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Abstract 39 

An expected consequence of climate warming is an expansion of the geographic distribution of biting insects 40 
and associated arthropod-borne diseases (arboviruses). Emerging and reemerging arboviruses that can affect human 41 
health are likely to pose significant consequences for Northern communities where access to health resources is 42 
limited. In the North American Arctic, little is known about arboviruses. Thus, in 2019, we sampled biting insects in 43 
Nunavik (Kuujjuaq), Nunavut (Igloolik, Karrak Lake and Cambridge Bay), Northwest Territories (Igloolik and 44 
Yellowknife) and Alaska (Fairbanks). The main objective was to detect the presence of California serogroup viruses 45 
(CSGv) – a widespread group of arboviruses across North America and that is known to cause a wide range of 46 
symptoms, ranging from mild febrile illness to fatal encephalitis. Biting insects were captured twice daily for a 7-day 47 
period in mid-summer, using a standardized protocol consisting of 100 figure-eight movements of a sweep net. 48 
Captured specimens were separated by genus (mosquitoes) or by superfamily (other insects), and then grouped into 49 
pools of 75 by geographical locations. In total, 5079 Aedes mosquitoes and 1014 Simulioidae flies were caught. We 50 
report the detection of CSGv RNA in mosquitoes captured in Nunavut (Karrak Lake) and Nunavik (Kuujjuaq). We 51 
also report, for the first time in North America, the presence of CSGv RNA in Simulioidae flies. These results highlight 52 
the potential of biting insects for tracking any future emergence of arboviruses in the North, thereby providing key 53 
information for public health in Northern communities. 54 
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Introduction 57 

Rapid climate warming is altering ecological communities in the Arctic at an alarming rate (IPCC 2007; Post 58 
et al. 2009), thereby creating new habitats for biting insects and the diseases that they can carry (Bartlow et al. 2019). 59 
In spite of our increased awareness that the Arctic is experiencing climate warming twice as fast as the rest of the 60 
world (Jansen et al. 2020), studies documenting arthropod-borne viruses (arboviruses) in Northern regions are 61 
outdated (McLean et al. 1975, 1976, 1977a; McLean 1983), or in some cases, non-existent (i.e. vector species and 62 
arbovirus prevalence).  63 

The most commonly reported arboviruses associated with biting insects in the Arctic are California serogroup 64 
viruses (CSGv; family Bunyaviridae, genus Orthobunyavirus) (Kurstak et al. 1979; Calisher 1996). They include the 65 
Snowshoe hare (SSH) and Jamestown Canyon (JC) viruses, which are occasionally associated with febrile and 66 
neuroinvasive disease in humans (LeDuc 1987). Their predominant arthropod vectors are mosquitoes of the genera 67 
Aedes and Culiseta (LeDuc 1987). For the SSH virus, the primary amplification hosts are snowshoe hares, squirrels 68 
and other small mammals, while for the JC virus, they are believed to be wild free-ranging ungulates (Drebot 2015). 69 
Even thought serological studies have shown that antibodies of both SSH and JC viruses are present in wildlife and 70 
people in the Arctic (Zarnke et al. 1983; Walters et al. 1999; Miernyk et al. 2019), there have only been a few reports 71 
documenting these viruses in mosquitoes captured in the field (McLean et al. 1975, 1977a, b).  72 

There is less information available about other possible vectors for the CSGv, such as black flies (Simuliidae) 73 
and biting midges (Ceratopogonidae), both of which are present in Northern regions. Here, we report the results from 74 
our 2019 sampling effort aimed at detecting the presence of California serogroup viruses in Northern biting insects. 75 
For simplicity, the term biting flies will be used hereafter to describe biting insects that are not mosquitoes. 76 

Materials and methods 77 

Insects were captured in the summer of 2019 in Northern Canada and Alaska (Figure 1). Locations were 78 
chosen based on a set of cities, villages or remote field sites identified by the Canadian Arctic One Health Network 79 
and the presence of local research partners willing to participate in surveillance activities. Sampling took place in 80 
Alaska (Fairbanks: 64.9152, -147.966), the Northwest Territories (Hendrickson Island: 69.8405, -133.975; 81 
Yellowknife: 62.5183, -114.320), Nunavut (Cambridge Bay: 62.1204, -105.045; Karrak Lake: 67.2359, -100.257; 82 
Igloolik: 69.3940, -81.3894) and the Nunavik region of Northern Québec (Kuujjuaq: 58.1272, -68.3848). 83 
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Manual capture, using a standardized protocol consisting of 100 figure-eight movements with an 18” sweep 84 
net (~46 cm), was carried out twice daily (dawn and dusk) for 7 consecutive days in mid-summer of 2019. This 85 
technique is well-adapted to remote field site sampling where low equipment volume/weight and short sampling times 86 
are ideal (Silver 2008). It is also suitable for citizen scientists. Insects collected in the field were placed in a labeled 87 
plastic container and frozen at -18 ºC until they were shipped to the Faculty of Veterinary Medicine, Université de 88 
Montréal, in Saint-Hyacinthe, QC. 89 

All sorting of collected insects was conducted by a single observer (C.-A.V.) using a dissecting microscope 90 
and a chill tray. Mosquitoes and biting flies were separated from other insects. Subsequently, mosquitoes were sorted 91 
on a chill tray by genus using dichotomous keys (Wood et al. 1979; Thielman and Hunter 2004). Mosquitoes and 92 
biting flies were further grouped into pools by geographical location. Pools were stored at -80 ºC until further analysis. 93 

The pooled specimens were sent to the National Microbiology Laboratory in Winnipeg, MB for RNA 94 
extraction and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. A sterile copper-coated 95 
steel bead (BB) and 1 ml of BA (made up of 10 ml of 10x M199 medium with Earls salts, 5 ml 1 M Tris buffer pH 96 
7.6, 13.3 ml 7.5 % bovine serum albumin Fraction V and 1ml 100X penicillin/streptomycin) were added to each pool 97 
of mosquitoes and flies. Pools were homogenized using a TissueLyser (QIAGEN, Valencia, CA, USA) for 1 min at 98 
30 Hz, and then centrifuged for 30 s at 13,000 rpm. RNA extraction was performed according to the manufacturer’s 99 
protocol for a RNeasy 96 Kit (QIAGEN). For each pool, 5 μl of eluted RNA was used for the RT-PCR reaction testing. 100 
The eluted RNA was combined with Applied Biosystems™ TaqMan™ Fast Virus 1-step master mix (ThermoFisher, 101 
Waltham, MA, USA). The target regions for the CSG, JC and SSH viruses were amplified using their respective 102 
primer pairs and probe (Wang et al. 2009) (Table 1). Positive controls were also used to test for CSG, JC and SSH 103 
viruses. Results were given as quantification cycle (Cq) units, i.e., the number at which the fluorescence of the probes 104 
increases, which is inversely related to the amount of RNA present (Williams 2009). Pools were considered positive 105 
when Cq units were ≤ 40. 106 

Positive pools were expressed as frequencies and 95% confidence interval calculated with R (R Core Team 107 
2020) using prop.test (Newcombe 1998). 108 

Results 109 

Between June 28th and August 2nd 2019, a total of 5079 mosquitoes and 1014 biting flies were caught (Table 110 
2). Mosquitoes were collected across the seven sampling sites, forming 70 pools with an average of 75 specimens/pool 111 
(range: 12-86). Kuujjuaq was the only site where enough biting flies were collected to allow pooled analysis, forming 112 
6 pools with an average of 169 specimens/pool (range: 114-237).  113 

All collected mosquitoes were Aedes spp. females. This observation is consistent with our capture techniques, 114 
as sweep netting predominately captures females seeking a blood meal (Silver 2008). Biting flies appear to be 115 
predominantly black flies (Simulidae) because of their morphological characteristics: small, dark coloured with short 116 
legs, broad wings and a humpback appearance. A few smaller flies, probably biting midges, were also observed. 117 
Morphological observations were not made beyond the sorting process. Since biting flies were all pooled together, we 118 
decided to extend their identification to the superfamily level, Simulioidae, which consists of black flies and biting 119 
midges (Ceratopogonidae). For biting flies, 6 pools were made with an average of 169 specimens/pool (range: 114-120 
237).  121 

 We tested each pool for CSG viruses, and then further tested CSG-positive pools specifically for JC and 122 
SSH viruses (Table 2). None of the 42 pools of mosquitoes collected in Fairbanks, Hendrickson Island, Yellowknife, 123 

Cambridge Bay or Igloolik tested positive for CSG viruses (Table 2). One of the 16 (6.2 %; 95 % CI 1.1, 28.3) 124 
mosquito pools from Karrak Lake tested positive for CSG viruses. However, the quantity of viral RNA (cq of 40) in 125 
this sample was too low to further test for JC and SSH viruses with RT-PCR. For mosquitoes collected in Kuujjuaq, 126 

six of the eight (75 %; 95 % CI 40.9, 92.9) pools tested positive for CSG viruses. Of these six pools, one (16.6 %; 127 

95 % CI 3.0, 56.3 also tested positive for both JC and SSH viruses, while the five others (83.3 %; 95 % CI 43.7, 128 
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97.0 tested positive only for JC virus. We detected CSG viruses in biting flies in Kuujjuaq. Four of the six (66.6 %; 129 

95 % CI 30.0, 90.3) pools of biting flies tested positive for CSG viruses, which subsequently tested positive for JC 130 
virus.  131 

Discussion 132 

 In 2019, we detected CSGv RNA in mosquitoes at two of seven field sites across Northern Canada and 133 
Alaska. For the first time in North America, we also report CSGv in biting flies (Simulioidae). 134 

All captured mosquitoes were from the genus Aedes, which is not surprising since Aedes impiger, Aedes 135 
nigripes, and Aedes hexodontus are the three main Arctic mosquito species (Ward and Darsie 2005). Moreover Aedes 136 
mosquitoes, like Aedes communis, are common vectors of CSGv, even in a sub-arctic environment (McLean et al. 137 
1976, 1977b; Kurstak et al. 1979). However, species-specific results were not reported in this study, mainly because 138 
captured mosquitoes were too damaged for morphological identification past the genus level. There are alternatives 139 
to traditional identification methods, such as barcodes targeting the COI gene (Meier et al. 2006), but those methods 140 
have not yet been proven to be reliable for Arctic species. Reliable DNA databases from morphologically confirmed 141 
specimens are required before using these methods.  142 

We detected CSGv (JC and SSH viruses) in mosquitoes captured in Nunavut (Karrak Lake) and Nunavik 143 
(Kuujjuaq). However, viral detection can be affected by multiple factors. For instance, temperature is known to 144 
influence vector, host, and arboviral distribution (Ciota and Keyel 2019).  Since Kuujjuaq is the most southern and 145 
eastern site sampled (58.127277, -68.384854), its warmer summer could explain why positive pools were 146 
predominantly found there. Viral detection is also closely linked to species captured (Andreadis et al. 2008). For 147 
example, negative results in Hendrickson Island can simply mean that caught mosquitoes were not vectors for CSGv 148 
or that vectors were not active at the sampling time. More importantly, viral detection is highly dependant on pool 149 
size (Huang et al. 2001). For example, in Fairbanks, even if CSGv were present in one of the 17 mosquitoes caught, 150 
it might not have been detected due to low test sensitivity. Furthermore, 2019 results were not typical for Alaska, a 151 
state known for its abundance of mosquitoes. Without any baseline information about CSGv vectors in these regions, 152 
our ability to extrapolate results is therefore limited.  153 

For the first time in North America, we detected CSGv (JC virus) in biting flies (Simulioidae) captured in 154 
Kuujjuaq. To the best of our knowledge, only one other study has detected CSGv in biting flies, which was in another 155 
biome, i.e., the former Czechoslovakia (Halouzka et al. 1991). Also, viral detection in biting flies (Simulioidae) does 156 
not necessarily indicate vector competence. It could simply indicate the ingestion of a viremic bloodmeal. Their role 157 
as potential vectors for needs further examination (Sick et al. 2019).  158 

To conclude, results from this pilot year suggest that field collection of biting insects has the potential to 159 
provide useful data to monitor the changing distribution and local risk associated with vector-borne zoonoses across 160 
Northern regions. The sampling protocol used in this study provides a simple and cost-effective method for sampling 161 
biting insects in remote Northern communities, with potential for widespread application across the Arctic. Building 162 
reliable DNA databases for potential vectors as well as subsequent monitoring years will be useful to establish a 163 
baseline on current species’ ranges and infective status. Such studies are crucial to anticipate and track any future 164 
emergence of arboviruses in the North, thereby providing key information for public health in Northern communities.  165 
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Table 1.  Mosquitoes and other biting flies collected from the North American Arctic, listed by geographical 248 
location from west to east (collected in mid-summer of 2019) and tested for CSG, JC and SHH viral RNA by RT-249 
PCR 250 

Location 
No. 

specimens 

No.  

pools 

No. CSG+ 

pools 

CSG+ 

CQ value 

No. JC+ 

pools 

JC+ 

CQ value 

No. SSH+ 

pools 

SSH+ 

CQ value 

Mosquitoes         

Fairbanks 12 1       

Hendrickson Island 209 4       

Yellowknife 1160 16       

Cambridge Bay 253 4       

Karrak Lake 1163 16 1 40.4     

Igloolik 1641 21       

Kuujjuaq 566 8 6 

12.8; 31.5; 

32.4; 28.1; 
33.6; 37.5 

6 

14.3; 34.9; 

35.5; 30.8; 
36.9; 39.7 

1 27.9 

Biting Flies (Simulioidae)       

Kuujjuaq  1014 6 4 
31.6; 30.7; 

34.5; 34.6 
4 

34.4; 33.6; 

37.5; 39.7 
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Table 3. Probes and primer pairs for CSG, JC and SSH viruses 252 

Target virus Name Sequence 

CSG viruses 

CE-NC-F1 5′-GTGTTTTATGATGTCGCATCA-3′ 

CE-NC-R1 5′-CATATACCCTGCATCAGGATCAA-3′ 

CE-NC-F2 5′-GTTTTCTATGATGATGCATCC-3′ 

CE-NC-R2 5′-CACAAACCCTGCATCTGGATCAA-3′ 

CE-NC-FAM/MGB 5′- FAM-CAGGTGCAAATGGA-MGB-3′ 

JC virus 

CE-NC-F2 5′-GTTTTCTATGATGATGCATCC-3′ 

CE-NC-R2 5′-CACAAACCCTGCATCTGGATCAA-3′ 

CE-NC-FAM/MGB 5′-FAM-CAGGTGCAAATGGA-MGB-3′ 

SSH virus 

CE-NC-F1 5′-GTGTTTTATGATGTCGCATCA-3′ 

CE-NC-R1 5′-CATATACCCTGCATCAGGATCAA-3′   

CE-NC-FAM/MGB 5′-FAM-CAGGTGCAAATGGA-MGB-3′ 
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Figure 1 Sampling locations in 2019  256 
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