/10.

1007/978-3-030-29026-9_17

[20] Farzaneh Derakhshan and Frank Pfenning. 2019. Circular Proofs as Session-Typed

Processes: A Local Validity Condition. arXiv e-prints, Article arXiv:1908.01909

(Aug. 2019), arXiv:1908.01909 pages. arXiv:1908.01909 [cs.LO]

[21] Simon Docherty and Reuben N. S. Rowe. 2019. A Non-wellfounded, Labelled

Proof System for Propositional Dynamic Logic. In Automated Reasoning with

Analytic Tableaux and Related Methods, Serenella Cerrito and Andrei Popescu

(Eds.). Springer International Publishing, Cham, 335–352.

[22] Amina Doumane. 2017. Constructive completeness for the linear-time 𝜇-calculus.

In LICS. IEEE Computer Society, 1–12.

[23] Amina Doumane. 2017. On the infinitary proof theory of logics with fixed points.

(Théorie de la démonstration infinitaire pour les logiques à points fixes). Ph. D.

Dissertation. Paris Diderot University, France. https://tel.archives-ouvertes.fr/tel-

01676953

[24] Thomas Ehrhard and Farzad Jafar-Rahmani. 2021. Categorical models of Linear

Logic with fixed points of formulas. In 36th Annual ACM/IEEE Symposium on

Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE,

1–13. https://doi.org/10.1109/LICS52264.2021.9470664

[25] Jérôme Fortier and Luigi Santocanale. 2013. Cuts for circular proofs: semantics

and cut-elimination. In CSL.

[26] Eduardo Giménez. 1998. Structural Recursive Definitions in Type Theory. In

Proceedings 25th Int. Coll. on Automata, Languages and Programming, ICALP’98,

Aalborg, Denmark, 13–17 July 1998, K. G. Larsen, S. Skyum, and G. Winskel (Eds.).

LNCS, Vol. 1443. Springer-Verlag, Berlin, 397–408.

[27] Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50, 1 (Jan. 1987), 1–102.

https://doi.org/10.1016/0304-3975(87)90045-4

[28] Jean-Yves Girard. 1996. Proof-nets: The parallel syntax for proof-theory. In Logic

and Algebra. Marcel Dekker, 97–124.

[29] Farzad Jafarrahmani. 2018. Denotational semantics of linear logic with least and

greatest fixpoint. Master’s thesis. Université Paris Diderot.

[30] Ralph Matthes. 1999. Monotone Fixed-Point Types and Strong Normalization.

In Computer Science Logic, Georg Gottlob, Etienne Grandjean, and Katrin Seyr

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 298–312.

[31] Grigori E Mints. 1978. Finite investigations of transfinite derivations. Journal of

Soviet Mathematics 10, 4 (1978), 548–596.

[32] Rémi Nollet, Alexis Saurin, and Christine Tasson. 2018. Local Validity for Circular

Proofs in Linear Logic with Fixed Points. In CSL (LIPIcs, Vol. 119). Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 35:1–35:23.

[33] Dag Prawitz. 1965. Natural Deduction: A Proof-Theoretical Study. Dover Publica-

tions.

[34] Martin Protzen. 1994. Lazy generation of induction hypotheses. In Automated

Deduction — CADE-12, Alan Bundy (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 42–56.

[35] Luigi Santocanale. 2002. A Calculus of Circular Proofs and Its Categorical Se-

mantics. In Foundations of Software Science and Computation Structures (Lecture

Notes in Computer Science, Vol. 2303), Mogens Nielsen and Uffe Engberg (Eds.).

Springer, 357–371.

[36] Ulrich Schöpp and Alex K. Simpson. 2002. Verifying Temporal Properties Using

Explicit Approximants: Completeness for Context-free Processes. In FoSSaCS

(Lecture Notes in Computer Science, Vol. 2303). Springer, 372–386.

[37] Christoph Sprenger and Mads Dam. 2003. On the Structure of Inductive Reason-

ing: Circular and Tree-Shaped Proofs in the 𝜇Calculus. In Foundations of Software

Science and Computation Structures, Andrew D. Gordon (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 425–440.

[38] Sorin Stratulat. 2017. Cyclic Proofs with Ordering Constraints. In Automated Rea-

soning with Analytic Tableaux and Related Methods - 26th International Conference,

TABLEAUX 2017, Brasília, Brazil, September 25-28, 2017, Proceedings. 311–327.

http://www.cse.chalmers.se/~bahafs/CiSS2019/programme.html
http://www.cse.chalmers.se/~bahafs/CiSS2019/programme.html
https://hal.archives-ouvertes.fr/hal-03235591
https://doi.org/10.1007/978-3-030-29026-9_17
https://doi.org/10.1007/978-3-030-29026-9_17
https://arxiv.org/abs/1908.01909
https://tel.archives-ouvertes.fr/tel-01676953
https://tel.archives-ouvertes.fr/tel-01676953
https://doi.org/10.1109/LICS52264.2021.9470664
https://doi.org/10.1016/0304-3975(87)90045-4

	Abstract
	1 Introduction
	2 Background
	2.1 Multiplicative linear logic with fixed points
	2.2 Proof-nets

	3 Cut-elimination in MLL sequent calculus
	4 Trips and visitable paths
	5 Non-wellfounded Proof Structures
	6 Correctness Criterion
	7 Cut-elimination for valid infinets
	8 Conclusion
	References

