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Abstract

Transcranial direct current stimulation (tDCS) has been shown to evoke hemodynamics

response; however, the mechanisms have not been investigated systematically using sys-

tems biology approaches. Our study presents a grey-box linear model that was developed

from a physiologically detailed multi-compartmental neurovascular unit model consisting of

the vascular smooth muscle, perivascular space, synaptic space, and astrocyte glial cell.

Then, model linearization was performed on the physiologically detailed nonlinear model to

find appropriate complexity (Akaike information criterion) to fit functional near-infrared spec-

troscopy (fNIRS) based measure of blood volume changes, called cerebrovascular reactiv-

ity (CVR), to high-definition (HD) tDCS. The grey-box linear model was applied on the

fNIRS-based CVR during the first 150 seconds of anodal HD-tDCS in eleven healthy

humans. The grey-box linear models for each of the four nested pathways starting from

tDCS scalp current density that perturbed synaptic potassium released from active neurons

for Pathway 1, astrocytic transmembrane current for Pathway 2, perivascular potassium

concentration for Pathway 3, and voltage-gated ion channel current on the smooth muscle

cell for Pathway 4 were fitted to the total hemoglobin concentration (tHb) changes from

optodes in the vicinity of 4x1 HD-tDCS electrodes as well as on the contralateral sensorimo-

tor cortex. We found that the tDCS perturbation Pathway 3 presented the least mean square

error (MSE, median <2.5%) and the lowest Akaike information criterion (AIC, median

-1.726) from the individual grey-box linear model fitting at the targeted-region. Then, minimal

realization transfer function with reduced-order approximations of the grey-box model path-

ways was fitted to the ensemble average tHb time series. Again, Pathway 3 with nine poles

and two zeros (all free parameters), provided the best Goodness of Fit of 0.0078 for Chi-

Square difference test of nested pathways. Therefore, our study provided a systems biology

approach to investigate the initial transient hemodynamic response to tDCS based on fNIRS

tHb data. Future studies need to investigate the steady-state responses, including steady-
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state oscillations found to be driven by calcium dynamics, where transcranial alternating cur-

rent stimulation may provide frequency-dependent physiological entrainment for system

identification. We postulate that such a mechanistic understanding from system identifica-

tion of the hemodynamics response to transcranial electrical stimulation can facilitate ade-

quate delivery of the current density to the neurovascular tissue under simultaneous

portable imaging in various cerebrovascular diseases.

Author summary

Non-invasive brain stimulation techniques, including transcranial direct current stimula-

tion (tDCS), is increasingly being used for the neuromodulation of human brain; how-

ever, the vascular mechanisms of action have not been investigated systematically. We

applied a rational computational modeling approach to human portable neuroimaging

data and found that the tDCS effects in the tissues surrounding a blood vessel explained

the blood volume changes, called cerebrovascular reactivity to tDCS, during the first 150

seconds of anodal HD-tDCS in eleven healthy humans. In this study, we limited our

investigation to initial hemodynamics response to non-invasive brain stimulation. Future

studies need to investigate the non-invasive brain stimulation effects on steady-state oscil-

lations where transcranial alternating current stimulation may be effective in entraining

beneficial oscillations. Such a mechanistic understanding from system identification of

the hemodynamic responses based on portable neuroimaging can facilitate adequate

delivery of the current density to the neurovascular tissue where hypoperfusion has been

associated with cerebrovascular diseases, including cognitive impairment. Furthermore,

low-cost wearable portable neuroimaging approach in conjunction with non-invasive

brain stimulation is amenable to point of care settings including home-based therapy.

Introduction

Cerebral blood flow (CBF) regulation is crucial for normal brain activity where hypoperfusion

has been associated with cerebrovascular diseases, including cognitive impairment in various

cross-sectional studies [1]. Cerebrovascular disease refers to conditions that have an effect on

blood vessels and blood supply to the brain [2]. Since vascular factors are an important con-

tributor to cerebrovascular disease, including a role in mild cognitive impairment and demen-

tia [3], that is predicted to increase to 152 million by 2050 [4]; therefore, therapeutic measures

for the cerebrovascular disease are crucial. Transcranial electrical stimulation (tES), particu-

larly transcranial direct current (tDCS), has been shown to be a promising therapeutic method

that can evoke regional CBF [5], which may be able to ameliorate hypoperfusion and the

related cognitive impairments. Here, CBF is regulated primarily by three mechanisms, cerebral

autoregulation that maintains the CBF under changes in systemic blood pressure; cerebral

vasoreactivity that is the response to the arterial CO2 partial pressure changes; and neurovascu-

lar coupling that is the response to the neuronal activity [6]. However, the physiological mech-

anisms of tDCS evoked CBF response [5,7–9] are unknown. A recent study [9] showed that

the spatial distribution of CBF changes correlated with the tDCS-induced electric field distri-

bution (< 1 V/m) computed using finite element modeling. CBF changes can also be evoked

rapidly (<100 ms) with transcranial alternating current stimulation (tACS) at 10–20 Hz; how-

ever, at higher electric field strengths (5–20 V/m)[10]. Since neurovascular coupling related
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hemodynamic response should start about 600 ms following the stimulus based on an experi-

mental study by Devor et al. [11]; therefore, such rapid changes in the CBF due to tACS is pos-

tulated to indicate the direct effect of the electric field on the vascular neural network [7,8,12]

(e.g., perivascular nerves, neuronal nitric oxide expressing interneuron [13]). The proximal

pial arteries and the descending arteries have the fastest onset time followed by the capillaries

(spatiotemporal characteristics of pial, penetrating, and micro-vessels are summarized in

Schmid et al. [14]), where direct neurocapillary modulation by tES may also be possible [15].

Consequently, the resultant spatiotemporal dynamics of the vascular response to electrical

stimulation can be quite complex due to the interdependence of the nested spatiotemporal

dynamics of the pial arteries, descending arteries, and the capillaries. Therefore, individual

hemodynamic effects of the tES current density via various neurovascular pathways need to be

investigated using mechanistic model-based hypothesis testing where CBF responses can be

site-specific and subject-specific [16].

In this study, we investigated the physiological mechanisms of tDCS evoked CBF response

based on grey-box modeling and hypothesis testing. Experimental studies have indicated that

long-term tDCS tends to transform neuronal activity through an induced electric field modu-

lation of the cortical neurotransmitters (like gamma-aminobutyric acid and glutamate) during

tDCS [17,18]. Besides, there is evidence of studies on CBF modulation through tDCS [5]. The

neuromodulatory consequences of tDCS are understood to be generated due to the induced

electric field (and current density) in the cortex by applying a weak direct current through

scalp electrodes, causing cortical excitability changes [19]. It is evident from neurophysiologi-

cal studies that the induced electric field can change neuronal excitability with current intensi-

ties ranging from 0.7 to 2.0 mA over 9–20 minute sessions [20]. The current applied by surface

electrodes in tDCS is shunted through the scalp and cerebrospinal fluid (CSF) and only a frac-

tion of the current reaches the cortex, producing a weak electric field (~0.3 V/m per 1mA of

applied current) [21,22] that can subthreshold polarize the neurons. However, persistent (>9

min) weak electric field can lead to neuroplastic changes and excitability after-effects, postu-

lated to be driven by persistent calcium flux, which in turn can affect cortical excitability [23],

alter the firing rate of neurons [24,25], and modify spatiotemporal brain networks related to

information transfer in the brain [26]. So, a majority of research on tDCS has focused on corti-

cal neuronal after-effects following long duration (>9 min) weak electric field stimulation

[17]; however, investigation of the immediate effects of the electric field on all neurovascular

targets in the cortical tissue may accord to better understanding of the vascular neural network

[12] mechanisms to hemodynamic response. For example, Guhathakurta and Dutta [27] pos-

tulated based on finite element modeling of the electric field strength that the pial arteries (and

arterioles) contain perivascular nerves within their adventitial layer that can be strongly

affected by tDCS-induced electric field. This was due to the magnitude and spread of the tDCS

current density in the CSF that surrounds pial vessels which can be much higher than that in

the brain parenchyma–details in the S2 Text and S4 Fig. Then, autonomic nerve fibers, includ-

ing noradrenergic perivascular axons, richly innervate the cerebral vessels within their adventi-

tial layer, especially the larger arteries including pial vessels, and tDCS electric field can affect

the limits of vasomotor control [28] and the autoregulation plateau [29]. Autoregulation is

important since pial arteries start the pressure-driven blood pathway to the cortex and have a

robust network topology that guarantees a constant blood supply (reviewed in Schmid et al.

[14]). Also, the pial arterial network structure on the cortical surface is comparable to that of a

honeycomb [30] that can cause distortion of the current flow from the CSF into the gray mat-

ter (GM) due to the large differences in the conductivity [31] of the CSF, blood vessels, and

GM. Such current flow distortion from the CSF into GM, and then around the penetrating
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blood vessels [15], may be responsible for affecting the vascular neural network [12] while also

distorting the electric field in the gray matter.

In this study, we considered a mechanistic model-based hypothesis testing of the coupling

mechanisms where neuronal and vascular functions are closely interconnected through neuro-

vascular mechanisms, as evident from studies using multimodal imaging techniques [32–34]

like functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), magne-

toencephalogram (MEG) and, more recently, functional near-infrared spectroscopy (fNIRS)

[35]. fNIRS provides a portable optical imaging technology that can be conducted in conjunc-

tion with transcranial electrical stimulation without interference. Therefore, combining tDCS

with fNIRS is feasible to capture variable neurovascular and neurometabolic effects; however,

physiologically guided mechanistic models are necessary for hypothesis testing in systems biol-

ogy. Such mechanistic understanding is crucial for clinical applications where our prior case

series in chronic (>6 months post-stroke) ischemic stroke identified a prolonged initial dip

(12.13±3.8sec) in oxyhemoglobin concentration as a response to anodal tDCS in one subject

who also complained of headache with throbbing pain following 15 min of anodal tDCS [36].

In fact, headache after tDCS and repetitive transcranial magnetic stimulation (rTMS) is quite

common (11.8% in tDCS and 23% in rTMS) adverse event that needs further investigation

[37] from neurovascular perspective. An integrated system of neurons, astrocytes, and vascular

cells form a neurovascular unit (NVU) that facilitates brain homeostasis and links neuronal,

metabolic, and vascular activities at cellular level [38]. So, tDCS can directly affect the excitabil-

ity of the cortical neurons and can also have an indirect effect via vascular neural network [12]

and neuronal nitric oxide (nNOS) expressing interneuron [13] or modulatory effects on non-

neuronal cells [39] due to perivascular microstructure [15].

Mathematical models of NVU are well published in fMRI, which can span from completely

phenomenological to detailed mechanistic models (described in the Methods section). Data-

driven black-box systems approaches provide a correlate of neural and hemodynamic response

at an abstract level under the assumption of neurovascular coupling at the cellular level; how-

ever, such black-box systems approaches do not aim to explicitly capture the underlying cellu-

lar mechanisms of action. We have presented a phenomenological model for capturing

cerebrovascular reactivity to anodal tDCS based on solely neuronal effects [40,41]. In this

study, tDCS-induced current density in the neurovascular tissue is postulated to affect not

only the neuronal cells but also the astrocyte and the cerebral blood vessels, composed of peri-

cytes, smooth muscle cells and endothelial cells. Therefore, we aimed for model fitting and

model evidence of the modulatory consequences of tDCS on blood vessels that can be via neu-

ronal and non-neuronal cells. A deeper understanding of the signaling pathways inside the

NVU is essential for a mechanistic understanding of tDCS-induced electric field effects on the

hemodynamics in health, aging, and disease [28] that we called cerebrovascular reactivity

(CVR) to tDCS [40].

In our grey-box model, CVR is based on a change in the blood circumference (and blood

volume) in response to tDCS. In healthy tissue, CVR is a compensatory mechanism where

blood vessels dilate in immediate response to the vasodilatory stimulus to regulate the resis-

tance to the flow, modifying the cerebral perfusion [42]. We postulated that the immediate

hemodynamic response [10] based on CVR to short-duration tDCS can provide a marker of

blood vessels’ capacity to dilate that can be hampered in various cerebrovascular diseases

[43,44]. However, longer duration (>9 min) tDCS will induce neuroplastic changes [17]

where non-linear bidirectional neurovascular interactions [45] can make the mechanistic

models too complex for fNIRS data fitting and hypothesis testing. Therefore, the current study

investigated the initial CVR to tDCS by grey-box linear modeling of the intimate relationship

between neuronal activity and hemodynamic response that involved the signaling pathways
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across the lumped model of the NVU compartments. Although finite element modeling has

indicated neurocapillary modulation by tDCS [15] through the interaction of the electric field

with the NVU; however, detailed neurocapillary finite element modeling becomes challenging

with uncertainties in the model parameters due to the folded cortical structures and complex

vascular network. Therefore, finite element modeling [46] without model tuning [47] to fit

individual response, captured with functional imaging data, can produce unpredictable and

variable tDCS effects across subjects that is already evident [48,49].

In this mathematical modeling and hypothesis testing paper, our systems biology investiga-

tion is based on the dynamics within the four compartments of the NVU: synaptic space, intra-

cellular astrocyte space, perivascular space, and intracellular space of the arteriolar smooth

muscle cell (SMC). We analyzed the pilot data from healthy subjects from our prior work [50]

to evaluate the role of various signaling pathways within NVU using a grey-box linear systems

identification approach. In a classical neurovascular coupling response, the initial phase

includes an increase in deoxy-hemoglobin concentration (deoxy-Hb) and a decrease in oxy-

hemoglobin concentration (oxy-Hb) that precede an overall rise in blood volume [11]. Here,

low-oxygen feedback regulation in "metabolic hypothesis" states that an increase in neuronal

synaptic activity causes additional energy and oxygen demand (i.e., an increase in deoxy-Hb

and decrease in oxy-Hb), causing various vasodilation agents to send signals to cerebral vascu-

lature for vasodilation, resulting in an increase in regional CBF and oxy-Hb concentration.

This metabolic hypothesis can also explain the initial dip in oxy-Hb concentration [51] in the

period immediately following tDCS before reaching peak levels, as observed in our previous

study on ischemic brain [36]. In healthy subjects, Muthalib et al. [52] found the group averaged

initial dip in oxy-Hb within the first 15s of high-definition tDCS. An increase in oxy-Hb

immediately following tDCS may be explained through a feedforward "neurogenic hypothe-

sis," whereby the direct neuronal modulation by tDCS causes a discharge of various vasoactive

agents and an increase in oxy-Hb [53]. Here, autonomic and sensory nerves from cranial gan-

glia and intrinsic innervation of the cerebral microcirculation [54] can be affected by tDCS.

We now know that the nerve fibers from the ganglia belonging to the sympathetic, parasympa-

thetic, and sensory nervous systems innervate the intracranial blood vessels [54]. Then, intra-

cerebral blood vessels [54] are surrounded by astrocytes [55] that can communicate tDCS

effects [56] on the pyramidal neurons [41] (“neurogenic hubs” of the NVU) to the blood ves-

sels. The “neurogenic hypothesis" can also be applied to the transmural electrical stimulation

of the perivascular nerves [28] (e.g., neuropeptide Y is an important vasoconstrictor [57] of

sympathetic innervation, parasympathetic innervation for vasodilation), and nNOS expressing

interneuron (e.g. NO for vasodilation [58]) in the intracranial blood vessels [54] viz. pial arter-

ies and arterioles [27] that can have a complex compounding effect to the blood volume

(deoxy-Hb+oxy-Hb) and CVR including initial dip in the blood volume due to vasoconstric-

tion [57]. An initial dip in the blood volume captured with fNIRS total haemoglobin concen-

tration (tHb) based CVR to tDCS was found in few healthy subjects in prior work [52]. Here,

tDCS effect on the blood vessels is postulated to be via transmural stimulation of perivascular

neurotransmitters that can also promote noradrenaline release. Also, tDCS may affect the sen-

sory fibers involved in cranial pain syndromes that stores calcitonin gene-related peptide

(CGRP), substance P, neurokinin A, NOS, and nociceptin, inter alia [54]. Somatic afferents

[59,60] including extrinsic perivascular innervation [61] may also be responsible since tingling

sensation (70.6%) and light itching sensation under the stimulus electrode (30.4%) are quite

common adverse events that were observed even with short-duration sham tDCS [37], viz. tri-

geminal nerve stimulation with supraorbital tDCS electrode is possible due to electrode edge-

effects [62]. Here, we postulate that this complex neurovascular response can be elucidated

with fNIRS combined with EEG at a high temporal resolution [50].
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Of the available functional neuroimaging technologies, fNIRS, a portable, noninvasive clini-

cally available tool, allows monitoring the local cortical hemodynamic response at the point of

care with reasonable spatial resolution and better temporal resolution than the gold standard

of fMRI. Even low-density fNIRS can provide a measurement of changes in the cerebral oxy-

genation (oxy-Hb and deoxy-Hb) and blood volume (sum of oxy-Hb and deoxy-Hb) [63,64]

that is a promising tool to evaluate CVR to tDCS as evident from related studies [65,66]. The

modality has been extensively used in various brain diseases like epilepsy, stroke, Parkinson’s

disease, and mild cognitive impairment [67,68]. It can also provide an indirect measure of

CBF during tDCS where the advantage over other neuroimaging modalities like fMRI and

PET are: portability, better safety, higher temporal resolution, and cost effectiveness [69]. Also,

fNIRS can be combined with tDCS with no electro-optic interference to measure hemody-

namic response during electrical stimulation. Here, dosing of the tDCS-induced current den-

sity can be monitored for safety in a diseased state since the blood-brain barrier (BBB)

dysfunction [70] can be worsened by an increased BBB permeability [71]. In principal accor-

dance, the current study considered low-density fNIRS based measure of tHb changes (related

to blood volume changes [72]), obtained by adding oxy-Hb and deoxy-Hb changes

(tHb = deoxy-Hb+oxy-Hb), during tDCS to account for the vessel volume changes to fit in our

mathematical models for hypothesis testing. Here, tHb change was considered as a better mea-

sure of the change in the regional cerebral blood volume [72] compared to oxy-Hb or deoxy-

Hb content taken individually. The signaling pathways modulating vascular response to the

electric field in the perivascular space, astrocytes, and vascular SMCs were also evaluated in

addition to the neuronal pathway [40] and compared using grey-box linear systems’ transfer

function analysis in eleven healthy subjects from our prior experimental studies [50,52]. In our

previous works, Muthalib et al. [52] found a greater increase in oxy-Hb "within" than "outside"

the spatial extent of the 4 × 1 high-definition (HD)-tDCS electrode. In the current study, we

used that experimental data in conjunction with our novel grey-box linear model to investigate

tHb as the hemodynamic correlate of the current density effects “within" the spatial extent

(called the “targeted-region”) as well as "outside" the spatial extent (called the “nontargeted-

region”) of the 4 × 1 HD-tDCS electrode. At both the targeted-region and the nontargeted-

region, the increase in the blood volume during HD-tDCS was considered to be caused by a

mix of metabolic and neurogenic factors that were mathematically formulated for grey-

box linear systems identification. Here, grey-box linear systems identification was performed

following model linearization of a physiologically detailed NVU model to find appropriate

model fit (mean square error) and model complexity (Akaike information criterion [73]) to

the tDCS-evoked change in the fNIRS-tHb data.

Methods

Ethics statement

Institutional Review Board of EuroMov (University of Montpellier, France) provided approval

for all procedures performed involving human participants. Informed written consent was

obtained from the human subjects voluntarily participating in this study in accordance with

the Declaration of Helsinki.

(A) Subjects and the experimental protocol

Informed written consent was obtained from eleven healthy human subjects (1 female, 19–45

years old) who voluntarily participated in this study in accordance with the Declaration of Hel-

sinki. The subjects had no known neurological or psychiatric history, nor any contraindica-

tions to tDCS. In this study, the pilot data from our prior work on online parameter
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estimation with an autoregressive model [50] was analyzed with a grey-box model for a mecha-

nistic understanding of the tDCS action on the total hemoglobin concentration.

During the experiment, the subjects were comfortably seated with eyes-open in an arm

chair with adjustable height. The set-up of the high-definition (HD) tDCS electrodes and

fNIRS optodes were mounted on the surface of the scalp according to the 10/10 system (see

Fig 1). The anodal HD-tDCS (StarStim, Neuroelectrics NE, Barcelona, Spain) was configured

in a 4 × 1 ring montage with the anode placed in the center (C3) in a region overlying the left

Fig 1. (A) HD-tDCS-fNIRS montage on a 10/10 EEG system. The fNIRS time series data from the transmitter-receiver optode combinations in the vicinity of

4x1 HD-tDCS electrodes (fNIRS channels encircled in red, left hemisphere: C5-CP3, C1-CP3, C5-FC3, and C1-FC3), i.e. the targeted-region, as well as the

non-targeted region in the contralateral hemisphere (fNIRS channels encircled in blue, right hemisphere: C2-FC4, C2-CP4, C6-FC4, and C6-CP4) were used

for the grey-box modeling. (B) Measurement sensitivity of the fNIRS channels at the grey matter on the left hemisphere along with the HD-tDCS electrodes in

the Atlas Viewer open-source package (https://github.com/BUNPC/AtlasViewer). The sensitivity values are displayed logarithmically by the color scale. (C)

Measurement sensitivity of the fNIRS channels at the grey matter on the right hemisphere in the Atlas Viewer open source package (https://github.com/

BUNPC/AtlasViewer). The sensitivity values are displayed logarithmically by the color scale.

https://doi.org/10.1371/journal.pcbi.1009386.g001
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primary sensorimotor cortex. The return electrodes were placed approximately 4 cm away at

FC1, FC5, CP5, and CP1 in the 10/10 system (see Fig 1). In the rest of the document, ’HD-

tDCS’ means ’anodal HD-tDCS’ since we only performed anodal tDCS for this human pilot

study. Measurements of changes in eyes-open resting-state oxy-hemoglobin (oxy-Hb) and

deoxy-hemoglobin (deoxy-Hb) concentrations from the bilateral primary sensorimotor cortex

were made from a 16-channel continuous-wave NIRS system (OxymonMkIII, Artinis Medical

Systems, Zetten, The Netherlands) at a sampling frequency of 10 Hz. The receiver-transmitter

distance of 3 cm was based on our prior work [50]. The receivers (Rx) were placed on the

FC3and CP3 for the left hemisphere and FC4 and CP4 for the right hemisphere. Transmitters

(Tx) were placed diagonally, i.e., at P1, P5, C1, C5, F5, and F1 for the left hemisphere, and P6,

P2, C6, C2, F2, and F6 for the right hemisphere, as shown in Fig 1. The HD-tDCS was con-

ducted using Pistim (Neuroelectrics NE, Barcelona, Spain) electrodes (contact area 3.14cm2)

over the left primary motor cortex region to deliver 2mA current for 10 minutes, with a ramp

up and ramp down of 30 seconds. Eyes-open resting-state data for changes in oxy-Hb and

deoxy-Hb was recorded. The effect of HD-tDCS on blood volume was considered for the grey-

box linear modeling, so the average values of tHb (= oxy-Hb+deoxy-Hb) were obtained from

the optodes in the vicinity of 4x1 HD-tDCS electrodes: C5-CP3, C1-CP3, C5-FC3, and

C1-FC3, i.e., the targeted-region as well as the nontargeted-region from contralateral hemi-

sphere (C2-FC4, C2-CP4, C6-FC4, and C6-CP4). The first criterion to confirm the signal qual-

ity was a visual inspection for the presence of cardiac pulsation, in either the time or the

frequency domain (peak around 1 Hz cardiac frequency).

Due to the lack of short-separation channels to perform short source-detector regression to

remove extra-cerebral hemodynamics, we performed data-driven principal component analy-

sis (PCA) to identify the signal components that explained the greatest amount of covariance

across all the spatially symmetrically distributed 16 channels. This pre-processing of the fNIRS

data was performed with HOMER2 (v2.2) routines (hmrIntensity2OD and hmrOD2Conc,

respectively) using the modified Beer-Lambert law and their standard pipeline. Specifically,

motion correction (hmrMotionCorrectWavelet) and zero-phase bandpass filtering

("hmrBandpassFilt") was performed to extract the frequencies between 0.01 Hz and 0.1 Hz

across all the 16 channels. Here, the PCA approach was applied to improve the signal to noise

ratio towards neurovascular and neurometabolic coupling than systemic physiology [74]. The

neurovascular and neurometabolic coupling-related hemodynamic response should lead to an

initial increase in deoxy-Hb and an equal decrease in oxy-Hb. Then, the blood volume (mea-

sured with tHb) should start to increase about 600ms following the neural stimulus [53]. Such

differential activation of oxy-Hb and deoxy-Hb over longer timescale (600 sec; see S2 Table)

was found in the vicinity of 4x1 HD-tDCS electrodes: C5-CP3, C1-CP3, C5-FC3, and C1-FC3,

i.e., the targeted-region, that indicated neurovascular coupling related hemodynamic response

by HD-tDCS current density at the ipsilateral primary motor cortex. Therefore, the fNIRS

channels were analyzed for the negative correlation between oxy-Hb and deoxy-Hb dynamics

over 600 sec for each subject that is based on the rationale for correlation-based signal

improvement [75] for the contrast to noise ratio (see S2 Table). We also investigated the fNIRS

time series data at the nontargeted-region in the contralateral sensorimotor cortex where the

grey matter was not directly affected by the HD-tDCS current density–confirmed using finite

element modeling (see Fig 2A). Current spread (see S4 Fig) in the highly conductive CSF

(mean 1.69 S/m [31]) to tissue boundary compared to grey matter (mean 0.60 S/m [31]), blood

(mean 0.58 S/m [31]), and vessel wall (0.46 S/m [31]) can lead to a spatial change in the tangen-

tial surface current (JTin), e.g., along the pial surface (see Fig 2C), resulting in the activating

function for the perivascular nerves. We have postulated [50] the propensity of HD-tDCS cur-

rent density to affect the autonomic nerves in the adventitial layer–see Fig 2B. Then, complex
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bidirectional communication between astrocytes and vascular reactivity governs the arteriolar

calcium oscillations [76] that can be captured with a detailed physiological NVU model (see

Section C). In this study, we limited our investigation to the initial transient response within

the neurovascular coupling frequency band (0.01–0.05Hz) of the fNIRS data for NVU model

fitting within the first 150sec of the HD-tDCS (30sec ramp-up and 2min steady-state). Here,

any low-frequency (0.01–0.05Hz) steady-state vessel oscillations were considered related to the

interplay between the neurovascular coupling and the vasomotor control [77–79].

(B) fNIRS-tHb response during HD-tDCS (experimental data):

To determine fNIRS-tHb response, the mean value from the baseline (before HD-tDCS) was

subtracted and then the time course was normalized with the maximum (the maximum value

gets transformed into a 1) for the changes in total hemoglobin concentration changes (fNIRS-

tHb response). Fig 3 shows the change in the normalized tHb from baseline (mean of 2 min

Fig 2. The illustration shows transcranial electrical stimulation induced electric field (E) and its current density (J) in the highly conductive cerebrospinal fluid

(CSF) around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces or the perivascular spaces. Then, the extracellular electric

potential (V), a function of electric field (E), can influence the perivascular nerves in the perivascular spaces thereby affecting the neurovascular unit illustrated with

BioRender software (https://biorender.com/). Here, the pial arterioles have thick layer of smooth muscle cells that are surrounded by CSF in the subarachnoid space. So,

the extracellular field can affect the smooth muscle cells of the vessel via its densely innervated nerve fibers originating from cranial autonomic and sensory ganglia, such

as the sympathetic, parasympathetic and trigeminal ganglia. (A) Electric field strength (in V/m) along with the current density vector (in A/m2) computed at the gray

matter surface due to 2 mA anodal HD-tDCS (4 x 1 configuration) over left sensorimotor cortex using finite element modeling in the SimNIBS open source package

(https://simnibs.github.io/simnibs/build/html/index.html). (B) Blood vessels are composed of endothelial cells (in the intima layer), smooth muscle cells (in the medial

layer), and extracellular matrix (containing the perivascular nerves), where the electric field can affect the smooth muscle cells and the perivascular nerves. (C)

Perivascular nerves on the surface of pial vessels, on the surface of the brain are particularly susceptible to tangential surface current (JTin) due to the current spread in the

highly conductive (mean 1.69 S/m) cerebrospinal fluid (CSF) boundary compared to grey matter (mean 0.60 S/m), blood (mean 0.58 S/m), and vessel wall (0.46 S/m).

Spatial change in the JTin, e.g., along pial artery (X1, X2), can lead to the activating function that is proportional to the second spatial derivative of the extracellular

potentials (Vin, Vout) along the axon.

https://doi.org/10.1371/journal.pcbi.1009386.g002

PLOS COMPUTATIONAL BIOLOGY Cerebrovascular reactivity to anodal high-definition tDCS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009386 October 6, 2021 9 / 38

https://biorender.com/
https://simnibs.github.io/simnibs/build/html/index.html
https://doi.org/10.1371/journal.pcbi.1009386.g002
https://doi.org/10.1371/journal.pcbi.1009386


before tDCS perturbation) obtained during anodal HD-tDCS stimulation from fNIRS chan-

nels around the 4x1 HD-tDCS anode, i.e., the targeted-region and from the nontargeted-

region at the contralateral sensorimotor cortex (shown by the montage in Fig 1). The 0-150sec

time course of changes in tHb at the targeted-region showed a steeper increase compared to

the nontargeted-region that is more evident in the ensemble averaged time courses of tHb (Fig

3B and 3C) at the targeted-region and at the nontargeted-region respectively across subjects.

(C) Detailed physiological model review and selection

Various mathematical models representing the NVU mechanisms with major compartments–

neuron, astrocyte, and vascular cells–have been published. A description of these published

mathematical models is given in Table 1. These models are constructed using physical, electri-

cal, and hemodynamics laws tied with experimental analysis to demonstrate the signaling in

different NVU cell constituents. The inter-compartmental dynamics are represented by a set

of differential equations having compartment-specific variables. The first models were pre-

sented by Riera et al., 2005 [80,81] for fusing EEG and fMRI data as listed in the Table 1. Then,

various models were presented by Bennett et al. [82] and Farr and David [83] that used synap-

tic space, astrocyte, smooth muscle cell, perivascular space and endothelial cells as components

of a neurovascular system. Their studies presented the coupling between neuronal activation

(through K+ and glutamate) and arteriolar dilation via astrocytic potassium ions (K+), epox-

yeicosatrienoic acids (EETs), and calcium ion (Ca2+) channels. Then, studies by different

Fig 3. (A) Normalized time course of changes in the total hemoglobin concentration during anodal HD-tDCS (2mA current for 600 seconds, with ramp-up

period of 30 seconds) at the targeted-region (red) and the nontargeted-region (blue) of eleven healthy subjects (P1-Hbt to P11-Hbt). (B) Ensemble averaged

HD-tDCS evoked changes in total hemoglobin concentration (mean±standard deviation) at the targeted-region. (C) Ensemble averaged HD-tDCS evoked

changes in total hemoglobin concentration (mean±standard deviation) at the nontargeted-region.

https://doi.org/10.1371/journal.pcbi.1009386.g003
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Table 1. Summary of studies detailing mathematical models of the neurovascular unit (NVU) components and their input (I) and output (O).

S.

No.

Study NVU system Description

1 Riera et al., 2005 [80] Synaptic space, neuron-astrocyte interface, capillary, post

capillary; I: stimulus (afferent pathways); O: vessel volume

The study used a bottom-up physiological model for fusing EEG and

fMRI data depicting the electro-vascular coupling. Synaptic activity

and hemodynamics were governed by mesoscopic dynamic

equations system.

2 Riera et al., 2006 [81] Canonical neural mass component, electrovascular coupling

component, vascular state dynamics component; I: excitatory

synaptic inputs; O: Cerebral blood volume and cerebral blood

flow

The study presented the cerebral architecture, electro-vascular

coupling and energy considerations with respect to EEG and fMRI

data fusion. The study extended balloon approach for modeling the

vascular changes.

3 Bennett et al., 2008

[87]

Synaptic space, astrocyte, SMC; I: Glutamate released from

glutamatergic synapse; O: Cerebral blood volume and cerebral

blood flow

The study showed that the coupling between glutamatergic synapses

to arteriolar SMC is mediated by astrocytic epoxyeicosatrienoic

acids (EETs). Results depicted a linear rise in blood flow with an

increase in numbers of activated astrocytes; however, the response

was non-linear with respect to the release of glutamate.

4 Banaji et al., 2008 [88] Cerebral circulation component, mitochondrial metabolism

component; I: Blood pressure changes, changes in arterial

oxygen and carbon-dioxide levels, functional activation; O:

cerebral metabolic rate of oxygen (CMRO2), changes in

oxidation level

The study modeled the brain circulation and metabolism to analyze

the experimental fNIRS data in response to various stimuli.

5 Farr and David, 2011

[83]

Synaptic space, astrocyte, perivascular space, SMC, and

endothelial cells; I: Glutamate and K+ in synaptic space; O:

arteriolar diameter

The study showed that the coupling between neuronal activation

(due to K+ and glutamate) to arteriolar dilation was mediated by

astrocytic K+, EET, and Ca2+.

6 Witthoft and

Karniadakis, 2012 [45]

Synaptic space, astrocyte, perivascular space, SMC; I: Glutamate

and K+ in synaptic space; O: arteriolar radius

The study showed the bidirectional communication between

cerebral astrocytes and the microvessels. Major signaling pathways

considered were: neural synaptic K+ and glutamate to astrocytes, K+

signaling between astrocytes and microvasculature, and

microvasculature to astrocytes via astrocyte perivascular endfoot.

7 Chander and

Chakravarthy, 2012

[89]

Neuron, astrocyte, vessel, and interstitium; I: Synaptic current

and Adenosine Triphosphate (ATP); O: vessel radius via EET

signaling

The study presented a model for the neuron-astrocyte-vessel loop

based on neuronal and metabolic activity.

8 Witthoft et al., 2013

[90]

Synaptic space, astrocyte, perivascular space, SMC; I: Glutamate

and K+ in synaptic space; O: arteriole radius

Extended version of the model from Witthoft and Karniadakis,

201242with K+ buffering across all components of NVU.

9 Chang et al., 2013 [91] Soma, dendrite, extracellular space, vascular tree compartment,

glial compartment; I: extracellular K+; O: vessel radius

The study demonstrated the coupling between the vascular

diameters and neuronal activity mediated by K+ concentrations in

extracellular space in the vicinity to dendritic processes that were

assumed to be buffered through astrocytes.

10 Dormanns et al., 2015

[92]

Neuron, synaptic cleft, astrocyte, perivascular space, SMC,

endothelial cell, and arteriolar lumen; I: synaptic K+; O: arteriole

radius

The study used lumped model of the NVU for depicting the

connection between a neuron and the perfusing arteriole through

the astrocytic perivascular K+ signaling and the SMC’s Ca2+

dynamics. The study showed the significance of luminal agonists in

flowing blood influencing the endothelial and SMC dynamics.

11 Dormannset al., 2016

[84]

Neuron, synaptic cleft, astrocyte, perivascular space, SMC,

endothelial cell, and arteriolar lumen; I: synaptic K+; O: arteriole

radius

An extended version of Dormannset al., 2015 model67with NO

signaling pathway. The model considered the production of NO in

the neuron and the endothelial cell compartments and its diffusion

in the other compartments.

12 Blanchard et al., 2016

[93]

Pyramidal cells, interneurons, extracellular space, astrocytes,

vessels; I: Excitatory postsynaptic potential (EPSP) and Firing

rates (FR) from pyramidal cells and interneurons; O: local field

potential and regional cerebral blood flow

The study demonstrated the connection between the neuronal

activity and regional CBF via neuro-glio-vascular link at the

population scale (voxel). The model evaluated the role of astrocytes

in glutamate and GABA recycling, which then influences adjoining

vessels

13 Mathias et al., 2017

[94]

Soma, dendrite, extracellular space, synaptic space, astrocyte,

perivascular space, SMC, endothelial cell and lumen; I:neural

activation through ion channels; O: fMRI BOLD signal

The study demonstrated the signaling method of neurovascular

coupling through a model of pyramidal neurons and its analogous

fMRI BOLD response. The study extended the NVU to include a

complex neuron system with Na/K ATPase pump mechanism,

which provides CBF and CMRO2.

(Continued)
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researchers [45,84–86] broadened the basic models by augmenting various physiological seg-

ments and detailing the NVU mechanisms.

We selected the physiologically detailed model by Witthoft and Karniadakis [45] since their

study showed the bidirectional communication between cerebral astrocytes and microvessels,

which was relevant due to experimental results that astrocytes are susceptible to small varia-

tions in their membrane potential [96] and their long processes are sensitive to polarization by

tDCS [97–99]. In Fig 4, we compared the Witthoft and Karniadakis [45] model with two other

models, Kenny et al. [85], which depicted the connection between neurons and perfusing arte-

riole through the astrocytic perivascular K+ and the SMC’s Ca2+ dynamics, and Mathias et al.

[86] model that extended Kenny et al. [85] model as explained in Table 1.

For comparison of the model responses, the physiologically detailed models were simulated

using the ‘ode23tb’ solver in Simulink (MathWorks, Inc., USA), and the normalized vessel

radius change was considered during a neuronal stimulus between 30 to 70 sec as shown in Fig

4. We found that the physiologically detailed model by Witthoft and Karniadakis [45] had a

Table 1. (Continued)

S.

No.

Study NVU system Description

14 Kenny et al., 2018 [85] Neuron, synaptic cleft, astrocyte, perivascular space, endothelial

cell, SMC, and lumen; I: Glutamate and K+ in synaptic space; O:

arteriolar radius

The model used lumped parameter systems to depict the connection

between a neuron and perfusing arteriole through the astrocytic

perivascular K+ and the SMC’s Ca2+ dynamics mediated by

astrocytic EETs and TRPV4. Results indicated that K+ mediated

pathway drives the quick start of vaso-dilation compared to the NO-

mediated pathway.

15 Mathias et al., 2018

[86]

Neuron (soma, dendrite), extracellular space, synaptic space,

astrocyte, perivascular space, SMC, endothelial cell and lumen;

I:neuronal current; O: fMRI BOLD signal

The model simulated NVU mechanisms and BOLD signal by

extending the previous models by Mathias et al., 201769 and Kenny

et al., 201859. The study included a transient sodium ion channel in

the neuron compartment.

16 Sten et al., 2020 [95] Pyramidal neuron, GABAergic interneuron, astrocyte, SMC,

arteriole; I: neuronal pulse mediating vaso-agents; O: arteriolar

diameter

The study modeled the interplay between pyramidal neurons and

GABAergic interneurons in the NVU. The study evaluated the role

of cell-specific contributions in NVU due to the effect of an

anesthetic agent.

https://doi.org/10.1371/journal.pcbi.1009386.t001

Fig 4. Normalized vessel radius changed from the neurovascular unit models during neuronal stimulation (30 to

70 sec) shown by the shaded region. Three relevant physiological models’ simulation: Model (a) Kenny et al., 2018,

Model (b) Mathias et al., 2018, and Model (c) Witthoft and Karniadakis, 2012. The period from 0 to 30 sec shows

numerical transients where the model (c) settles to a non-zero vessel radius from zero initial condition. Model (c) also

captured the after-effect of the neuronal stimulation on the normalized vessel radius.

https://doi.org/10.1371/journal.pcbi.1009386.g004

PLOS COMPUTATIONAL BIOLOGY Cerebrovascular reactivity to anodal high-definition tDCS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009386 October 6, 2021 12 / 38

https://doi.org/10.1371/journal.pcbi.1009386.t001
https://doi.org/10.1371/journal.pcbi.1009386.g004
https://doi.org/10.1371/journal.pcbi.1009386


quick start of the vasodilation comparable to Mathias et al. [86] model that extended Kenny

et al. [85] model. Also, Witthoft and Karniadakis [45] model presented with after-effect of the

neuronal stimulation on the normalized vessel radius. Moreover, we found that the Witthoft

and Karniadakis [45] model generated baseline vessel oscillations (see Model c in green in Fig

4) that was attenuated during activation. However, experimental investigation of non-linear

limit cycle oscillations between the cerebral astrocytes and microvessels will require multi-

modal imaging to measure synchronized neuronal, astrocytic calcium, and hemodynamic

changes that is possible in an animal model [100]. In our human study using fNIRS, such

detailed physiological model (see S1 Text) may be unidentifiable, i.e., characterized by many

parameters that are poorly constrained by tHb measure, from low-density fNIRS. Therefore,

Table 2. State variables of the pathways for tDCS effects in the lumped model of the neurovascular unit for physiologically detailed modeling based on published

literature [42,56,57,75].

Compartments of the lumped model of the neurovascular unit

Synaptic Space Intracellular Astrocyte Space Perivascular Space Arteriole smooth muscle cell (SMC)

Intracellular Space

Potassium concentration in the

synaptic space ([K+]S)
Astrocytic Inositol trisphosphate ([IP3]) Perivascular potassium

concentration, ([K+]P)
Perivascular calcium

concentration ([Ca2+]P)

Open KIR (Inward Rectifying

Potassium) channel probability (k)
Astrocytic intracellular calcium concentration, ([Ca2

+]A)
SMC Membrane Potential (VSMC)

Gating variable (h) Open potassium channel probability (n)
TRPV4 (Transient Receptor Potential Vanniloid

Related 4) channel open probability (ss)
Calcium concentration in the SMC

([Ca2+]SMC)
Calcium-dependent EET (Epoxyeicosatrienoic Acid)

production in the cell ([EET])
The fraction of attached cross-bridges

(ω)
Open BK(Big Potassium) channel probability (nbk) Normalized contractile component of

length (yy)
Astrocyte Membrane Potential (Vk) Mean circumference of the vessel (x)

https://doi.org/10.1371/journal.pcbi.1009386.t002

Fig 5. Anatomical representation (created using BioRender: https://biorender.com/) of the components of

neurovascular unit that can be affected by tDCS current density in the neurovascular brain tissue.

https://doi.org/10.1371/journal.pcbi.1009386.g005
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we aimed to conduct hypothesis testing on tDCS effects based on initial transient blood vol-

ume changes (based on fNIRS tHb) such that the reduced dimension grey-box model is parsi-

monious (lower model order better) and also conform to fNIRS tHb data (goodness of fit).

Here, reduced dimension grey-box modeling is crucial since under-fitting is known to induce

bias while over-fitting induces variability. So, Akaike information criterion (AIC) was used to

find the balance where tDCS was postulated to affect various NVU compartmental states, i.e.,

our hypotheses for model selection [101], that are presented in the next section.

(D) Physiologically detailed neurovascular compartmental dynamics

A physiologically detailed mathematical model of tDCS effects on the compartments of the

lumped model of the NVU (state variables tabulated in Table 2) was simulated based on pub-

lished literature (see Table 1). The anatomical representations are shown in Fig 5 where

besides neurons, the major non-neuronal glial cells in the brain, astrocytes, are also susceptible

to small variations in their membrane potential [96], and their long processes are sensitive to

polarization by tDCS [97–99]. In animal studies, tDCS has been found to induce astrocytic cal-

cium waves in the visual cortex to steer plasticity of the visually evoked potentials [102]. Fur-

ther, electrically coupled populations of glial cells, known as a glial syncytium, can intensify

field polarization in response to tDCS. Likewise, vascular cells such as endothelial cells and

arteriolar SMC can be affected by tDCS through the modulation of nitric oxide (NO) and neu-

ropeptide Y (NPY), perivascular neurotransmitters, and polarization of SMC causing vasomo-

tion via metabolites such as potassium ions (K+), adenosine, NO and calcium ions (Ca2+)

[103]. Our grey-box model was developed from the physiologically detailed models by Wit-

thoft and Karniadakis [45] that generated rapid response, vessel oscillations, and stimulation

aftereffects.

Neuronal effects due to tDCS current density can take an intricate path to the synaptic

transmembrane current, considering only excitatory effects that can be mapped through a sig-

moid function as presented by Molaee-Ardekani et al. [104]. In this current study, we did not

explicitly model neuronal dynamics, so we did not capture neuroplastic changes [17] and

Fig 6. Schematic representation of the four pathways for tDCS current density effects (perturbation) on vessel

volume function related to vessel circumference changes for hypothesis testing using experimental total

hemoglobin (tHb) concentration changes (proportional to blood volume). The four simulated pathways are,

Pathway 1: tDCS current density (input pulse) via first-order transfer function modulate vessel volume response

(output) by perturbing synaptic potassium (K+) released from active neurons (DJKs
), Pathway 2: tDCS current density

(input pulse) via first-order transfer function modulate vessel volume response (output) by perturbing the astrocytic

transmembrane current (ΔIT), Pathway 3: tDCS current density (input pulse) via first-order transfer function

modulate vessel volume response (output) by perturbing perivascular potassium (K+) concentration (Δ[K+]T), and

Pathway 4: tDCS current density (input pulse) via first-order transfer function modulate vessel volume response

(output) by perturbing voltage-gated ion channel current (ΔIKV) on the smooth muscle cell (SMC).

https://doi.org/10.1371/journal.pcbi.1009386.g006
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neuronal excitability after-effects induced by longer duration (>3 min) tDCS. To capture the

immediate transient effect of tDCS, the major signaling pathways were considered in our

model, viz., neural synaptic potassium (K+) and glutamate to astrocytes, K+ signaling between

astrocytes and microvasculature, and microvasculature to astrocytes interactions via astrocyte

perivascular endfoot [45]. The detailed differential equations and model parameters are pro-

vided in the S1 Text. Our goal was mechanistic grey-box modeling for hypothesis testing,

where the hypotheses are formulated as a set of mathematical equations for data fitting to iden-

tify core predictions from biological criteria [105]. We identified four nested NVU compart-

mental pathways (see Fig 6) where tDCS perturbed a state variable at each of the four NVU

compartments (see Table 2 for details on compartmental state variables) for hypothesis testing

of the initial (0-150sec) tDCS effects on the NVU leading to blood vessel (circumference) vol-

ume changes. Fig 6 shows the nested model for each of the four pathways starting from tDCS

scalp current density that perturbed synaptic potassium (K+) released from active neurons

(DJKs
) for Pathway 1, astrocytic transmembrane current (ΔIT) for Pathway 2, perivascular

potassium (K+) concentration (Δ[K+]T) for Pathway 3, and voltage-gated ion channel current

(ΔIKV) on the smooth muscle cell (SMC) for Pathway 4.

For NVU compartmental modelling of the tDCS perturbations (see Fig 6), the tDCS current

density in the brain’s neurovascular tissue was assumed to be proportional to the tDCS current

density applied at the scalp due to the Ohmic volume conductor head model (see S2 Text).

Prior works have shown that the change in the concentration of various vasoactive agents can

be represented as a vasoactive signal with first-order Friston’s model [106]. So, the tDCS cur-

rent density at the scalp (Itdcs) was proportional to the current density (JtDCS) in the neurovas-

cular brain tissue based on a lead field matrix (the forward solution; see S2 Text) leading to the

vasoactive signal (state perturbation to NVU compartments) via first order transfer function,

vi ¼
Ki

s=tþ 1
Itdcs ðiÞ

where Ki is arbitrary gain from lead field matrix (JtDCS = Ki�Itdcs), and τ is the time constant.

Here, the state variables of various NVU compartments modeled in the study are listed in

Table 2, while the detailed equations are provided in the S1 Text.

(a) Pathway 1: tDCS perturbation of synaptic potassium leading to vessel circumference

changes

Studies have shown that K+ can act as a potent vasodilator signal that couples local neuro-

nal activity to vasodilation in the brain, and have a major role in cerebrovascular mechanisms

[107–110]. Studies have shown that the potassium pathway is responsible for the fast onset of

vasodilation compared to the other mediators [85,86,111]. Here, synaptic activity was assumed

to be modulated by tDCS current density [112] that affected K+ release from active neurons

into the synaptic space. Here, JKs
is the K+ released from active neurons that is considered to

be perturbed by tDCS from its baseline condition such that DJKs
¼ v1 ¼

K1

s=tþ1
Itdcs using Eq (i).

The potassium concentration in the synaptic space, [K+]s is then given as (see Eq 1 in the S1

Text):

d½Kþ�s
dt
¼ JKs

þ
K1

s=tþ 1
Itdcs � JSKmaxkNa

½Kþ�s
½Kþ�s þ KKOa

ðiiÞ

where JKs
is the baseline flux of K+ in the synaptic space, JSKmax is the maximum flux, kNa is a

constant parameter that depends on extracellular sodium concentration, KKOa is the threshold

value for K+ concentration in the synaptic space, [K+]s.

PLOS COMPUTATIONAL BIOLOGY Cerebrovascular reactivity to anodal high-definition tDCS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009386 October 6, 2021 15 / 38

https://doi.org/10.1371/journal.pcbi.1009386


(b) Pathway 2: tDCS perturbation of the astrocytic transmembrane current leading to ves-

sel circumference changes

Astrocytes are susceptible to small variations in their membrane potential [96] and their

long processes are sensitive to polarization by tDCS [97–99]. Here, astrocytic transmembrane

current (IT) was perturbed by tDCS, DIT ¼ v2 ¼
K2

s=tþ1
Itdcs from Eq (i) that was added to other

transmembrane currents including IBK is current through Big Potassium (BK) channel, Ileak is

leak current, ITRPV is electrical current through the TRPV channel and ISK is the electrical cur-

rent carried by the K+ influx at the perisynaptic process (Eq 21 in the S1 Text):

dVk

dt
¼

1

Castr
� IBK � Ileak � ITRPV � ISK þ

K2

s=tþ 1
Itdcs

� �

ðiiiÞ

(c) Pathway 3: tDCS perturbation of perivascular potassium concentration leading to vessel

circumference changes

Glial cells maintain extracellular K+ concentration by the imbalance in their membrane

polarity and can affect K+ spatial buffering affecting tDCS modulation [113] of neurovascular

coupling [35]. Astrocytic release of K+, via two potassium channels (BK and KIR), into the

perivascular space can be perturbed by tDCS. Astrocytic role in neurovascular coupling may

be related to the strength of stimulation where high strength can also lead to vasoconstriction

[100] (mediated via K+ and EET signaling [83]). Vasoconstriction can also follow vasodilation

when the astrocytic calcium concentration (or, perivascular K+ concentration) increase above

a certain threshold. We assumed that low-intensity tDCS perturbation would not cross that

threshold where D½Kþ�T ¼ v3 ¼
K3

s=tþ1
Itdcs. So, the perivascular potassium concentration, [K+]P,

is given as (Eq 26, S1 Text):

d½Kþ�P
dt

¼
JBK
VRpa

þ
JKIR
VRps

� Rdecay ½K
þ�P � ½K

þ�P;min

� �
þ

K3

s=tþ 1
Itdcs ðivÞ

Here, [K+]P,min is the resting state equilibrium K+ concentration in the perivascular space.

The K+ flow from the astrocyte and SMC are JBK and JKIR corresponding to BK and inward

rectifying potassium (KIR) respectively. And, VRpa and VRps are the volume ratios of perivas-

cular space to astrocyte and SMC, respectively. Rdecay is the rate at which perivascular K+ con-

centration decays to its baseline state.

(d) Pathway 4: tDCS perturbation of voltage-gated ion channel current on the smooth

muscle cell leading to vessel circumference changes.

Smooth muscle cell (SMC) voltage-gated potassium (KV) channels and inwardly rectifying

K+ channels are important in penetrating arterioles that control arterial diameter by exerting a

major hyperpolarizing influence [114]. Therefore, tDCS electric field can perturb voltage gated

potassium current (DIKV ¼ v4 ¼
K4

s=tþ1
Itdcs) that was added to other currents including IL, IK, ICa

and IKIR that represent leak, K+, Ca2+, and KIR channel currents respectively in the SMC

compartment. Then, the SMC membrane potential, VSMC, is given by (Eq 41, see S1 Text):

dVSMC

dt
¼

1

CSMC
� IL � IK � ICa � IKIR � IKV þ

K4

s=tþ 1
Itdcs

� �

ðvÞ

Here, the four tDCS perturbation pathways are nested, i.e., the pathway 1 is represented by

seventeen ordinary differential equations starting from synaptic K+ (see S1 Text and S1 Table)

that nested other tDCS perturbation pathways 2–4 –see Fig 6.
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(E) Physiologically detailed model linearization for grey-box analysis of

fNIRS data:

In our current study, a grey-box linear model was developed from a detailed physiological

model to analyze tDCS-evoked tHb changes for hypothesis testing. Although the detailed non-

linear model can be fitted using advanced methods, e.g., simulated annealing (Optimization

Toolbox—MATLAB–MathWorks, USA); however, simplifying the model is necessary to iden-

tify key mechanisms of the system and to understand relevant aspects as shown as pathways in

Fig 6. Therefore, we applied grey-box linear modelling where many states and parameters

were removed for the identification of the core predictions based on our biological criteria

[105]. For the grey-box analysis of the fNIRS-tHb (normalized) as output to the input tDCS

current waveform (normalized), model reduction of the four pathways from the physiologi-

cally detailed model was first performed using Simulink’s linear analysis tool (MathWorks,

Inc., USA). Model Linearizer tool allows linearization of complex nonlinear models at differ-

ent operating points. This tool allowed the linearization of complex physiologically detailed

NVU model at their baseline operating point found from published literature (see S1 Table).

We assumed that the subthreshold tDCS current density perturbation to the different path-

ways of the lumped NVU model would operate close to the resting-state baseline conditions at

the NVU compartments (blocks in Simulink model), during the initial transient period (<3

min) after tDCS onset, until neuroplastic changes occur (neuroplastic after-effects >3 min of

tDCS [19]). Therefore, the physiologically detailed model linearization was performed using a

block-by-block approach (i.e., NVU compartment-by-compartment) at the initial conditions

(from published literature, see S1 Table) such that the Model Linearizer tool (MathWorks,

Inc., USA) individually linearized each block (or, NVU compartment) in the physiologically

detailed Simulink model and produced the linearization of the overall NVU system by com-

bining the individual block linearization. Here, the linearization step approximated the system

of nonlinear differential equations around the baseline resting-state conditions for each NVU

compartment. The resultant linear model presented the NVU system as a set of input, internal

states (compartment variables–see Table 2), and output as transfer functions, which depicted

the relationship between input tDCS current waveform (normalized) and the output tHb (nor-

malized) hemodynamic response. Therefore, the linearized grey-box model was constrained

by the physiology of the respective four tDCS perturbation pathways (see Fig 6) and compart-

ments of the physiologically detailed NVU model (see Table 2). The linearized model was then

used for grey-box linear modeling with identifiable parameters (‘idgrey’ in MATLAB, Math-

Works, Inc., USA).

(F) Subject-specific Grey-box Linear Model Dynamics from individual

fNIRS data:

Grey-box linear model of four physiologically detailed tDCS perturbation pathways was found

using Model Linearizer tool in Simulink (MathWorks, Inc., USA) linear analysis package as

described earlier. Then, the grey-box models were evaluated using experimental fNIRS data fit-

ting based on the cost function that sums the squared and normalized residuals. The lumped

model of the NVU assumed a system of input (tDCS perturbation at NVU compartments–see

Fig 6) and outputs (change in terms of vessel circumference). The dynamics of NVU were con-

sidered to capture the effects of tDCS on CVR through signaling mechanisms across four com-

partments, as shown in Fig 6. For modeling the output vessel function and hemodynamics, a

cylindrical vessel component having a unit length was considered as a lumped model of the

blood vessel [115]. Here, the blood volume changes were assumed to be proportional to the

vessel circumference under the assumption of small circumference changes. Then, the changes
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in tHb were considered proportional to the blood volume [72], so lumped volume response

using vessel circumference was linearly mapped to the tHb changes under small change

approximation.

Fig 7 shows our model estimation work flow diagram using the System Identification

Toolbox (Mathworks, Inc., USA). The grey-box linear model with identifiable free parameters

(‘idgrey’ function) was updated using the "Refine Existing Model" approach (‘greyest’ function

for ‘idgrey’ model) in the System Identification Toolbox (Mathworks, Inc., USA) that uses pre-

diction-error minimization (PEM) algorithm (‘pem’ function) to update the parameters of an

initial model (from Model Linearizer tool–results in S3 Table) to improve the fit to the estima-

tion fNIRS data of each subject–so subject-specific grey-box linear modelling. PEM technique

considered the accuracy of the predictions computed for the observations and most tightly

connected to systems theory as it explicitly exploits the dynamical structure of the studied sys-

tem [116]. So, the subject-specific model evaluation in PEM was based on the properties of the

prediction-error cost function for each pathway (i.e., hypothesis) for each subject constrained

by the physiology of the respective tDCS perturbation pathways (see S1 Text and S1 Table).

We computed subject-specific MSE and AIC for each pathway (i.e., hypothesis) for grey-

box linear model fitting.

Fig 7. Grey-box model estimation from MODEL and DATA using System Identification Toolbox (Mathworks

Inc., USA) for hypothesis testing based on mean squared error, Akaike information criterion, and Chi-square

Goodness-of-fit.

https://doi.org/10.1371/journal.pcbi.1009386.g007

Fig 8. Physiologically detailed neurovascular coupling model showing the input HD-tDCS current (A) and the output vessel circumference response for the four

simulated pathways for duration 0-150sec (B). Pathway 1: tDCS current density perturbing vessel circumference through synaptic potassium pathway, Pathway 2: tDCS

current density perturbing vessel circumference through the astrocytic pathway, Pathway 3: tDCS current density perturbing vessel circumference through perivascular

potassium pathway, and Pathway 4: tDCS current density perturbing vessel circumference through smooth muscle cell voltage-gated ion current channels pathway.

Shown in (B), all the tDCS perturbation pathways has an initial transient response, and then generated steady-state vessel oscillations.

https://doi.org/10.1371/journal.pcbi.1009386.g008
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(G) Investigation of a Reduced Dimension Grey-box Linear Model for

averaged fNIRS data:

Linearized grey-box model’s complexity (see S3 Table) was simplified with reduced-order

approximations using the Model Reducer app in the Control System Toolbox (Mathworks,

Inc., USA). Simpler models can preserve model characteristics while discarding states that

contribute relatively little to system dynamics (Balanced Truncation Model Reduction, ‘balred’

function). Simpler transfer function models can provide insights into the linear time-invariant

model dynamics that were derived from the minimal realization transfer function for the four

tDCS perturbation pathways. A generic reduced dimension grey-box linear model was derived

(‘tfest’ function) using the nested linearized grey-box models for the initial parameterization

then fitted to averaged fNIRS-tHb data–see Fig 7. We used Chi-Square Goodness-of-Fit for

comparing the four hypotheses for the nested pathways (see Fig 6) where Chi-Square differ-

ence test for nested pathways [117] determined the tDCS perturbation pathway model of the

least order.

Results

(A) Physiologically detailed neurovascular compartmental dynamics:

A physiologically detailed neurovascular coupling model was developed from published litera-

ture (see S1 Table), specifically from physiologically detailed model by Witthoft and Karniada-

kis [45], as described in the Methods section (differential equations and model parameters in

the S1 Text and S1 Table). The four simulated tDCS perturbation pathways are shown in Fig 8;

1) tDCS perturbing vessel response through synaptic potassium pathway, 2) tDCS perturbing

vessel response through the astrocytic pathway, 3) tDCS perturbing vessel response through

perivascular potassium pathway, and 4) tDCS perturbing vessel response through SMC volt-

age-gated ion channels pathway. Fig 8A shows the HD-tDCS input that is a trapezoidal current

waveform and Fig 8B shows the simulated model output that is the blood vessel circumference,

x. Here, 2mA tDCS trapezoidal waveform, shown in Fig 8A, generated a state perturbation

(see Eqs ii–v) in the four NVU compartments of the lumped model (see Fig 6) after first-order

filtering (Eq i; 20ms passive membrane time constant [118]). Fig 8B shows that all the four

tDCS perturbation pathways of the physiologically detailed Witthoft and Karniadakis [45]

model generated steady state vessel oscillations for subthreshold stimulation. This is because

all the four pathways are nested (see Fig 6) where the last pathway 4 leads to the vessel

oscillations.

(B) Physiologically detailed model linearization for grey-box analysis using

subject-specific fNIRS-tHb data:

We limited the fNIRS-tHb data within the lower frequency band (0.01–0.05Hz) to capture the

initial transient response (not steady-state vessel oscillations) [29] during first 150sec (30sec

ramp-up+120sec steady-state) of tDCS perturbation. System Identification

Toolbox (MathWorks, Inc., USA) was used for grey-box modelling of the time-domain tDCS

input (current density waveform) and fNIRS output (normalized tHb) data from eleven

healthy subjects. The input time-series was a normalized trapezoidal waveform, and the output

time-series were normalized values of the subject-specific fNIRS-tHb changes from baseline

during the initial 150 secs (30sec ramp-up and 2 min steady-state so< 3 min) of HD-tDCS at

the targeted-region and the nontargeted-region of the bilateral sensorimotor cortex (montage

is shown in Fig 1). The grey-box linear model with identifiable parameters obtained after

physiologically detailed model linearization was taken as the initial system to fit the

PLOS COMPUTATIONAL BIOLOGY Cerebrovascular reactivity to anodal high-definition tDCS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009386 October 6, 2021 19 / 38

https://doi.org/10.1371/journal.pcbi.1009386


experimental fNIRS-tHb data from each subject. Initial 150 sec (ramp-up period of 30 sec

+ 120 sec steady-state) was assumed to be unaffected by neuroplastic effects of tDCS [19]. Fig 9

shows the simulated grey-box linear model output, i.e., normalized fNIRS-tHb (proportional

to vessel volume change) of the four pathways for each of the 11 subjects, P1-P11 (individual

grey-box transfer functions are tabulated in the S3 Table). Fig 9A1–9A4 shows the four simu-

lated pathways at the targeted-region while Fig 9B1–9B4 shows the four simulated pathways at

the nontargeted-region of the bilateral sensorimotor cortex for each subject. Fig 9 also shows

the ensemble averaged fNIRS-tHb response data for 0-150sec across all subjects with a dashed

line (from Fig 3B and 3C). Then, Fig 10 shows the boxplot of the mean square error (MSE)

and the Akaike information criterion (AIC) across 11 subjects from subject-specific grey-

box analysis after physiologically detailed model linearization. Notches display the variability

of the median between samples. The width of a notch is computed so that the boxes whose

notches do not overlap have different medians at the 5% significance level. Here, for MSE of

the four pathways for the targeted-region, the mean are 0.029, 0.065, 0.024, 0.042, the standard

deviation are 0.020, 0.062, 0.020, 0.033, and the median are 0.023, 0.054, 0.018, 0.033 respec-

tively. Then, the MSE of the four pathways for the nontargeted-region, the means are 0.052,

0.123, 0.118, 0.058, the standard deviation are 0.032, 0.113, 0.096, 0.056, and the median are

0.043, 0.068, 0.086, 0.031 –see S5 Table. Then, for AIC of the four pathways for the targeted-

region, the means are -0.459, -0.216, -1.743, -1.748, the standard deviation are 0.862, 1.496,

1.433, 1.173, and the median are -0.606, -0.162, -1.726, -1.659 –see S6 Table. Then, for AIC of

the four pathways for the nontargeted-region, the means are 1.386, 1.313, 0.478, -0.747, the

standard deviation are 0.599, 1.264, 1.346, 0.966, and the median are 1.366, 1.261, 0.814,

-0.915. Fig 10A shows that the tDCS perturbation Pathway 3, from the perivascular K+ to ves-

sel circumference, presented the least MSE (median <2.5%) across all subjects at the targeted-

region, followed by the Pathway 1. Fig 10B shows that the tDCS perturbation Pathway 4 gave

lowest median MSE and medial AIC across all subjects for the grey-box linear model fits at the

contralateral nontargeted-region. Here, over-fitting induces variability while under-fitting is

known to induce bias so we used Akaike information criterion (AIC) to find a balance (lowest

AIC selected). Fig 10C shows that the tDCS perturbation Pathway 3 presented the lowest AIC

(median -1.726) across all subjects for the grey-box linear model fits at the targeted-region

while Fig 10D shows that the tDCS perturbation Pathway 4 gave the lowest AIC (median

-0.915) across all subjects at the contralateral nontargeted-region. Residuals checks were per-

formed based on the autocorrelation curves of the residuals and the cross-correlation curves

between input and the residuals–see S3 Fig. Therefore, based on MSE and AIC, tDCS pertur-

bation Pathway 3 was selected for the grey-box linear model fits at the targeted-region while

Pathway 4 was selected for the contralateral nontargeted-region. For MSE comparison with

long-term (0-600sec) tDCS effects, grey-box modeling of the complete 10 min of tHb data at

the targeted-region was performed (see S1 Fig) where the perturbation Pathway 3 again

resulted in the lowest MSE (median <0.5%)–see S2 Fig.

(C) Reduced dimension grey-box linear model analysis of averaged fNIRS-

tHb data:

The average tHb time series during initial transient 150 sec of HD-tDCS from eight subjects

with anti-correlated oxy-Hb & deoxy-Hb for 600 sec (i.e., correlation coefficient <-0.5

between oxy-Hb & deoxy-Hb at targeted-region–see S2 Table) was used for model fitting of

the minimal realization transfer function. Fig 11 shows the subjects P3, P4, and P10 who were

rejected due to poor anti-correlated oxy-Hb & deoxy-Hb. Fig 11 also shows an initial dip (0-

150sec) in the tHb in these subjects that is also present in oxy-Hb & deoxy-Hb timeseries.
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Table 3 shows the reduced-order approximations of high-order grey-box linear models (see

S3 Table). All the tDCS perturbation pathways have an excess of model poles over the number

of zeros; therefore, the frequency response magnitude will tend to zero with an increasing

Fig 9. Simulated grey-box linear model output for the four pathways fitted individually to each of the 11 subjects’ fNIRS-tHb data during HD-

tDCS (shaded grey). The ensemble averaged fNIRS-tHb response across all subjects is shown with a dashed line. Plots (A1)–(A4) show the four pathways

fitted to the HD-tDCS stimulated sensorimotor data, while the plots (B1)–(B4) show the four pathways fitted to the HD-tDCS non-targeted region of the

contralateral sensorimotor cortex. Pathway 1: tDCS current density perturbing vessel (circumference) response through synaptic potassium pathway,

Pathway 2: tDCS current density perturbing vessel (circumference) response through the astrocytic pathway, Pathway 3: tDCS current density perturbing

vessel (circumference) response through perivascular potassium pathway, and Pathway 4: tDCS current density perturbing vessel (circumference)

response through smooth muscle cells voltage-gated ion current channels pathway.

https://doi.org/10.1371/journal.pcbi.1009386.g009
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frequency. However, the numbers of model zeros are different in the four pathways, where the

positive real zeros are most likely approximating the system’s time delay. All four pathways

have complex conjugate poles (from s2 + 9.804s + 95.24 terms) in the stable region. Fig 12A

shows the normalized impulse response function of the minimal realization transfer function

for the four pathways where Pathway 1 (TF1(s)) had 11 poles, and 3 zeros, Pathway 2 (TF2(s))

had 10 poles, and 3 zeros, Pathway 3 (TF3(s)) had 8 poles and 2 zeros. Pathway 4 (TF14(s))

had 6 poles and 1 zero as tabulated in Table 3.

Minimal realization transfer functions provided a qualitative analysis for CVR where the

tDCS perturbation Pathway 4 had the fastest response (peaked at 0.4 sec), and the tDCS per-

turbation Pathway 1 had the slowest response (peaked at 5 sec) as shown in Fig 12A–as

expected based on their nested hierarchy (see Fig 6). Pathway 1, acting via the K+ released

from active neurons in to the synaptic space, resulted in the stereotypical time-to-peak [119] in

the hemodynamic response function of about 5 seconds after stimulus onset [120], as shown

in Fig 12A. Fig 12B shows that none of the minimal realization transfer functions had an initial

dip since subjects P3, P4, P10 with initial dip in fNIRS-tHb were rejected before reduced

dimension linear model analysis. After cascading with the first-order transfer function for

tDCS waveform (see Eq i), the four pathways’ minimal realization transfer functions (Table 3)

were found from the average tHb time series across eight remaining subjects. Fitting of the

least complex (model order) Pathway 4 model, TF4, with 7 poles and 1 zero (all free parame-

ters) provided an MSE of 0.0031 and Chi-Square Goodness of Fit of 0.0104. Then, the next

complex (model order) Pathway 3 model, TF3, with 9 poles and 2 zeros (all free parameters)

provided an MSE of 0.0025 and Chi-Square Goodness of Fit of 0.0078. Then, the next complex

(model order) Pathway 2 model, TF2, with 11 poles and 3 zeros (all free parameters) provided

an MSE of 0.0025 and Chi-Square Goodness of Fit of 0.0085. The most complex (model order)

Pathway 1 model, TF1, with 12 poles and 3 zeros (all free parameters) provided an MSE of

0.0264 and Chi-Square Goodness of Fit of 0.0647. Here, more parameters in more complex

(model order) models worsened the Chi-Square Goodness of Fit even with similar MSE, e.g.,

Fig 10. Boxplot across 11 subjects of the mean square error (MSE) and Akaike Information Criterion (AIC) of

grey-box linear model fits for the four tDCS perturbation pathways. Pathway 1: tDCS perturbing vessel response

through synaptic potassium pathway, Pathway 2: tDCS perturbing vessel response through the astrocytic pathway,

Pathway 3: tDCS perturbing vessel response through perivascular potassium pathway, and Pathway 4: tDCS perturbing

vessel response through the SMC pathway. On each box, the central mark indicates the median, and the bottom and

top edges of the box indicate the 25th and 75th percentiles, respectively. If the notches in the box plot do not overlap,

one can conclude, with 95% confidence, that the true medians do differ. The whiskers extend to the most extreme data

points not considered outliers, and the outliers are plotted individually using the red ’+’ symbol. The mean is also

shown with a black ’+’ symbol. (A) MSE for targeted-region. (B) MSE for nontargeted-region. (C) AIC for targeted-

region. (D) AIC for nontargeted-region.

https://doi.org/10.1371/journal.pcbi.1009386.g010
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TF2 higher model order than TF3. Therefore, TF3 for the tDCS perturbation Pathway 3 pro-

vided a balance in terms of Chi-Square difference test for nested pathways [117] for the HD-

tDCS-induced initial transient tHb changes within 0.01 and 0.05 Hz.

Discussion

We performed a grey-box linear systems analysis of the fNIRS-based CVR based on the

changes in the tHb to anodal HD-tDCS perturbation in healthy humans. Our study on fNIRS-

based CVR to tDCS is supported by prior works that have evaluated the hemodynamic effects

of tDCS using fNIRS in humans. Merzagora et al. [121] assessed the changes in prefrontal cor-

tical oxygenation related to tDCS using fNIRS in healthy subjects at rest. A large increase in

oxy-Hb was observed in the 10min period following anodal tDCS compared to baseline levels

Fig 11. Oxy-hemoglobin (Oxy-Hb) timeseries in red, deoxy-hemoglobin (Dxy-Hb) timeseries in blue in the left panels, and total-hemoglobin (tHb) timeseries in

green in the right panels at the targeted-region for 0-600sec during anodal HD-tDCS for the subjects P3, P4, P10. These subjects were rejected due to poor

(correlation coefficient>-0.5) anti-correlated Oxy-Hb & Dxy-Hb measures of -0.0692, -0.1900, and -0.3768 respectively. These subjects also demonstrated an initial dip

in the tHb (also, in Oxy-Hb & Dxy-Hb) timeseries that is highlighted with a black ellipse in the left panels for the Oxy-Hb & Dxy-Hb timeseries.

https://doi.org/10.1371/journal.pcbi.1009386.g011
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before tDCS. Muthalib et al [52] showed that anodal HD-tDCS induced increases in oxy-Hb

during 10min of stimulation (at 2mA) in the sensorimotor cortex region within the vicinity of

the 4 x 1 HD-tDCS montage compared to the region outside this boundary. At the same time,

there were minimal oxy-Hb changes in the contralateral non-targeted sensorimotor cortex

region. Yaqub et al. [122] evaluated the prefrontal cortex resting-sate intra-hemispheric and

inter-hemispheric connectivity changes induced by 10min (1mA) anodal 4x1 HD-tDCS in

healthy subjects. Compared to the pre-stimulation phase, Yaqub et al. [122] observed that the

oxy-Hb levels and the resting-state connectivity of the prefrontal cortex increased during and

after the stimulation, and the connectivity changes were more in the vicinity of the 4x1 HD-

tDCS electrodes. Sood et al. [50] extended Dutta et al. [36] and presented an autoregressive

model parameter estimator method using Kalman filter to evaluate the relationship between

changes in the fNIRS oxy-Hb signal and the EEG bandpower signal during anodal HD-tDCS.

The time-varying poles of the autoregressive model were found to be comparable in all the

healthy subjects. In contrast, the zeros of the model exhibited variations across the subjects

Table 3. Minimal realization transfer functions were obtained through Model Reducer (MATLAB, MathWorks, Inc., USA) for four model pathways from the

detailed physiological model for the neurovascular unit compartment model.

Pathway transfer functions (TF) Transfer functions from the compartmental neurovascular coupling model that were used for the

initial parameterization of the four pathways

Parameterization

TF1.

synaptic potassium! vessel

circumference

TF1 sð Þ ¼ 1

ðsþ0:4Þ
TF2 sð Þ 11 poles, 3 zeros

TF2.

astrocytic membrane potential!

vessel circumference

TF2 sð Þ ¼ ðsþ46:5Þ

ðsþ1:966Þðsþ15:08Þ
TF3 sð Þ 10 poles, 3 zeros

TF3.

perivascular potassium! vessel

circumference

TF3 sð Þ ¼ ðsþ2:371e07Þ

ðsþ2:974e04Þðsþ1Þ
TF4 sð Þ 8 poles, 2 zeros

TF4.

SMC voltage gated ion channel!

vessel circumference

TF4 sð Þ ¼ ðsþ2:962Þ

ðsþ9:594e06Þðsþ20:69Þðsþ3:3Þðsþ0:2446Þðs2þ9:804sþ95:24Þ
6 poles, 1 zero

https://doi.org/10.1371/journal.pcbi.1009386.t003

Fig 12. (A) Normalized impulse response function of the minimal realization transfer function (see Table 3) for the four pathways (TF1(s): tDCS perturbation of the

vessel response through synaptic potassium pathway, TF2(s): tDCS perturbation of the vessel response through the astrocytic pathway, TF3(s): tDCS perturbation of the

vessel response through perivascular potassium pathway, and TF4(s): tDCS perturbation of the vessel response through smooth muscle cell pathway) of the reduced

dimension grey-box linear. (B) Linear model simulation of the minimal realization transfer functions (TF1-TF4) of the four pathways fitted (all free parameters) to the

averaged (across subjects) normalized tHb time series (0–150sec).

https://doi.org/10.1371/journal.pcbi.1009386.g012
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during HD-tDCS that indicated modulation of the neurovascular coupling [35]. Here, simulta-

neous monitoring of the hemodynamic response is crucial for dosing tDCS due to its postu-

lated role in neuromodulation action [8], which can lead to inter- and intra- subject variability

in neuronal responses [49,123]–need for closed-loop dosing [124]. Furthermore, tDCS can be

a promising method to evoke regional CBF [5] to ameliorate hypoperfusion in cerebrovascular

diseases, including facilitating cognitive rehabilitation.

The hemodynamic response to tDCS current density in the brain can be captured based on

the tHb changes using our parameterized grey-box linear model. In the current study, fNIRS

data consisted of changes in tHb at the ipsilateral (to HD-tDCS) targeted-region and the con-

tralateral nontargeted-region sensorimotor cortex, where the biological criteria was formu-

lated in the neurovascular coupling frequency band of 0.01–0.05 Hz for investigation. We

applied a system identification approach using a physiologically constrained linear model to

capture the fNIRS-based CVR to anodal HD-tDCS in healthy humans where the pathway

from the perivascular K+ to vessel circumference (i.e., Pathway 3) presented the lowest MSE

(median <2.5%) as well as AIC (median -1.726), as shown in Fig 10. Also, Pathway 3 gave the

lowest MSE (median <0.5%) when fitted to the whole 10 min of tHb time series at the tar-

geted-region during HD-tDCS (see S4 Table and S2 Fig). Although perivascular K+ is known

for the dynamic regulation of cerebral blood flow as modelled for Pathway 3 within NVU in

intracerebral arterioles and microvessels, tDCS activated perivascular nerves in the intracranial

blood vessels can also release chemical signals [54] that can alter vascular tone [125]. Guhatha-

kurta and Dutta [27] postulated that tDCS electric field spread in the highly conductive CSF

that can directly affect the pial arteries and penetrating arterioles that contain perivascular

nerves [28] within their adventitial layer–see Fig 2. In this study, we found that the primary

mechanism of transient action for the HD-tDCS-induced CVR between 0.01 and 0.05 Hz is

the perivascular pathway within NVU that can also determine the local pial vessel diameter

[110]. Here, different tDCS perturbation pathways (shown in Fig 6) have different response

time which is crucial for the phenomenological modelling [40] as illustrated by their minimal

realization transfer functions (Table 3) in Fig 11A. For example, tDCS perturbation via the

synaptic K+ (i.e., Pathway 1) had the slowest effect on vessel circumference. Our nested model

evaluation was based on Chi-Square Goodness-of-Fit that determines the quality of fit [101] in

terms of Chi-Square difference test [117]. The reduced dimension grey-box linear model

(Table 3) for the Pathway 3 with 9 poles and 2 zeros (all free parameters) provided the best

Chi-Square Goodness-of-Fit of 0.0078. Our results supporting Pathway 3 is important since

recent studies showed that tDCS-induced alterations in cerebral CBF could only be partially

related to the cortical excitability changes [9]. Here, our mechanistic investigation of the vascu-

lar response to tDCS using a physiologically constrained linear model provided novel evidence

supporting the postulated perivascular tDCS effects in intracerebral arterioles and microves-

sels. Then, postulated elevation in extracellular K+, especially following long term stimulation,

can initiate a retrograde, propagating, hyperpolarizing SMC signal that dilates upstream arteri-

oles including pial vessels to increase local blood flow.

Our physiologically constrained linear model for Pathway 1 considered tDCS perturbation

of synaptic mediators, which then perturbed the vessel circumference’s effect via astrocyte and

perivascular compartments through nested neurovascular dynamics (see Fig 6). Pathway 1 is

based on conventional neurovascular coupling mechanism under the effect of tDCS current

density on the neurons that release K+, where neuronal activity drives the hemodynamic

response. Then, Pathway 2 considered the change in the membrane potential of the astrocytic

compartment due to tDCS current density, which then drives the vascular response (vessel cir-

cumference). Pathway 3 considered modulation of the K+ in the perivascular space by tDCS

current density. Pathway 4 considered the direct influence of tDCS current density on the
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vasculature’s smooth muscle cells leading to the vascular response (vessel circumference).

Here, Pathway 4 was based on prior evidence that the voltage-gated potassium channels on the

SMC can respond to the electric field [126,127], especially those in the pial vasculature. We

found that the tDCS perturbation Pathway 4 gave the lowest AIC (median -0.915) across all

subjects at the contralateral nontargeted-region as shown in Fig 10D. This is postulated to be

due to the tDCS current spread in the CSF as shown in the S4C Fig. Voltage-gated potassium

channels are also present in the skin vascular smooth muscle cells [128]. In this study using

low-density fNIRS, we could not dissociate the CVR of intracranial blood vessels from intrace-

rebral blood vessels that may be possible with diffuse optical tomography (DOT) [129].

Investigation of tDCS activated perivascular nerves altering vascular tone [125] is crucial

since pial arteries start the pressure-driven blood pathway to the cortex (reviewed in Schmid

et al. [14]) so vasoconstriction effects (e.g. Neuropeptide Y) of the direct electric field on the

pial arteries can lead to an initial dip in the blood volume (and tHb) that was found in few

healthy subjects in Fig 11. Such vasoconstriction effects can also result via extrinsic perivascu-

lar innervation [61] from tDCS effects on peripheral nerves [59,60] that needs further investi-

gation with DOT to dissociate CVR of intracranial blood vessels from intracerebral blood

vessels. Here, tDCS effects on tHb via vascular neural network under “neurogenic hypothesis”

is in contrast to the “metabolic hypothesis” that causes initial dip (0-10sec) in oxy-Hb while

there is a rise in deoxy-Hb (tHb does not change). The grey-box linear model captured the ini-

tial dip in the tHb (related to the vessel circumference in the physiologically detailed model)

since the grey-box linear model was fitted to the experimental data from all 11 subjects (see S2

Table). The parameterized grey-box linear model derived from a detailed physiological model

had many states (see S3 Table) where the numerator and denominator polynomial roots are

known as model zeros and model poles, respectively. The model poles and zeros are useful in

evaluating a system as their values govern the system’s stability and performance. For a stable

system, all the model poles must have negative real values. The model zeros are related to the

response speed for a given system that captured the initial dip in the tHb concentration with

positive zero in the right-half-plane (positive real axis for parameters of transfer function). Spe-

cifically, this model zero in the right-half-plane slowed the time response and resulted in the

undershoot response. A positive zero adds to the phase lag in a system wherein the response

initially becomes negative or changes direction to that of the required direction before con-

verging in the desired steady state. However, such states can have relatively small energy con-

tributions to system dynamics; so, a minimal realization transfer function with reduced-order

approximations (see the Methods section for details) for the four pathways provided better

insights into the linear time-invariant system that was fitted to 8 subjects (see Fig 11 for the

rejected subjects who presented an initial dip in tHb).

In this study, our goal was to investigate the role of various neuronal and non-neuronal

pathways leading to the fNIRS-tHb based CVR to tDCS, as demonstrated experimentally by

our prior works [66,40], through an objective physiologically constrained grey-box model that

is summarized by a block diagram in Fig 6. The physiologically detailed nonlinear model was

derived from Witthoft and Karniadakis [45]; however, limitations with low-density fNIRS-tHb

human data necessitated model linearization and reduction for adequate model fitting. The

physiologically detailed model considered the effect of tDCS via NVU that was represented by

seventeen states, i.e., seventeen differential equations (see S1 Text). Then, the grey-box linear

models after applying the Model Linearizer (Mathworks, Inc. USA) are shown in the S3 Table.

Then, the minimal realization transfer functions were obtained through Model Reducer

(Mathworks, Inc., USA) that are shown in Table 3. Here, transfer function order denotes the

number of model poles where the reduced dimension grey-box model for the Pathway 1 was

represented by a twelfth order system that included a first-order linear filter for the tDCS’s

PLOS COMPUTATIONAL BIOLOGY Cerebrovascular reactivity to anodal high-definition tDCS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009386 October 6, 2021 26 / 38

https://doi.org/10.1371/journal.pcbi.1009386


vasoactive effects–see Table 3. The reduced dimension grey-box model for the astrocytic-

driven (Pathway 2) and the perivascular K+-driven (Pathway 3) pathways were represented by

eleventh and ninth order systems, respectively. For Pathway 4, the input path considered the

influence of tDCS current density on SMC gated ion channel current, and the reduced dimen-

sion grey-box model for this pathway was represented as a seventh order system. The impulse

response function of the Pathway 1, capturing conventional hemodynamic response function,

peaked around 5 sec (see Fig 12A) that was comparable to known hemodynamic responses

[130]. The impulse response function of the four tDCS perturbation pathways provided

insights into the temporal dynamics where the vessel response through an astrocytic pathway

or perivascular potassium pathway peaked around 2 sec that was found comparable to known

capillary responses [14].

In the current study, we investigated the transient initial (0-150sec) tHb response to tDCS

so we did not consider nonlinear calcium dynamics during myogenic smooth muscle activity

in the frequency range of 0.05–0.2 Hz [131], including the*0.1 Hz hemodynamic oscillations

in the fNIRS time series [50]. Steady-state very low-frequency oscillations between 0.01 and

0.05 Hz can also originate from arterioles under neurogenic innervation [28,29]. Then, *0.1

Hz hemodynamic oscillations can be related to the synchronization of the intermittent release

of calcium within vascular mural cells including SMC [131] where contractile mural cells are

known to generate spontaneous calcium transients. These steady-state vessel oscillations need

future investigation in conjunction with electroencephalogram (EEG) since our prior works

have found a cross-correlation between log (base-10) transformed EEG band-power (0.5–

11.25Hz) and fNIRS oxy-Hb signal in that low frequency (�0.1Hz) range [50]. Future investi-

gation of *0.1 Hz oscillatory vessel response vis-à-vis neuronal response (EEG) to tDCS will

develop a parameterized coupled oscillator (nonlinear) model for limit cycle behavior. The

relation of the*0.1 Hz oscillatory vessel response vis-à-vis neuronal response may be related

to the cortical excitability changes to anodal tDCS [132] due to the involvement of potassium

and calcium dynamics [35,133–135] in neurovascular communication that needs further

investigation using tACS. Here, unlike tDCS, tACS can lead to physiological entrainment at

the frequency of stimulation for system identification that can provide physiological insights

based on a physiologically detailed model (see the Eqs 48–49 in the S1 Text). Also, longer dura-

tion tDCS is postulated to elevate extracellular K+ that can decrease calcium activity mediated

by the inward rectifying potassium channel (see Eqs 36, 41 in the S1 Text) in the mural cells

where a combination of tDCS and tACS can be used for system identification of the neurovas-

cular communication [135]. Besides inward rectifying potassium channel, voltage-dependent

potassium channel, calcium activated potassium channel, ATP-activated potassium channels

are also present in the mural cells that can interact with dilatory stress-induced calcium tran-

sients in the mural cells. Therefore, tES effects on the contractile mural cells that encircle the

precapillary sphincter [136] at the transition between the penetrating arteriole and the first

order capillary may be crucial for intracerebral neurocapillary modulation by tDCS [15].

These can be elucidated with multimodal optical imaging of neuronal, astrocytic calcium, and

the hemodynamic neurovascular changes in an animal model for system identification.

In summary, our study presented a preliminary linear systems analysis using a physiologi-

cally-constrained grey-box model that was found useful to explore various tDCS perturbation

pathways in a lumped NVU model related to fNIRS based CVR to HD-tDCS. Such grey-

box linear systems analysis using fNIRS-tHb data from individuals with pathological condi-

tions [36] can elucidate dysfunction in various NVU pathways, e.g., due to the pathological

dysfunction. Here, our proposed linear systems analysis using the grey-box model is amenable

to pole-zeros analysis of the transfer function for various pathways of the neurovascular system

in health, aging, and disease that can also be used to classify the dysfunction in neurovascular
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communication [135]. This is crucial since neurovascular coupling dynamics are complicated

phenomena in humans, and it can be hard to uncouple neuronal and vascular effects of tES

without a mechanistic model-based hypothesis testing. The association between neuronal

activity and hemodynamic responses can also be examined through other functional neuroim-

aging techniques such as perfusion-driven Intravoxel Incoherent Motion, fMRI and PET.

Here, the integration of tES with functional neuroimaging modalities holds immense promise

for throwing light on the underlying neuromodulation processes of current density effects on

the neurovascular tissue. Our study provided a rational model-based approach to capture the

hemodynamic response to tDCS with low-density fNIRS that is amenable to clinical transla-

tion of tES approaches in cerebrovascular diseases due to its ease of use and low cost [137,138].

Also, fNIRS measurement of Cytochrome-C-Oxidase [139] has been shown feasible that is

important to investigate tES effects due to the relation of vascular density and the cytochrome

oxidase activity [14].

Limitations of this study included the methodical limitations of the low-density fNIRS tech-

nique [140]. The fNIRS signal acquired with optodes placed on the scalp can represent differ-

ent hemodynamic signal sources (cerebral versus extra-cerebral) and other physiological

causes (neuronal versus systemic) that can be evoked by tDCS. Due to the lack of short-separa-

tion channels to perform short source-detector regression to remove extra-cerebral hemody-

namics, we performed a data-driven principal component analysis to identify the extra-

cerebral signal components that explained the most amount of covariance across all the 16 spa-

tially symmetrically distributed fNIRS channels. We also adopted the anti-correlation method

[141] (see S2 Table) to confirm fNIRS signal quality since the short-separation channels were

not available. We found that the tDCS perturbation Pathway 3 presented the least MSE and

AIC, as shown in Fig 10. Here, fNIRS-tHb signal without short separation regression may also

have a representation from the superficial pial vessels since back-reflection geometry of the

fNIRS measurement renders the signal sensitive to pial vasculature [142]. This need further

investigation in the future since DOT methods may be able to delineate tDCS effects on the

pial vessels from the penetrating arteriole and the first order capillary that may be crucial for

investigating the spatiotemporal aspects of the perivascular modulation by tDCS [15] of the

intracerebral versus intracranial blood vessels in the humans. Moreover, detailed physiological

model of the perivascular nerves [28] (e.g., neuropeptide Y is an important vasoconstrictor

[57] of sympathetic innervation, parasympathetic innervation for vasodilation including calci-

tonin-gene-related peptide) is necessary to delineate mechanisms of the transmural electrical

stimulation. Besides initial dip in few subjects (see Fig 11), differential activation of the oxy-Hb

and deoxy-Hb over 0–600 sec (see S2 Table) in the other 8 subjects indicated neuronal activa-

tion and “metabolic hypothesis” for the intracerebral blood vessels in the targeted-region.

Since we only investigated the initial 150sec of fNIRS-tHb response to tDCS so we did not aim

to capture the slower neuroplasticity related changes that are expected following longer-term

(0.7 to 2.0 mA over 9–20 minute sessions [20]) stimulation. Limiting to the initial 150sec of

fNIRS-tHb response allowed the physiologically detailed nonlinear model to be substantially

simplified by model linearization and reduction that removed nonlinear system dynamics

which may be necessary for capturing the neuroplastic aftereffects of tDCS. Therefore, our

parameterized grey-box linear model is applicable for the initial 0-150sec transient response in

the 0.01–0.05 Hz frequency band of the fNIRS-tHb. Our investigation considered only the

immediate (<150sec) effects of anodal tDCS with K+ as the main vasoactive agent within

lumped multi-compartmental model of NVU. Future studies need to investigate the interac-

tions between perivascular and extracellular K+ and dilatory stress-induced calcium transients

in the mural cells vis-à-vis steady-state myogenic smooth muscle activity in 0.05–0.2 Hz during

longer duration (>150sec) stimulation. Here, neurovascular communication [135] modulated
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by tDCS [50] is postulated to be mediated by the K+ channels, including the inward rectifying

potassium channels, in the mural cells.

Supporting information

S1 Fig. Simulated grey-box linear model output for the four pathways fitted individually

to each of the 11 participants’ fNIRS-tHb data (600 seconds from HD-tDCS stimulated

region). Averaged experimental fNIRS-tHb response across all subjects is also shown with a

dashed line. (A) Pathway: 1: tDCS modulating vessel response through synaptic potassium

pathway, (B) Pathway 2: tDCS modulating vessel response through astrocytic pathway, (C)

Pathway 3: tDCS modulating vessel response through perivascular potassium pathway, (D)

Pathway 4: tDCS modulating vessel response via the smooth muscle cell pathway.

(TIF)

S2 Fig. Boxplot of the mean square error (MSE) across all the 11 participants for the grey-

box model fitting using experimental fNIRS-tHb data from tDCS-stimulated side for 600

seconds for the four model pathways.

(TIF)

S3 Fig. Autocorrelation curves for the residuals and cross-correlation curves between

input and residuals for the proposed four pathways. Plots show the residual analysis of the

refined models obtained for the proposed pathways using grey-box model estimation data of

11 volunteers (fitted to initial 150 seconds of tDCS, model outputs presented in Fig 4 of the

main manuscript). The plots display the autocorrelation curves for the residuals and cross-cor-

relation curves between input and residuals for the proposed pathways. The confidence inter-

val for the curves are shown by dashed lines. (A) Pathway 1: tDCS modulating vessel response

through synaptic potassium pathway. (B) Pathway 2: tDCS modulating vessel response

through astrocytic pathway. (C) Pathway 3: tDCS modulating vessel response through perivas-

cular potassium pathway. (D) Pathway 4: tDCS modulating vessel response via the smooth

muscle cell pathway.

(TIF)

S4 Fig. Electric Field in brain tissues. (A) Tissue segmentation for finite element modeling of

the electric field using ROAST: An Open-Source, Fully-Automated, Realistic Volumetric-

Approach-Based Simulator For TES. (B) Electric field (V/m) in the brain. (C) Electric field (V/

m) in the cerebrospinal fluid (CSF)–note that the magnitude difference with the brain in the

color scale. (D) Electric field (V/m) in the grey matter.

(TIF)

S1 Text. Model Equations for Neurovascular Compartmental Dynamics.

(DOCX)

S2 Text Transcranial electrical stimulation induced current density in the neurovascular

cortical tissue.

(DOCX)

S1 Table. Model Parameters.

(DOCX)

S2 Table. Oxy and Deoxy-Hemoglobin Changes at the Stimulated Region. Normalized

Oxy-hemoglobin (oxy-Hb), Deoxy-hemoglobin (deoxy-Hb) and Total Hemoglobin (tHb)

obtained from NIRS channel in tDCS stimulated region for all the 11 participants. �subjects
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with>-0.5 Correlation Coefficient between Oxy-Hb & Dxy-Hb.

(DOCX)

S3 Table. System Identification. System identification using experimental data (total hemo-

globin changes from stimulated hemisphere) from 11 subjects (Sub). � subjects with>-0.5

Correlation Coefficient between Oxy-Hb & Dxy-Hb.

(DOCX)

S4 Table. Mean-square error (MSE) for the grey-box model analysis using experimental

fNIRS-tHb data from tDCS-stimulated side for 600 seconds of each subject for the four

model pathways. � subjects with>-0.5 Correlation Coefficient between Oxy-Hb & Dxy-Hb.

(DOCX)

S5 Table. Median, mean, and the standard deviation of the mean-square error (MSE) for

the grey-box model analysis using experimental fNIRS-tHb data from tDCS-stimulated

side (targeted region) and contralateral side (nontargeted region) for 1–150 seconds of

each subject for the four model pathways. Subjects P3, P4, P10 have>-0.5 Correlation Coef-

ficient between Oxy-Hb & Dxy-Hb.

(DOCX)

S6 Table. Median, mean, and the standard deviation of the Akaike information criterion

(AIC) for the grey-box model analysis using experimental fNIRS-tHb data from tDCS-

stimulated side (targeted region) and contralateral side (nontargeted region) for 1–150

seconds of each subject for the four model pathways. Subjects P3, P4, P10 have>-0.5 Corre-

lation Coefficient between Oxy-Hb & Dxy-Hb.

(DOCX)
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134. Krishnan GP, González OC, Bazhenov M. Origin of slow spontaneous resting-state neuronal fluctua-

tions in brain networks. Proc Natl Acad Sci U S A. 2018; 115: 6858–6863. https://doi.org/10.1073/

pnas.1715841115 PMID: 29884650

135. Moshkforoush A, Ashenagar B, Harraz OF, Dabertrand F, Longden TA, Nelson MT, et al. The capillary

Kir channel as sensor and amplifier of neuronal signals: Modeling insights on K+-mediated neurovas-

cular communication. PNAS. 2020; 117: 16626–16637. https://doi.org/10.1073/pnas.2000151117

PMID: 32601236

136. Grubb S, Cai C, Hald BO, Khennouf L, Murmu RP, Jensen AGK, et al. Precapillary sphincters maintain

perfusion in the cerebral cortex. Nat Commun. 2020; 11: 395. https://doi.org/10.1038/s41467-020-

14330-z PMID: 31959752

137. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical Research with

Transcranial Direct Current Stimulation (tDCS): Challenges and Future Directions. Brain Stimul. 2012;

5: 175–195. https://doi.org/10.1016/j.brs.2011.03.002 PMID: 22037126
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