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ABSTRACT: Ocean eddies play an important role in the transport of heat, salt, nutrients, or pollutants. During a finite-
time advection, the gradients of these tracers can increase or decrease, depending on a growth rate and the angle between
flow gradients and initial tracer gradients. The growth rate is directly related to finite-time Lyapunov exponents. Numerous
studies on mixing and/or tracer downscaling methods rely on satellite altimeter-derived ocean velocities. Filtering most
oceanic small-scale eddies, the resulting smooth Eulerian velocities are often stationary during the characteristic time of
tracer gradient growth. While smooth, these velocity fields are still locally misaligned, and thus uncorrelated, to many
coarse-scale tracer observations amendable to downscaling [e.g., sea surface temperature (SST), sea surface salinity (SSS)].
Using finite-time advections, the averaged squared norm of tracer gradients can then only increase, with local growth rate
independent of the initial coarse-scale tracer distribution. The key mixing processes are then only governed by locally
uniform shears and foldings around stationary convective cells. To predict the tracer deformations and the evolution of
their second-order statistics, an efficient proxy is proposed. Applied to a single velocity snapshot, this proxy extends the
Okubo–Weiss criterion. For the Lagrangian-advection-based downscaling methods, it further successfully predicts the
evolution of tracer spectral energy density after a finite time, and the optimal time to stop the downscaling operation.
A practical estimation can then be proposed to define an effective parameterization of the horizontal eddy diffusivity.

SIGNIFICANCE STATEMENT: An analytical formalism is adopted to derive new exact and approximate relations
that express the clustering of tracers transported by upper-ocean flows. This formalism bridges previous Eulerian and
Lagrangian approaches. Accordingly, for slow and smooth upper-ocean flows, a rapid prognosis estimate can solely be
performed using single-time velocity field observations. Well suited to satellite-altimeter measurements, it will help rap-
idly identify and monitor mixing regions occurring in the vicinity of ocean eddy boundaries.

KEYWORDS: Mixing; Vortices; Diagnostics

1. Introduction

Since the first images from space, the attention of both the-
oreticians and remote sensing scientists has been triggered by
the abundance of various ocean tracer patterns and signatures
in the mesoscale and submesoscale (1–50 km) ranges (e.g.,
Gower et al. 1980; Lesieur and Sardouny 1981). From precise
satellite measurements of the ocean topography and its
related dynamics, coherent eddies have since been identified
to stretch and fold tracers, leading to the generation of often
very spectacular upper-ocean intricate tracer distributions.
Nowadays, combined satellite altimeter measurements satis-
factorily detail the large-scale ocean dynamics (Klein et al.
2019). But the ocean’s mesoscale (10–100 km) and submeso-
scale (,10 km) variability and energy are still challenging to
map with conventional radar altimeters. Indeed, the narrow
illuminated swath of each instrument precludes precise map-
ping, regardless of the orbital configuration (Dufau et al.
2016). To date, global direct quantification of horizontal dis-
persion and mixing at such scales is thus not available.

Nonetheless, a now-common strategy is to derive small-
scale tracer structures and so-called Lagrangian coherent
structures from the available smooth altimeter-derived veloci-
ties (e.g., Price et al. 2006; Lehahn et al. 2007). Indeed, using a
Lagrangian dynamical framework, an initial larger-scale
tracer field can be advected on higher-resolution grids, gener-
ating much smaller-scale patterns (Aref 1984; Pierrehumbert
and Yang 1993). Typical moderate- to large-scale ocean
cyclonic and anticyclonic eddies trap and advect fluid parcels
over weeks to months. As pictured, with time, these fluid par-
cels with different origins, temperature, and salinity, and pos-
sibly different biogeochemical properties and/or contaminant
loadings, come closer to sharpening fronts but also to possibly
diluting their properties, and promote transformative chemi-
cal reactions. Stirring effect first characterizes the develop-
ment of elongated structures, illustrated by Welander (1955,
see his Fig. 2), using a simple velocity field to produce spectac-
ular distortions. Initial patches, small compared to the length
scale of the deforming flow field, become subject to transla-
tion, rotation, and shearing. With time, deformation is signifi-
cant. Increasingly long and thin filaments wrap around the
eddy and possibly fold. Folds appear where the velocity gradi-
ent is perpendicular to the stream direction. Accordingly, at a
given scale of observation, mixing can be associated with
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processes that act to minimize filament thinning and dilute
sharp differences (gradients). The resulting deformation of
tracer isolines is thus associated with strengthening or weak-
ening of small-scale structures also captured in the high-wave-
number part of the tracer spectra.

In this paper, the motivation is first to present an analytical
framework to derive exact and approximate results for the evo-
lution of tracer gradients after a finite-time advection. After a
long-time advection by a smooth and slowly varying incom-
pressible flow, the expected growth of passive tracer gradients
can indeed be theoretically obtained, and subsequently the
related evolution of tracer high-wavenumber spectra. Analyti-
cally, local and global stretching and folding properties can then
be diagnosed without time integration. From a practical point
of view, only a single snapshot of a velocity field is required.

This result provides a convenient diagnosis that fully applies to
estimated smooth velocities from altimeter-derived sea surface
height (SSH) measurements. The Eulerian prognosis description
then explains how an initial tracer field, sea surface temperature
(SST) or sea surface salinity (SSS), must be low-pass filtered in
forward–backward Lagrangian advection operations (Rogé et al.
2015). Accordingly, the time of advection and the low-pass-filter
bandwidth are directly linked. Following this development, an
exact relation can also be determined to provide more rigorous
constrains to the heuristic choices used in Dencausse et al. (2014)
and Rogé et al. (2015). This can be compared to estimates
inferred from the knowledge of the Rossby deformation radius
or the mean squared vorticity (Berti and Lapeyre 2014).

In section 2, we recall and propose exact theoretical results to
study tracer mixing. Section 3 focuses in our case study: down-
scaling and mixing analyses with coarse-scale tracers and surface
current observations. Associated stretching and folding diagnos-
tics are derived, and folding and shearing time defined. Besides,
the proposed analysis also conveniently provides further under-
standing in identifying regions with motions either dominated by
rotation or by stretching where two points become closer or
diverge. Mixing can then occur when folding is associated with
stretching effects to strongly strengthen tracer gradients. In sec-
tion 4, the evolution of the tracer high-wavenumber spectral tail
is presented. The norm of the averaged tracer gradient is shown
to control the evolution of the tracer spectral tail. Eulerian
descriptors are then proposed to monitor the aforementioned
Lagrangian advection downscaling methodology. Based on these
proposed developments, a practical estimation of the horizontal
diffusivity is derived to help constrain subgrid parameterizations
of large-scale flow simulations. In section 5, numerical experi-
ments are used to illustrate these analytical developments. Anal-
yses are finally performed using altimeter-derived smooth ocean
velocities. Conclusions follow in section 5.

2. Exact mixing properties

Hereafter, exact results are derived to describe the evolu-
tion of the average of the gradient squared norm of an
advected tracer T:

‖∇T‖2 , (2.1)

where the averaging operator •¯ is defined for every function q

as q̄5 1=S
( )�

V

q with integration over the two-dimensional

spatial domainV of finite area S.

a. Stretching and the Cauchy–Green tensor

Given a two-dimensional velocity field v, the flow f—also
called Lagrangian displacement—is defined as

f x0( )5f x0, t( )5 x0 1

� t

0

dt′v f x0, t′( ), t′[ ]· (2.2)

For a divergence-free velocity, ∇ · v5 0, we have det(∇fT)5 1,
where (∇fT) is the spatial gradient tensor of the flow. Sub-
sequently, the right Cauchy–Green deformation tensor,

∇fT ∇fT
( )T

, and its inverse shall have two real and identical

strictly positive eigenvalues. Only the stable direction, cor-
responding to the eigenvector associated with the eigenvalue
smaller than 1, and the unstable direction, corresponding to
the eigenvector associated with the eigenvalue larger than 1,
are switched. Along the stable (resp. unstable) direction, the
distance between two points decreases (resp. increases). More
details of this classical analysis of the Cauchy–Green tensor
are recalled in appendix A.

In appendix B, we derived the new following compact
expression of the transported tracer gradient ∇T as a function
of the initial gradient field ∇T0 and the flow f:

‖∇T‖2 2 ‖∇T0‖2 5 ‖∇T0‖2 a2 11
b

a
cos 2ufT0

( )[ ]
, (2.3)

where

a2 5
1
2
‖∇fT‖2 2 1$ 0, b2 5a2 1 2, (2.4)

using the Frobenius matrix norm, and ufT0
stands for the angle

between the tracer gradient and the compressive (stable)
direction of the direct flow. The Cauchy–Green tensor and
the initial tracer gradient completely determine the averaged
squared norm of advected tracer gradients. The advection
acts to globally increase (decrease) the tracer gradient norm if
the initial tracer gradient is locally close enough to the stable

(unstable) direction of the direct flow. This corresponds to ufT0

close to 0 modulo p or p/2 modulo p, respectively. This is
modulated by the initial amplitude of the tracer gradients, a

growth rate a2 and a factor b=a
( )

5
��������������
11 2=a2

( )√
$1. Note, a

and b do not explicitly depend on the tracer.
The largest finite time Lyapunov exponent (FTLE) (Haller

and Yuan 2000; Thiffeault and Boozer 2001; Haller 2005;

Haller and Sapsis 2011) is L5 1=2t
( )

log 11a2 11 b=a
( )[ ]{ }

. In

particular, when both the largest FTLE L and the time t are

large, the term a2 is large and b=a
( )

5
��������������
11 2=a2

( )√
is small,

leading to the approximation L ≈ (1/t)log(a). Therefore, the
FTLE ridges—often considered as proxies of mixing bar-
riers—coincide with the a ridges.
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b. Stretching expressed with mesochronic velocity

Mezić et al. (2010) introduce a mesochronic velocity
defined as the velocity, time-averaged along a trajectory:

v
^

x0, t( )5 u^ x0, t( )
y
^

x0, t( )

[ ]
¢

1
t

� t

0

dt′ V x0, t′( )5f x0, t( )2 x0
t

,

(2.5)
where V is the Lagrangian velocity. The authors then separate
mesoelliptic areas—areas over which the tracer gradients turn
while keeping their norm unchanged—and mesohyperbolic
areas—areas over which the gradients increase or decrease—
depending on the sign of the following criterion:

QMez 5 det ∇v^T
( )

det ∇v^T
( )

2
4
t2

[ ]
· (2.6)

Working with the mesochronic velocity v
^ or with the flow f is

mathematically equivalent, expressed by the definition (2.5).
The above criterion is thus similar in spirit to Cauchy–
Green–tensor-based analyses. Nevertheless, that criterion is frame
dependent unlike Cauchy–Green–tensor-based metrics like
FTLE or the growth rate a2 (Karrasch 2015; Hadjighasem et al.
2017). Consequently, the classification of trajectories proposed by
Mezić et al. (2010) will unfortunately change under changes of a
moving observer. To gain insight about physical features of mix-
ing, the Cauchy–Green–tensor-based metrics shall thus be
promoted.

Still, our growth rate a2 can be expressed with the meso-
chronic notations. In appendix C, we rewrite the criterion as

QMez t2 5 xu
^
2yy

^

( )2
1 yu

^
1xy

^

( )2︸����������������︷︷����������������︸
5 2 a=t( )2

2v
^ 2

, (2.7)

where we introduce the mesochronic vorticity v
^ ¢∇⊥ · v^

and ∇⊥¢ 2y ,x( )T the orthogonal gradient operator in 2D.
Note that the mesochronic vorticity is not the time-aver-
aged vorticity along a trajectory and is frame dependent.
The above derivation (2.7) then becomes reminiscent of
the Okubo–Weiss criterion (Okubo 1970; Weiss 1991; Shi-
vamoggi and van Heijst 2011). Indeed, it shows the compe-
tition between the strain and the rotation of the
mesochronic velocity, encoded by a and v

^ , respectively.
Moreover, according to (2.3), frame-dependent mesoellip-
tic regions are associated with zero growth rate a2, and

expression (2.7) leads to QMez5 2 v
^
=t

( )2
#0. From our

proposed development, the frame dependency and inter-
pretation of the stretching criterion (2.7) is thus better
characterized.

c. Folding

Stretching occurs when two points, f(x) and f(x 1 dx),
become closer or diverge, strengthening tracer gradients. This
property is again naturally encoded in the Cauchy–Green tensor:

‖f x1 dx( )2f x( )‖2 ≈ ‖ ∇fT
( )T

dx‖2 5 dxT ∇fT ∇fT
( )T

dx·
(2.8)

Mixing can occur when folding is associated with stretching.
Folding is thus associated with a three-point kinematic property.
Indeed, at least three points—e.g., f(x), f(x 1 dx), and
f(x 2 dx)—are needed to represent a folding. First, the three
points are separated by stretching, creating a filament. Then, the
filament folds bringing the two opposite points [f(x 1 dx) and
f(x 2 dx)] closer again. This folding can trap an area having a
distinct tracer value (squeezing), creating strong tracer gradients.
The folding is encoded by the relative evolution of positions
increments [f(x1 dx)2 f(x)] and [f(x2 dx)2 f(x)].

In the next section, we will show that folding is a key aspect
of tracer gradient strengthening, even with stationary Eulerian
velocity. Indeed, the minimal requirement for folding to occur
is the nonlinearity in space of that velocity field.

To recall, many mixing diagnostics exist in the literature
(Hadjighasem et al. 2017). Most are stretching proxies. How-
ever, few methods exist to diagnose folding and its relation to
stretching. For instance, Ma et al. (2016) directly measure
folding of material lines through an analysis of their curvature
variations. In the following, we provide new relationships to
further relate stretching and gradient of the curvature of
streamlines in the case of a slowly varying Eulerian velocity
field.

3. Approximations for coarse-scale observations

a. Decorrelation approximations

Over the space, flows encompass several eddies, e.g., flows
are not laminar, and the angle ufT0

appearing in (2.3) will take
different values. If the flow gradients and the initial tracer gra-
dients are not locally correlated, i.e., are oriented with various
angles over the space, the variance of ufT0

will likely be large.
For large enough areas, the distribution of 2ufT0

2p[ ] over the
space will then become close to a uniform law on [0, 2p]. In

(2.3), the average over the space of the term cos 2ufT0

( )
will

then become close to zero, and finally, the absence of salient
alignments between the initial tracer gradient and the flow
gradient (i.e., cross correlations between the initial tracer and
the flow) leads to

‖∇T‖2
‖∇T0‖2

≈ 11a2 · (3.1)

On average, the tracer gradients will thus always increase by
stretching. Welander (1955) already illustrated the process.
The tracer—a dye patch or an oil spill introduced at time t 5
0—is completely passive. In this case, the tracer and the flow
are locally completely misaligned (i.e., uncorrelated in the
above sense), and the initial structure of the tracer is quickly
stretched and folded to fill a broad range of scales.

In contrast, geophysical tracers are generally correlated,
i.e., more or less aligned, with some flow-dependent direc-
tions. Even passive tracers may be correlated to the flow due
to their long-lasting patterns induced by past advection his-
tory. The effect of those correlations is expressed by the angle
ufT0

in the right-hand-side integrand of Eq. (2.3), which can be
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locally positive or negative. Accordingly, local correlations
can restrict or reduce the emergence of locally enhanced
strong gradients. Berti and Lapeyre (2014), Dencausse et al.
(2014), and Rogé et al. (2015) applied Lagrangian advection
method to passive and active tracers—SST or SSS—to possi-
bly reconstruct finer-scale ocean tracer patterns. However,
submesoscales and also some mesoscales of the initial tracer
and of the flow used in these Lagrangian methods are often
missing, especially using interpolated ocean products. This is
likely to strongly reduce local alignments. So, (3.1) generally
holds to predict a strengthening of mesoscale and submeso-
scale tracer gradients, which is confirmed in the results of
Berti and Lapeyre (2014), Dencausse et al. (2014), and Rogé
et al. (2015).

b. Time dependency

In line with the geostrophy assumption used to estimate
velocities from satellite sea surface height measurements, the
resulting large-scale Eulerian ocean flows are also slowly
varying (with characteristic time scale of about 10 days). The
Lagrangian downscaling methods of Dencausse et al. (2014)
and Rogé et al. (2015) aimed to consistently downscale tracer
fields, SST and SSS, respectively. These methods use quasi-
stationary large-scale velocity fields when applying Lagrang-
ian-advection schemes over one or two weeks. For ocean
scales of order 100 km, a typical velocity correlation time is
about 1 month. Hence, for such spatial scales, the flow field
can well be assumed stationary. This assumption determines a
specific form for the flow. In particular, the flow is not chaotic
(Thiffeault 2004).

Furthermore, we will show that for such a flow the time depen-
dency analysis of the mixing can be separated between two typical
classes: open straight streamlines and closed curved streamlines.
For both cases, the growth rate a2 is proportional to t2.

1) LOCALLY UNIFORM SHEAR

Let us first focus on locally straight streamlines (i.e., stream-
lines with zero curvature). In such a case, the strengthening of
tracer gradients results from a velocity shear, similarly to
usual infinitesimal-time stretching. We denote by x the local
axis of the straight streamline and by u5 v=‖v‖( ) · v5 ‖v‖, the
velocity component on this direction. The divergence-free
assumption imposes

xu5∇ · v5 0: (3.2)

Since the Eulerian velocity is stationary, the Lagrangian
velocity is stationary as well:

dV
dt

x0, t( )5 d
dt

v f x0, t( )[ ]{ }
5 uxu

v

‖v‖
( )

f x0, t( )[ ]
5 0, (3.3)

and the flow simplifies to

f x0, t( )5x0 1

� t

0

dt′ V x0, t′( )5x0 1 v x0( )t5x0 1
u x0( )t
0

[ ]
·

(3.4)

This so-called ballistic regime is superdiffusive (Vallis 2006;
Falkovich et al. 2001). Taking the gradient of the above
expression with the divergence-free condition (3.2), the
stretching rate reads

a2¢
1
2
‖∇fT‖2 2 15

t
ss

( )2
, (3.5)

with the shearing time ss

1=ss 5
1��
2

√ yu· (3.6)

For a computation independent of any specific local axis x, we
rewrite

1=ss 5
1��
2

√ v⊥

‖v⊥‖ · ∇‖v‖, (3.7)

with v⊥ the p/2 rotation of v.

2) STATIONARY CONVECTIVE CELLS

Close to rotating eddies, streamlines are often closed or
at least curved, and the previous development cannot be
applied. Let us focus on closed streamlines. Since the flow
is incompressible, fluid parcels cannot accumulate. There-
fore, those streamlines define loops, called stationary con-
vective cells (Falkovich et al. 2001), where fluid parcels
rotate periodically. Accordingly, the flow and thus the
Lagrangian velocity are periodic and the flow is called sub-
diffusive (Vallis 2006; Falkovich et al. 2001). This geometry
can nevertheless create a strong stretching effect in finite
time. Indeed, two concentric closed streamlines can
define Lagrangian loops associated with different rotation
periods. Rotation after rotation, a fluid parcel on the fast-
est loop will deviate from its initial neighboring parcel on
the slowest loop. This differential rotation thus creates
stretching. Moreover, it also induces folding. A filament
distributed perpendicular to streamlines will be deformed
by the continuous differential rotation. After a finite
time, the filament will wrap around the convective cell cre-
ating spirals. Lehahn et al. (2007) illustrate a similar
process with the action of stable and unstable manifolds on
phytoplankton patches. In the same idea, Haller et al.
(2016), and Haller (2016) propose two Lagrangian
mixing diagnoses—a variant of the polar rotation angle
(PRA) and the Lagrangian-averaged vorticity deviation
(LAVD)—defining coherent sets with points having simi-
lar rotations.

To express the stretching induced by those convective cells,
the flow is written as follows:

f x0( )5f x0, t( ) ≈ x0 1 g x0, f x0( )t[ ]
, (3.8)

where g is 1 2 periodic with respect to its second variable and
f(x0) is the local temporal frequency. For a point initially on
x0 in a closed streamline C, the trajectory t � →f x0, t( ) runs
from x0 to x0 through a path P embedded in C with a temporal
period 1/f(x0) defined by
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1
f x0( ) 5

� 1
f x0( )

0

dt5
�
P

dl
‖v‖5

�
C

v

v| || |2 · dl· (3.9)

The last integral only depends on the streamline C and not on
the precise initial condition x0, and the local frequency
inherits from the same invariance. Besides, the points x0 and
f(x0, t) are on the same streamline, and thus

f f x0, t( )[ ]
5 f x0( )· (3.10)

This frequency can be approximated by a local angular
velocity u̇, estimated using the streamline curvature, denoted
1/R, as

f ≈ u̇

2p
≈ ‖v‖
2pR

5
1
2p

v · ∇( ) v

‖v‖
[ ]

· v⊥

‖v⊥‖ · (3.11)

In practice, the exact formula (3.9) can be difficult to evalu-
ate numerically, and we will instead use the above approxi-
mation. In the following derivation, however, we keep the
exact definition (3.9). In particular, we still assume the fre-
quency invariance along the streamline (3.10). The first vari-
able of g encodes the spatial dependency of the loop
(vectorial) amplitudes. Note that the model (3.8) is very
general, only assuming periodicity of Lagrangian trajecto-
ries. It helps to partially decouple flow variations associated
with different streamlines (i.e., different local frequencies f)
and flow variations associated with different temporal phase
shifts along the streamline (i.e., different times t). To some
extent, this second type of variation can be understood as
different initial conditions in the same streamline, due to
the periodicity assumption. Similar decomposition ideas
were proposed by Thiffeault (2004) for chaotic (nonperi-
odic) flows.

In appendix D, it is shown that time dependency of the
growth rate in the final grid (points x) reads

a2 f2 1 x, t( ), t
[ ]

5
t

sf x( )
[ ]2

, (3.12)

with the folding time sf

1=sf 5
‖∇f‖‖v‖��

2
√

f
· (3.13)

As (3.1) only involves the spatial average of a2, we can further
simplify the model by spatial integration. Indeed, integrating
Eq. (3.12) over a specific domain Vf, we obtain with the vari-
able change defined by the incompressible flow:

�
Vf

dx0 a2 x0, t( )5
�
f Vf( )

dx a2 f2 1 x, t( ), t
[ ]

5 t2
�
f Vf( )

dx
s2f x( )·

(3.14)

The subspace Vf is a subset of V where the concept of wrap-
ping convective cells is relevant. Since we consider closed
streamlines, we assume that f(Vf) 5 Vf. This subspace will
be properly defined in the following.

3) GLOBAL TIME DEPENDENCY

To combine the folding time sf and the shearing time ss, a
local stretching time s is defined depending upon the local
streamline curvature:

s x0( )¢
sf x0( ) if R x0( )# L

2

ss x0( ) if R x0( ). L
2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (3.15)

where 1/R(x0) is the streamline curvature on x0, and L the
average diameter of a vortex. Following the previous models
of shearing and folding, the stretching rate becomes

a5
t
s
· (3.16)

Where gradients are created by uniform shears, streamlines
are straight, the curvature 1/R is small, and s 5 ss, whereas, at
locations where gradients are strengthened by wrapping, the
curvature is large and s 5 sf.

To estimate the average eddy diameter L, a toy approxima-
tion is used to locally define the velocity:

v5U

cos
2p
l

x

( )
sin

2p
l

y

( )

sin
2p
l

x

( )
cos

2p
l

y

( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.17)

and the eddy diameter is identified to the size of the convec-
tive cell:

L5
l

2
5

6p2‖v‖2
‖∇vT‖2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠1=2· (3.18)

We shall then use this diameter estimator in the general case.
The condition (3.15) further defines a space partition
V5Vf

⋃Vs to integrate the growth rate a2:

a2 5
t
sG

( )2
with

1
s2G

¢
1
s2

( )
5

1
S

�
Vf

dx
s2f x( )1

�
Vs

dx0
s2s x0( )

[ ]
,

(3.19)

where Vf¢ x ∈V R x( )# L=2
( )∣∣ ][

and Vs¢ x0 ∈V R x0( ).
∣∣[

L=2]. Again, f(Vf) 5 Vf is assumed because the flow maps
closed streamlines onto themselves. In the following, sG is
referred as the global stretching time.

The model (3.19) together with the folding and shearing time
definitions (3.13)–(3.7) thus specify a global Eulerian estimate
of finite-time stretching. Unlike usual Lagrangian diagnoses,
such as FTLE and finite-size Lyapunov exponents (FSLE)
(d’Ovidio et al. 2009), the proposed global model does not
require any integration of the flow. Finally, according to (3.1),
the evolution law (3.19) determines the tracer gradient norm:

‖∇T‖2
‖∇T0‖2

≈ 11
t
sG

( )2
· (3.20)
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4. Tracer spectral tail

It has long been realized (Batchelor 1959) that the general
increase of gradients of T, during the stirring action of an
underlying flow field, is a consequence of local misalignments
between tracer isolines and the velocity vector field, leading
to a transfer of tracer variance from low wavenumber Fourier
components to high ones. Mixing will thus be associated to
strengthening processes acting on the tracer smallest scales.
Mixing shall thus be characterized in the spectral domain,
especially its high-wavenumber part. Overall Eulerian diag-
nostics of the tracer gradients norm evolution in the spatial
domain must then be related to spectral diagnoses. In this sec-
tion, this link is demonstrated.

After preliminary results related to tracer moments, we first
derive a Gaussian approximation for the evolution of the
spectral tail, assuming spatial smoothness. This approximation
is then applied to initial and advected tracers. Finally, we pro-
pose an alternative development for self-similar spectra.

Because of the incompressiblity constraint [det(∇fT) 5 1],
as all scales are assumed to be resolved, and since the molecu-
lar diffusion is ineffective on the length and time scales of
interest, there are no overlays of fluid parcels and no dilution
of their properties. Each fluid parcel conserves its tracer value
while it is advected. Therefore, mean and variance, T̄ and

T2 T̄( )2 , are conserved. As a consequence, we will assume
without loss of generality that the tracer is centered.

a. Locally smooth scalar approximation

First, let us consider the covariance of a smooth scalar q,
for small spatial distance ||dx||. The scalar field q will represent
here the initial tracer T0 or the advected tracer T. We will
assume it is twice differentiable, which is a strong assumption
on the scalar regularity. Yet, for tracers measured at meso-
scales and reinterpolated on a submesoscale spatial grid, this
assumption safely applies. Accordingly, the covariance of q—
denoted gq—is 4 times differentiable near the origin 0 and its
Taylor expansion reads

gq dx( )¢ 1
S

�
V

dxq x( )q x1 dx( ), (4.1)

5q2 1
1
2
dxTHgq 0( )dx1 o

d x→0
‖dx‖3
( )

, (4.2)

5q2exp 2
1
2
dxT

2Hgq 0( )
q2

[ ]
dx

[ ]
1 o

‖d x‖→0
‖dx‖3
( )

,

(4.3)

where Hgq denotes the Hessian of the covariance gq. This
Gaussian covariance approximation—valid near the origin 0
only—results from the absence of infinitely small-scale struc-
tures in the reinterpolated field q. This approximation is not
instructive over longer correlation distances (e.g., meso-
scales), which often exhibit physical self-similar structures and
gradient singularities. Typically, in an isotropic case and for

intermediate values of spatial increments norms ||dx||, we
would have gq dx( ) ≈ q2 2C‖dx‖z21 with z , 3. This would
correspond to an omnidirectional spectrum proportional to
k2z for intermediate wavenumbers k and a diverging tracer
gradient variance ‖∇q‖2 5 1∞. Here, we focus on the
extremely local behavior of the reinterpolated tracer, which
can be well approximated by the above Gaussian covariance with
2q2H21

gq
0( ) as squared correlation lengths. Note, the evolution

of the HessianH21
gq

0( ) is difficult to characterize whereas its trace
is simple and reads 2 ‖∇q‖2 (which is here finite and well
defined, see appendix E). To let this gradient norm explicitly
appear instead of the covariance Hessian, we consider tracer sta-
tistics averaged over angles. In Fourier space, the omnidirectional
spectrum is defined as follows:

G̃q k( )¢k

�
0,2p[ ]

duk q̂ k( )∣∣ ∣∣2, (4.4)

where the hat denotes spatial Fourier transform, k 5

k[cos(uk)sin(uk)]
T is the wavevector and k 5 ||k|| the wave-

number. In the appendix E, we show that the local approxi-
mation (4.3) leads to

G̃q k( ) ∼
k→∞Cqexp 2

1
2
L2

qk
2

( )
, (4.5)

where

L2
q 5

q2

‖∇q‖2
and Cq 5 2

2p( )3 q2
( )3

‖∇q‖2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1=2

· (4.6)

Similarly to the local covariance approximation (4.3), the
above result is valid for k @ 1/Lq or at least k . 1/Lq. The
absence of infinitely small-scale structures implies a spectral
roll-off at the highest wavenumbers. Equation (4.5) approxi-
mates this roll-off by a Gaussian decay and (4.6) determines
the position of that roll-off.

b. Tracer spectral tail evolution

We now apply the tail approximation (4.5) to both the ini-
tial tracer T0 and the advected tracer T. Here again, T0 and T
are not the real full-scale ocean tracers, but correspond
instead to coarse-scale observations under a fictitious smooth
surface current advection. Because a fine interpolation grid is
used for both T0 and T, the spectrum Gaussian roll-off
approximation (4.6) is valid for both fields and yields

G̃T k( ) ∼
k→∞ G̃T0 k( ) CT

CT0

exp 2
1
2

L2
T 2L2

T0

( )
k2

[ ]
, (4.7)

∼
k→∞ G̃T0 k( ) ‖∇T0‖2

‖∇T‖2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠1=2exp 1

2
T2
0

1

‖∇T0‖2
2

1

‖∇T‖2
( )

k2
[ ]

,

(4.8)

where the simplification in the last asymptotic equivalence follows
from the variance conservation. As discussed in section 3a, if the
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initial tracer T0 and the flow display local misalignments, the tracer

gradients strengthen: ‖∇T‖2 . ∇T0| || |2 (i.e., LT ,LT0 ) and by
(4.8) the tracer spectral tail raises. Using the estimate (4.17), a final
expression is derived:

G̃T k( ) ∼
k→∞ G̃T0 k( ) 11 t

sG

( )2[ ]2 1=2

exp
1
2

T2
0

‖∇T0‖2
k2

11
sG
t

( )2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

(4.9)

It is thus possible to recover the initial spectrum tail by
smoothing the advected tracer, as empirically noticed by
Rogé et al. (2015) in their forward-backward Lagrangian
advection method. Here, (4.9) provides a full parameteriza-
tion of this low-pass Gaussian filter with squared length scale:

T2
0

‖∇T0‖2
1

11
sG
t

( )2 · (4.10)

The multiplicative constant of (4.9) decreases with the advec-
tion time t. Asymptotically, we have

‖∇T0‖2
‖∇T‖2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠1=2 ≈ 11

t
sG

( )2[ ]2 1=2

5
1 if t¿ sG
sG
t

if t.. sG
·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (4.11)

Note that this multiplicative constant does not provide infor-
mation on large-scale tracer structures because we here rely
on spectrum roll-off approximations. This constant is propor-
tional to the advected tracer spectrum roll-off amplitude CT.

FIG. 1. (top) Advecting vorticity (s21) of the toy model and (middle),(bottom) tracer (dimensionless) advected using a backward
Lagrangian method at time t5 0, 5, 10, 15, 30, and 150 days.
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FIG. 2. Values of (left) v^
2
=2 (s22), (center) (a/t)2 a=t

( )2 (s22), and (right) the ratio of b/a (dimensionless) in the initial
grid (points x0) at time (from top to bottom) t5 15, 30, and 150 days for the toy model.
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Since both this amplitude and the squared length scale (4.10)
decreases with time, the advected tracer spectrum roll-off
continuously moves toward higher wavenumbers and lower
spectrum values during the downscaling advection.

c. A practical estimation of an effective horizontal eddy
diffusivity

Spectral fall-off of real oceanic tracers being relatively sta-
ble, the predicted changes under multiple advection opera-
tions shall thus be compensated. It can be hypothesized to

result from the combined antagonist effects of the well-
resolved, slow-varying, and large-scale velocity properties; of
the unresolved, fast-varying, and likely small-scale velocities;
and finally, of smaller-scale tracer structures. In other words,
the smoother velocity component will tend to raise the high-
wavenumber part of the spectrum (4.9), while the fast-varying
velocity and tracer components shall act to balance this rise.
This last process can be simply accounted for by considering
the introduction of an effective spatially uniform eddy diffu-
sivity n. After an advection of Dt, this effect leads to multiply
the spectrum by exp(2nDtk2). To exactly balance the

FIG. 3. Squared inverse of the folding time in the (top left) final grid (points x) and (bottom left) initial grid (points x0), (center) of the
shearing time in the initial grid (points x0), and of the stretching time in the (top right) final grid (points x) and (bottom right) initial grid
(points x0) for the toy model. All plots are in s22. To represent folding and stretching times in the initial grid, these fields were advected
during 30 days.
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expected high-wavenumber spectral rise (4.9) during Dt, and
thus to keep the resulting advected tracer closer to its initial

variance distribution over scales, the effective horizontal eddy
diffusivity can thus be defined according to

n5
1

2sG

T2
0

‖∇T0‖2
c t( ), with c t( )5

Dt
sG

11
Dt
sG

( )2[ ] 5
Dt
sG

if t¿ sG

sG
Dt

if Dt.. sG

·
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (4.12)

For small time step, Dt, the mixing is superdiffusive, whereas for
large time step it is subdiffusive. The superdiffusive regime is the
usual ballistic regime observed for small advection time Dt (Vallis
2006; Falkovich et al. 2001) whereas the subdifffusive regime is
less straightforward to understand. A spectrum roll-off—by defi-
nition—is concave, possibly to flatten for large advection time.
Still, it cannot be convex. Additional advection steps eventually
get less and less efficient at modifying the evolving form of the
spectrum roll-off. Mathematically, the squared length scale of the
low-pass Gaussian filter (4.10) cannot decrease less than its

asymptotic value T0
2=‖∇T0‖2 . The eddy diffusivity n—being

given by this (bounded) squared length scale by unit of time—
gets infinitely small for large times.

d. Self-similar approximation for intermediate wavenumbers

While the Gaussian approximation is useful to link advec-
tion and filtering operations, outside the roll-off and the plan-
etary scales, spectra of geophysical tracer fields are more
likely self-similar. Moreover, one may wish to target specific
spectral slopes using the Lagrangian advection method. The
following alternative form for the scalar spectrum is hence
now considered:

G̃q k( )5
A 11

k

km

( )2z

if k#k∞

0 otherwise

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ (4.13)

where k∞ is set by the numerical resolution. For intermediate
wavenumbers km ! k ! k∞, the spectrum exhibits an inertial

range G̃q k( ) ≈A k=km
( )2z. Unlike the previous local smooth-

ness approximation, this inertial range is not an artifact of the
field processing. It is a physical phenomenon induced by the
advection by real oceanic currents, which also exhibit energy
scale invariance. Accordingly,

L2
q 5

q2

‖∇q‖2
, (4.14)

5

� k∞

0
11

k

km

( )2z

� k∞

0
k2 11

k

km

( )2z
, (4.15)

5
z2 2( ) z2 3( )

k2m 22 11
k∞
km

( )12z

z2 1( ) z2 2( ) k∞
km

( )2
1 2 z2 1( )k∞

km
1 2

[ ]{ }·
(4.16)

As long as the width of the inertial range, k∞ 2 km, is large
enough, the above function is strictly positive and continuous
w.r.t. the spectral slope z for all z . 1.

Setting q to the advected tracer (q 5 T), the wavenumber
km can encompass planetary length scales which do not vary
much during the advection process. The resolution k∞ is cons-
tant as well. So, a targeted spectral slope z conveniently

FIG. 4. (left) The averaged growth rate a2 and (right) the averaged squared norm of tracer gradients for the toy model,
both in log–log plot along time. The blue line is the real value and the red line our model.
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provides a length scale LT to be reached over a given advec-
tion time. Using (4.17), it can be estimated

t5 sG

������������������������
1

L2
T z( )

T2
0

‖∇T0‖2
2 1

√√
· (4.17)

5. Numerical results

a. Illustrative toy model

These analytical developments can be first illustrated using
a simplified toy model. We define an ellipsoidal eddy from the
following vorticity field:

v x( )5Avexp 2
1
2

‖x‖e 2 r0
rv

( )2
1 ‖x‖e . r0{ }

[ ]
, (5.1)

with

‖x‖2e 5 e x1 y( )[ ]2
1 x2 y( )2, (5.2)

an eccentricity e 5 1.7, r0 5 23.0 km, rv 5 76.8 km and Av 5

6.43 3 1026 s21. The vorticity is constant at the ellipse center
(||xe|| # r0) and smoothly decreases to zero outside.

A large tracer filament is advected by that stationary veloc-
ity field using a backward Lagrangian advection (Fig. 1). For
technical details, we refer to Berti and Lapeyre (2014) and
Dencausse et al. (2014). The tracer progressively wraps,

FIG. 5. Omnidirectional spectra before advection (red), after advection (blue), and its prediction using the Gaussian
approximation (4.9) (dashed black line) for the toy model at t 5 0, 5, 10, 15, 30, and 150 days. The associated spatial
fields are displayed in Fig. 1.
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eventually creating infinitely long filaments. Following (3.19),
an estimate of the global stretching time is 13.36 days. It
roughly corresponds to half a rotation.

Figure 2 represents the spatial distribution of the time-nor-
malized stretching rate (a/t)2, the factor b/a and the meso-
chronic vorticity v

^ at several times. As found, the spatial
distribution of a/t becomes nearly constant after one week only.
This number is significant on the folding area, i.e., the border of

the vortex. The ratio b=a5

�������������������������
11 2

/
a=t
( )2[ ]

1=t2
( )√

—which quan-

tifies the significance of the orientation of tracer gradient—
decreases with time in the mixing area. It stabilizes to its mini-
mum value, say 1, at t ≈ sG. The mesochronic vorticity
is first concentrated in the center of the vortex. Then, after each
global stretching time, a new ring of mesochronic vorticity adds
to the mixing area.

Figure 3 displays the spatial distribution of the squared
inverse of the folding time sf, of the shearing time ss, and of
the stretching time s for this toy model. Folding and stretching
time are represented both in the initial grid (x0) and in the
advected grid [x5 f(x0, t)]. This remapping on the initial grid
is needed as the folding time is locally defined in the advected
grid [see (3.12) and (3.14)]. For this remapping, we integrated
the forward flow x0 � →f x0, t( ). The remapping provides a bet-
ter visualization of the stretching spatial distribution, but is
not necessary for the global stretching time computation
(3.19). For this toy model, the folding effects are dominant,
and the inverse folding time well captures the spatial structure
of a/t. Yet, the inverse folding time diverges outside of the
vortex where the streamline curvature tends to zero. Indeed,
according to (3.11) zero curvature implies zero local fre-
quency f, and thus infinite folding time [see (3.13)]. For such a
weak curvature, the relevant model is the uniform shear. Fol-
lowing the space partition (3.13), the stretching time is chosen
as a shearing time in these areas. The global time evolution
models for the averaged stretching rate (3.19) and for the
tracer gradients (4.17) are also successfully tested in Fig. 4.

The spectral roll-off proxy (4.9) is illustrated for the toy
flow in Fig. 5. The local Gaussian approximation successfully
captures the spectral tail shift toward small scales. The associ-
ated spatial fields have been presented in Fig. 1.

We also exemplify the adaptive filtering of the advected
tracer [with squared correlation length (4.10)] in Fig. 6. The
tracer is advected during a time t, and then smoothed by a
Gaussian filter with the width (4.10). Hence, small-scale tracer
structures are created by the advection and are then filtered
out. However, the transport of large-scale tracer structures
due to advection remains after filtering. The combined effect
of advection and filtering moves the large-scale structures, but
keeps the global amount of small-scale structures stationary.

b. Ocean applications

A similar analysis is performed using satellite data.
Following geostrophic assumption, velocities are estimated
from altimeter-derived SSH fields. We employ precomputed
gridded geostrophic velocities from AVISO. The altimeter
products were produced by SSALTO/Developing Use of

Altimetry for Climate Studies (DUACS) and distributed by
AVISO, with support from CNES (http://www.aviso.
altimetry.fr/duacs/). The velocity field, on which the Eulerian
diagnostics will be estimated, corresponds to 1 January 2011,
in the Antarctic Circumpolar Current (ACC) region, south of
Australia. Nevertheless, for the reference Lagrangian advec-
tion, we will rely on (slowly) time-varying daily AVISO

FIG. 6. (left) Tracer advected and (right) tracer advected and
then smoothed by our adapted Gaussian filter for the toy model at
(from top to bottom) t5 5, 10, 15, 30, and 150 days.
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dataset. A small spatial window of 108 3 108 is first consid-
ered. For sea surface temperature, the Ifremer/ODYSSEA
SST Level 4 product is considered. Produced daily using opti-
mal interpolation (OI) on a global 0.18 grid, it provides a daily
cloud-free field of foundation sea surface temperature at
approximately 10-km resolution (0.18) over the full globe. It is
generated by merging microwave and infrared satellite
observations.

Figure 7 delineates the kinetic energy (KE) and the vortic-
ity fields. The KE shows the ACC eastward jet between lati-
tudes 2508 and 2488 for 1 January 2011. Two (warm)
anticyclones and a (cold) depression are visible both in the
vorticity and initial SST fields at (2518, 1298), (2548, 1318),
and (249.58, 130.58), respectively. The 1 January 2011, SST
field is then advected. Similarly to Dencausse et al. (2014),
time interpolation is performed to obtain the velocity fields
between two daily data. The dipole closed to the jet creates a
mushroom-like structure in the advected tracer. Each vortex
wraps the tracer, creating spirals. The small southern anticy-
clone (2548, 1318) seems weaker than the other anticyclone
(2518, 1298). Yet, it faster wraps the tracer, as velocities are
certainly larger than over the dipole area.

Figure 8 shows the time-normalized growth rate (a/t)2, the
mesochronic vorticity v

^ , and the weighting of the tracer/flow

correlation b/a. The squared inverse of folding, shearing and
stretching times are also presented. A slight low-pass spatial
filtering (2-km filter width) is applied to the stretching time to
help distinguish the filamentary structures. The spatial distri-
butions of time-normalized stretching rate and inverse
squared stretching time are found very similar. The amplitude
of the stretching time is slightly underestimated (ratio of
about 2). In the aforementioned vortex boundaries, intense
mixing occurs, whereas the inverse shearing time is weak.
Comparable to the toy model results, folding effect due to dif-
ferential rotations near the vortex boundaries is the leading
mixing processes.

A larger ocean extend is now considered to encompass a
broader variety of structures and dynamical processes. The
spatial location and the date remain the same. Figure 9 dis-
plays the KE and the vorticity. The jet and many eddies are
visible. The SST is again advected (Fig. 10). The advection
creates small-scale structures, becoming nonphysical spirals
when the advection time is too long. After 48 days, the
advected domain is strongly deformed, especially by the east-
ward jet. Figure 11 compares the time-normalized stretching
ratio, (a/t)2, and the estimated inverse squared stretching time
in this larger spatial window. As found, most stretching struc-
tures are well predicted by the proposed model.

FIG. 7. (top left) Kinetic energy (KE; m2 s2), (top right) vorticity (s21), (bottom left) SST (8C),
all measured by satellite the 1 Jan 2011, and (bottom right) SST (8C) after a 5-day advection. In
the top images, streamlines are superimposed. The streamlines, the KE, the vorticity, and the
advection are defined by SSH-derived velocity fields.
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Finally, Fig. 12 presents the time evolution of the averaged
stretching rate (3.19) and of the averaged tracer gradients
norm (4.17). The reference plots clearly exhibit the structures
prescribed by the derived models:

a2 5
t
sG

( )2
and

‖∇T‖2
‖∇T0‖2

5

1 if t ¿ sG
t
sG

( )2
if t .. sG

·
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (5.3)

A global stretching time is estimated to 1.67 days. The plots
reveal a good match, though the stretching time seems slightly
underestimated (by a factor of about ∼1.7). The small shift
between predicted and reference-averaged tracer gradients
norm may also be explained by a residual correlation between
the tracer and the underlying flow as explained previously
with Eq. (2.3).

Figure 13 illustrates the self-similarity-based estimate
(4.16), applied to the ACC SST field. As prescribed, the

spectrum tail slope of the advected SST reaches the value 23
after 5 days of advection, 22.5 after 10 days, and 22 after 48
days. The 23, 22.5, or 22 spectrum slope observed in “high-
resolution” tracer data can be physically relevant. For
instance, a surface quasigeostrophic dynamics (Held et al.
1995) would lead to a 25/3 slope for the SST spectrum (if the
salinity contribution to buoyancy is neglected). However,
here23,22.5, and22 are arbitrarily chosen values. Theoreti-
cally, any spectrum slope (,21 and . to the initial slope)
could be reached by this downscaling process. Figure 10 dis-
plays the spatial SST fields before and after advection.
These data correspond to the summer season, January in the
Southern Hemisphere.

A seasonal variation can then be studied. Figure 14 dis-
plays, for each day of the year 2011, the global stretching
time, sG, the spectrum slope of the measured SST and the pre-
scribed advection time to reach a 22.5 spectrum slope. As

FIG. 8. Values of (top left) the mesochronic vorticity v
^ 2

=2 (s22), (top center) the time-normalized stretching growth rate (a/t)2 (s22),
and (top right) the ratio b/a (dimensionless) and (bottom left) the squared inverse of the folding time (s22), (bottom center) the shearing
time (s22), and (bottom right) the stretching time (s22), in the initial grid (points x0) at time t 5 5 days for the SSH-derived velocity fields.
We can observe the good match between the stretching rate and our Eulerian estimation of the inverse stretching time.
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found, the stretching is faster during the winter. The mea-
sured SST spectral slopes are relatively stationary (close
to 24). Accordingly, the prescribed advection time is smaller
in wintertime.

Berti and Lapeyre (2014) proposed other Eulerian esti-
mates to prescribe the advection time: the inverse of the vor-

ticity root-mean-square (RMS) ∇⊥ · v( )2
[ ]21=2

and of the

velocity gradient RMS ‖∇v‖2
( )21=2

. The latter is directly

linked to the shearing time (3.7). Yet, these estimates can
encode shearing but not folding. Indeed, folding involves sec-
ond-order derivatives of the velocity, such as to describe the
curvature variation of adjacent streamlines (3.13). Moreover,
these criteria do not depend on the initial or on the resulting
spectral slope. So, these criteria cannot fully control the

necessary advection time, and may not be sufficient to control
the resulting tracer spectral slopes. For instance, Fig. 14 dem-
onstrates that these criteria strongly underestimate the advec-
tion time needed to reach a 22.5 spectrum slope. Accordingly,
these criteria mostly apply to very short advection time, with a
resulting advected tracer already close to the true SST.

6. Conclusions

In this paper, we analyzed how fluid parcels are stretched
and folded by a smoothed velocity field, creating strong tracer
gradients and raising the high-wavenumber part of the tracer
spectral distribution. That is the case for SSH-inferred surface
currents and the associated advection of coarse-scale tracer
observations. Lagrangian methods, such as the determination

FIG. 9. (left) KE (m2 s2) and (right) vorticity (s21) derived from SSH measured on 1 Jan 2011.

FIG. 10. (top left) SST (8C) measured by satellite on 1 Jan 2011 after (top right) 5-, (bottom left) 10-, and
(bottom right) 48-day advection.
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of finite-time Lyapunov exponent (FTLE), are now very pop-
ular means to infer upper-ocean transport properties of heat,
salt, nutrients or pollutants from such velocity fields. Still,
Lagrangian methods can be computationally expensive to

perform integration of particle along trajectories, and may
not be suitable to quickly assess short-term material transport.
Using Eulerian quantities from a single snapshot of velocities,
our proposed development is more practical and fully exploit
the connection between the Cauchy–Green deformation ten-
sor and the evolution of the averaged squared norm of the
advected tracer gradients.

Recently, following a variational theory to objectively
define Eulerian coherent structures, Serra and Haller (2016)
and Nolan et al. (2020) exploit the fact that for infinitesimally
small integration times, the eigenvectors of the right Cauchy–-
Green strain tensor are equal to those of the Eulerian rate-of-
strain tensor. This property can thus already provide an
Eulerian diagnostic, i.e., the instantaneous Lyapunov expo-
nent structure, to help identify major flow features dominat-
ing short-time particle deformation patterns.

The present developments are not limited to small integra-
tion times. Two characteristics of the flow influence the norm
of the advected tracer gradients: a local growth rate, associated
with the eigenvalues of the Cauchy–Green tensor, and the ori-
entation of the stable direction, eigenvector of the Cauchy–-
Green tensor. Integrated over space, the influence of local
orientation disappears if the initial tracer is not correlated to
the flow. This decorrelation can be due to a strong spatial
smoothing induced by initial tracer observation process. It is
then demonstrated that when the initial correlations between
smooth divergent-free flow fields and tracers are weak the
overall gradients can only strengthen. The local growth rate of
the tracer gradients is independent of the initial tracer distribu-
tion, and is directly related to FTLEs and along-trajectory
time-integrated velocities, i.e., mesochronic velocities.

In the case of SSH-inferred surface currents, Eulerian
velocity fields are almost stationary during one or two weeks.
As such, a simple and efficient prognosis can be derived. It
extends the widely used Okubo–Weiss method—also known
as the Q-criterion—which instantaneously compares relative
vorticity to strain properties. Computationally cheap and per-
fectly suited to Eulerian snapshots of satellite-derived large-
scale ocean flows, our proposed criterion identifies regions
where mixing can occur and quantifies it. The Eulerian

FIG. 11. (top) The time-normalized stretching growth rate
(a/t)2 (s22) and (bottom) the squared inverse of the stretching time
1/s2 (s22) in the initial grid (points x0) at time t5 5 days.

FIG. 12. (left) The averaged stretching rate a2 and (right) the ratio of squared-normmean of tracer gradients ‖∇T‖2=‖∇T0‖2
for the satellite data, both in log–log plot along time. The blue line is the real value and the red line our model.
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descriptors can well separate mesoelliptic regions, rotating areas
over which the tracer gradient norm is conserved, from mesohy-
perbolic regions where motion is dominated by stretching in

one direction and contraction in the other. Over these latter
areas, strain and mesochronic vorticity compete and tracer gra-
dients tend to increase. Moreover, our Eulerian proxies quan-
tify the tracer gradients growth.

FIG. 13. SST spectrum of the satellite data (red) and after pre-
scribed advection (blue) with (top) 5 days for a 23 spectrum slope,
(middle) 10 days for a 22.5 spectrum slope, and (bottom) 48 days
for a 22 spectrum slope. The expected spectrum slopes are super-
imposed (blue dashed line). The associated spatial fields are pre-
sented in Fig. 10. On the blue bottom spectrum, missing large-scale
values are due to a strong deformation of the advected spatial
domain by the jet (see Fig. 10).

FIG. 14. (top) Global stretching time sG (in days), (middle) SST
spectrum slope of Globcurrent data, and (bottom) prescribed
advection time to reach a 22.5 spectrum slope (in days) with the
velocity gradient RMS (blue line), vorticity RMS (black line), and
our model (red line).
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Tracer gradients also control and specify the high-wave-
number tracer spectra. As presented and discussed, our prog-
nostic analysis helps consistently determining the advection
time and low-pass filter to apply when using Lagrangian
downscaling advection methods. Based on these develop-
ments, a practical estimation of the horizontal diffusivity is
also derived to help constraining subgrid parameterizations of
large-scale flow simulations. The smooth velocity component
acting to raise the high-wavenumber part of the spectrum
(4.9), the horizontal effective diffusivity will balance this rise
to best take into account unresolved small-scale components.
Further investigations could thus extend the proposed crite-
rion to stochastic flows, possibly exhibiting preferred sense of
rotation, leading to quasi-stationary drift terms superposed to
rapidly time-uncorrelated terms. The stochastic Eulerian
framework proposed in Bauer et al. (2020), Mémin (2014),
Resseguier et al. (2017a,b, 2020) shall be suited for such a pur-
pose. Indeed, the slow-fast decomposition of the velocity can
lead to introduce a smooth drift component, adding to the
mesochronic velocity, and a random highly oscillating velocity
component, acting to consistently define the diffusivity. The
introduction of so-called polarized small-scale fluctuations
(Middleton and Loder 1989) might then be tested to provide
meaningful information on the additional folding/shearing
effects associated to local statistical drifts attached to spatially
distributed small-scale fluctuations (Bauer et al. 2020).

To further note, the Eulerian prognosis descriptors are cer-
tainly well suited to present-day large-scale altimeter-derived
velocity estimates. Satellite-derived maps are weekly avail-
able, and time sequences of Eulerian estimates of flow mixing
can be performed. Accordingly, seasonal to interannual varia-
tions of time evolution of folding and shearing properties of
upper-ocean flows in different basins can also be derived. The
simple prognostic shall then serve to possibly assess readjust-
ments of the surface mesoscale ocean circulation over the last
three decades (Martı́nez-Moreno et al. 2021).

Finally, the presented analytical and numerical results have
strongly highlighted the importance of folding induced by
upper-ocean eddies in tracers’ dynamics. The actual satellite
altimeter constellation will soon include a future wide-swath
Surface Water and Ocean Topography (SWOT) altimeter
(Morrow et al. 2019), to more precisely characterize ocean sea
surface height variability. Specifically, ocean spatial structures
will thus be better resolved. New Eulerian prognosis descrip-
tors will thus be derived from these snapshot flow fields, and
the impact of spatial resolution better assessed when com-
pared to standard actual altimeter-derived products.
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APPENDIX A

Recap on Cauchy–Green Tensor Analysis

The Cauchy–Green tensor diagonalization writes as follows:

∇fT ∇fT
( )T

5PDPT; with Dii 5 11a2 12 2 1( )i b
a

[ ]
,

(A1)

where P is an orthogonal matrix, a25 1=2
( )‖∇fT‖221$0 and

b2 5 a2 1 2, using the Frobenius matrix norm. The eigenval-
ues Dii define the finite-time Lyapunov exponents (FTLE)
(Haller and Yuan 2000; Thiffeault and Boozer 2001; Haller
2005; Haller and Sapsis 2011). Note that Pierrehumbert and
Yang (1993) introduced this notion but provided an erroneous
way of calculating it (referring to the frame-dependent flow
map gradient eigenvalues instead of its frame-independent sin-
gular values). The largest and the smallest FTLEs are

L5
1
2t
log D11( ) and 2L5

1
2t
log D22( )· (A2)

The Cauchy–Green tensor encodes insightful and frame-
independent information of the flow, further controlling the
tracer gradient norm evolution (Haller and Yuan 2000).

APPENDIX B

Exact Formula for the Tracer Gradient Norm

Note that at a given time, the transported tracer gradient
∇T can be written from the initial gradient field ∇T0 as

∇T x( )5∇ T0 f2 1 x( )[ ]{ }
5 ∇fT

( )2 1
f2 1 x( )[ ]∇T0 f2 1 x( )[ ]·

(B1)

Using the divergence-free assumption in the variable
change and the matrix diagonalization (B1) with the identi-
ties D21

11 5D22 and D21
22 5D11, an exact expression of the

averaged squared norm of tracer gradients reads

‖∇T‖2 2 ‖∇T0‖2 5 1
S

�
V

dx‖∇T x( )‖2 2 1
S

�
V

dx0‖∇T0 x0( )‖2,
(B2)

5
1
S

�
V

dx0
777 ∇fT
[ ]2 1

x0( )∇T0 x0( )
7772 2 1

S

�
V

dx0‖∇T0 x0( )‖2,
(B3)

5 ∇T0( )T ∇fT ∇fT
( )T[ ]2 1

2 Id

{ }
∇T0 , (B4)
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5a2 12
b

a

( )
︸��︷︷��︸

, 0

PT∇T0

( )2
1 1 11

b

a

( )
︸��︷︷��︸

. 0

PT∇T0

( )2
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (B5)

where PT∇T0

( )
i is the ith component of the vector PT∇T0.

Thus, the Cauchy–Green tensor and the initial tracer gradi-
ent completely determine the averaged squared norm of
advected tracer gradients. To simplify the above expression,
we define the angle between the tracer gradient and the
compressive (stable) direction of the direct flow as

cos ufT0

( )
5

PT∇T0

( )
2

‖∇T0‖ · (B6)

Finally, we infer the following compact expression:

‖∇T‖2 2 ‖∇T0‖2 5 ‖∇T0‖2 a2 11
b

a
cos 2ufT0

( )[ ]
· (B7)

APPENDIX C

Mixing Criterion of Mezić et al. (2010)

As derived in Mezić et al. (2010), the incompressibility of
the flow yields

15det ∇fT
( )

5det Id 1 t∇v^ T
( )

5 11 t tr ∇v^ T
( )

1 t2det ∇v^ T
( )

·
(C1)

For an incompressible flow, the mesochronic velocity follows

t det ∇v^ T
( )

5 2 tr ∇v^ T
( )

5 2∇ · v^ Þ0: (C2)

The definition of the local growth rate a2 then reads

a2¢
1
2
‖∇fT‖2 2 1, (C3)

5
1
2
‖Id 1 t∇v^ T‖2 2 1, (C4)

5 2 t tdet ∇v^T
( )[ ]

1
t2

2
‖∇v^T‖2, (C5)

5
t2

2
xu

^
2yy

^

( )2
1 yu

^
1xy

^

( )2[ ]
· (C6)

Then, the incompressibility constraint (C2) helps rewrite

(C6) as a function of the determinant det ∇v^T
( )

:

a2 5
t2

2
∇ · v^
( )2

2 4det ∇v^T
( )

1v
^ 2

[ ]
, (C7)

5
t2

2
t2det ∇v^T

( )
det ∇v^T

( )
2

4
t2

[ ]
1v

^ 2
{ }

· (C8)

APPENDIX D

Folding Time

Denote the derivatives of g as follows:

1g
T

( )
z1, z2( )5∇z1 gT z1, z2( )

[ ]
and 2g( ) z1, z2( )5z2 g z1, z2( )[ ]·

(D1)

with both terms 1 2 periodic with respect to its second var-
iable. Using frequency invariance (3.10), we can replace
f(x0) by f[f(x0, t)] in the model (3.8):

f x0, t( )5x0 1 g x0, f f x0, t( )[ ]
t

{ }· (D2)

Then, replacing back f[f(x0, t)] by f(x0) after evaluating the
gradient, the stretching of the flow reads

∇fT x0, t( )5 Id 1 1g
T

( )
x0, f f x0, t( )[ ]

t
{ }

1 t∇fT x0, t( ) ∇f f x0, t( )[ ]
2g

T
( )

x0, f f x0, t( )[ ]
t

{ }
, (D3)

5 Id 1 1g
T

( )
x0, f x0( )t[ ]

1 t∇fT x0, t( ) ∇f f x0, t( )[ ]
2g

T
( )

x0, f x0( )t[ ]·
(D4)

In the last equality, the second right-hand term is time peri-
odic and thus bounded. If we neglect its time variation
(e.g., for large advection time t), it writes

1g
T

( )
x0, f x0( )t[ ] ≈ 1g

T
( )

x0, 0( )5∇fT x0, 0( )2 Id 5 0: (D5)

Introducing the original periodic model (3.8) into its defini-
tion, the Lagrangian velocity V reads

V x0, t( )5 df x0, t( )
dt

5 f x0( ) 2g( ) x0, f x0( )t[ ]· (D6)

Finally, the flow gradient expression (D4) can be rewritten
using Eqs. (D5) and (D6):

∇fT x0, t( )5 Id 1 t∇fT x0, t( ) ∇f f x0, t( )[ ]
f x0( ) VT x0, t( ), (D7)

5 Id 1 t∇fT x0, t( ) 1
f
∇fvT

( )
f x0, t( )[ ]

, (D8)

where the frequency invariance (3.10) was used in the last
equality. Factorizing terms in ∇fT,

Id 5∇fT x0, t( ) Id 2 t
1
f
∇fvT

( )
f x0, t( )[ ]{ }

, (D9)

we then inverse the matrix equation and remap with the
inverse flow f21:

∇fT
( )2 1

f2 1 x, t( ), t
[ ]

5 Id 2 t
1
f
∇fvT

( )
x( )· (D10)
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Since the frequency is a function of the streamline (3.10),
we have

05
d
dt

f x0( )[ ]
5

d
dt

f f x0, t( )[ ]{ }
5 v · ∇f( ) f x0, t( ), t[ ]· (D11)

Therefore, the frequency gradient is orthogonal to the
velocity, and

‖∇f‖ ≈ v⊥

‖v⊥‖ · ∇f
∣∣∣∣ ∣∣∣∣· (D12)

Eigenvalues of the Cauchy–Green tensor are the inverse of one
another. Therefore, their traces are equal, and hence the matrix
∇fT and its inverse have the same Frobenius norm (equals to
that trace). So, the time dependency of the growth rate in the
final grid (points x) follows from its definition and from (D10):

a2 f2 1 x, t( ), t
[ ]

¢
1
2

777∇fT f2 1 x,t( ),t[ ]7772 2 1, (D13)

5
1
2

777 ∇fT
( )2 1

f2 1 x,t( ),t[ ]7772 2 1, (D14)

5 2
t
f
∇f · v

( )
︸��︷︷��︸
5 0 by (D11)

x( )1 t2

2f 2
‖∇f‖2‖v2‖

( )
x( )· (D15)

APPENDIX E

Spectra of Tracers for Smooth Flow

With Dirichlet boundary conditions for the tracer, inte-
gration by parts leads to

2Hgq 0( )5 2 ∇dx∇dx
Tgq dx( )

[ ]
|dx 5 0

, (E1)

5 2
1
S

�
V

dx q x( ) ∇dx∇dx
Tq x1 dx( )[ ]

|dx 5 0
, (E2)

5 2
1
S

�
V

dxq x( )Hq x( ), (E3)

5
1
S

�
V

dx∇q x( ) ∇q x( )[ ]T, (E4)

5∇q ∇q( )T . 0 in the Lowner sense( )· (E5)

In particular, the Hessian trace simplified to

tr Hgq 0( )
[ ]

5 2 tr ∇q ∇q( )T[ ]
5 2 ‖∇q‖2 · (E6)

The Fourier transform of the covariance expression (4.3)
provides the approximation of the spectrum tail:

Gq k( )¢ q̂ k( )∣∣ ∣∣2 5ĝq k( )

∼
‖k‖→∞

2p q2
( )2

det Hgq 0( )
[ ]1=2 3 exp 2

1
2
kT 2q2H2 1

gq
0( )

[ ]
k

{ }
,

(E7)

where the hat denotes spatial Fourier transform. Neverthe-
less, ∇q(∇q)T and thus Hgq is not convenient to manipulate.
Accordingly, hereafter, we will focus on the omnidirectional
spectrum of a scalar q. This will enable us to replace
∇q(∇q)T by ‖∇q‖ in the expression of the spectrum (E7).

Gq k( )5k

�
0,2p[ ]

dukGf k( ), (E8)

5k

�
0,2p[ ]

duk

�
V

ddxgq dx( )e2 ik·dx, (E9)

5k

�
0,2p[ ]

ddx gq 0( )2 1
2
dxT

1
S

�
V

dx∇q x( ) ∇q x( )[ ]T
dx

{

1 o
‖dx‖→0

‖dx‖3
( )}

3 e2 ik·dx, (E10)

5
k

S

�
0,2p[ ]

duk

�
V

ddx
�
V

dx q2 x( )2 1
2
dxT∇q x( ) ∇q x( )[ ]T

dx

{

1 o
‖dx‖→0

‖dx3‖( )}
3 e2 ik·dx, (E11)

5
k

S

�
V

dx
�

0,2p[ ]
duk

�
V

ddx q2 x( )2 1
2

∇q x( )
‖∇q x( )‖ · dx
[ ]2

‖∇q x( )‖2
{

1 o
‖dx‖→0

‖dx‖3
( )}

e2 ik·dx· (E12)

Locally in x, we can define a variable change for dx 5 (dx1
dx2)

T. We apply the rotation matrix U x( )5 1=‖∇q x( )‖[ ]
∇q x( )∇⊥q x( )[ ]

to dx to align dx with the tracer gradient and
denote u(x) the angle of the associated rotation:

Gq k( )5 k

S

�
V

dx
�

0,2p[ ]
duk

�
V

ddx q2 x( )2 1
2

dx1)2
77∇q x( )772([

1 o
‖dx‖→0

‖dx‖3
( )]

3 e2 i UTk( )·dx, (E13)

5
k

S

�
V

dx
�

u x( ),u x( )1 2p[ ]
duk

�
V

ddx q2 x( )2 1
2

dx1( )2∇q x( )22
[

1 o
‖dx‖→0

‖dx‖3
( )]

3 e2 ik·dx, (E14)
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�
V

dx
�

0,2p[ ]
duk

�
V

ddx q2 x( )2 1
2

dx1( )277∇q x( )772[

1 o
‖dx‖→0

‖dx‖3
( )]

3 e2 ik·dx, (E15)

5k

�
0,2p[ ]

duk

�
V

ddx q2 2
1
2

dx1( )2‖∇q‖2
[

1 o
dx| || |→0

‖dx‖3
( )]

e2 ik·dx· (E16)

The third equality above is due to the averaging over the
spatial frequency angle uk. Indeed, U

Tk is just a rotation of
k. And, integrating over [0, 2p] or over [u(x), 2p 1 u(x)] is
the same thing, since it leads to the same closed line: a cir-
cle of radius k.

Gq k( )5k

�
0,2p[ ]

duk

�
V

ddx1ddx2 q2exp 2
1
2
‖∇q‖2
q2

dx1( )2
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1 o
‖dx‖→0
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( )}

3 e2 ik1dx1e2 ik2dx2 , (E17)
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L2

f k
2
1

( )
2p( )d k2( ), (E18)

where k 5 (k1 k2)
T 5 [kcos(uk) ksin(uk)]T, L2

f 5q2
/
‖∇q‖2

and Cf= 2 2p( )[ ]
5 2p q2

( )3/
‖∇q‖2

[ ]1=2
. Note that the asymp-

totic equivalence is an approximation. Then, switching from
cylindrical to Cartesian coordinates in each half ring

k ∈R2 k1#0, ‖k‖5k| }{
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{
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