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Estimating snowmelt in semi-arid mountain ranges is an important but challenging task,
due to the large spatial variability of the snow cover and scarcity of field observations.
Adding solar radiation as snowmelt predictor within empirical snow models is often done
to account for topographically induced variations in melt rates. This study examines
the added value of including different treatments of solar radiation within empirical
snowmelt models and benchmarks their performance against MODIS snow cover
area (SCA) maps over the 2003-2016 period. Three spatially distributed, enhanced
temperature index models that, respectively, include the potential clear-sky direct
radiation, the incoming solar radiation and net solar radiation were compared with a
classical temperature-index (TI) model to simulate snowmelt, SWE and SCA within the
Rheraya basin in the Moroccan High Atlas Range. Enhanced models, particularly that
which includes net solar radiation, were found to better explain the observed SCA
variability compared to the TI model. However, differences in model performance in
simulating basin wide SWE and SCA were small. This occurs because topographically
induced variations in melt rates simulated by the enhanced models tend to average
out, a situation favored by the rather uniform distribution of slope aspects in the basin.
While the enhanced models simulated more heterogeneous snow cover conditions,
aggregating the simulated SCA from the 100 m model resolution towards the MODIS
resolution (500 m) suppresses key spatial variability related to solar radiation, which
attenuates the differences between the TI and the radiative models. Our findings call
for caution when using MODIS for calibration and validation of spatially distributed
snow models.

Keywords: snow water equivalent, snow cover, temperature index model, solar radiation, snowmelt, moderate
resolution imaging spectro-radiometer, snow spatial heterogeneity, Moroccan Atlas
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INTRODUCTION

Snow constitutes a key element in determining water availability
in mountainous catchments, especially in arid and semiarid
regions, so that a good understanding of snowpack processes is
crucial to support water management strategies (Barnett et al.,
2005; Viviroli and Weingartner, 2008; De Jong et al., 2009;
Vicuña et al., 2011; Mankin et al., 2015; Qin et al., 2020). In this
context, modeling snowmelt and snow water equivalent (SWE)
at the basin scale represents an important tool for water budget
calculation and runoff prediction (Matin and Bourque, 2013; Bair
et al., 2016; Fayad et al., 2017; Han et al., 2019).

The lack of ground observations and the large spatiotemporal
heterogeneity of snow cover represent challenging limitations
for snow studies in remote mountain ranges (Chaponnière
et al., 2005; Boudhar et al., 2010, 2016; Rohrer et al., 2013;
Marchane et al., 2015; Collados-Lara et al., 2020). In this context,
the use of simple conceptual snow models combined with
remote sensing data constitutes a useful approach to assess
and quantify snowmelt and SWE distribution at the basin
scale (e.g., Jain et al., 2010; Abudu et al., 2012; Berezowski
et al., 2015; Dozier et al., 2016; Sproles et al., 2016; Steele
et al., 2017; Han et al., 2019). Conceptual models use simplified
process representations with lower data requirements than
physically based models, and are thus widely used for large-
scale applications in high mountain catchments where in situ
observations are sparse (Singh and Bengtsson, 2003; Schneider
et al., 2007; Fassnacht et al., 2017). The most commonly used
conceptual snow models are temperature-index models, which
depend solely on air temperature to calculate snowmelt using the
degree-day method (Hock, 2003). Despite their simplicity, these
models can provide reliable estimates of melt rates and perform
generally well both at the point scale and within distributed
or lumped hydrological models (Vincent, 2002; Abudu et al.,
2012; Kampf and Richer, 2014; Senzeba et al., 2015; Hublart
et al., 2016; Réveillet et al., 2017). On the other hand, it has
been demonstrated that enhanced temperature-index models
that include solar radiation as predictor can outperform classical
degree-day models (Cazorzi and Dalla Fontana, 1996; Hock,
1999; Pellicciotti et al., 2005; Carenzo et al., 2009; Homan
et al., 2011; Carturan et al., 2012; Gabbi et al., 2014; Bouamri
et al., 2018). This is to be expected, as solar radiation is
one of the main components of the surface energy balance,
generally contributing between 50 and 90% of the energy
available for melt (Willis et al., 2002; Mazurkiewicz et al., 2008),
and has a great influence on the spatial variability of ablation
(Herrero et al., 2009; Aguilar et al., 2010; Comola et al., 2015;
DeBeer and Pomeroy, 2017).

Representing the spatial variability of snow cover within
distributed, parsimonious snowmelt models for hydrological
applications remains challenging, especially in mountainous
areas where the snow distribution depends on complex
relationships between meteorological conditions and the
surrounding landscape, primarily topography (Anderton
et al., 2004; Molotch et al., 2005; DeBeer and Pomeroy, 2009;
Grünewald et al., 2010; Clark et al., 2011). In this sense,
various studies have shown that elevation, slope, and aspect

play a crucial role in determining the spatial variability of
snow processes (Lehning et al., 2006; Letsinger and Olyphant,
2007; López-Moreno and Stähli, 2008). Interactions between
topography and solar radiation strongly modulates the shortwave
radiation balance and produce considerable shading effects,
especially in high relief landscapes (e.g., Olyphant, 1984).
While TI models only consider the elevation dependance of
temperature to model the heterogeneity of snowmelt rates,
adding solar radiation allows to explicitly include the effect of
topography on melt and as such to better represent the snow
cover heterogeneity (e.g., Cazorzi and Dalla Fontana, 1996;
Zaramella et al., 2019). Indeed, previous studies have shown
that including solar radiation improved the performance of
spatially distributed melt models for predictions of glacier
mass balance (Gabbi et al., 2014), snow cover area (Cazorzi
and Dalla Fontana, 1996; Follum et al., 2015), and streamflow
from snow-fed basins (Brubaker et al., 1996; Follum et al.,
2019; Massmann, 2019). Given the larger computational cost
entailed to calculate spatially distributed radiation maps,
it is important to assess their relevance for estimating
snowmelt with conceptual models aimed for operational
hydrological applications.

Including solar radiation in distributed snowmelt models
raises the question about the appropriate scale (resolution) to
run models and the suitability of available data to validate them
(Baba et al., 2019). While distributed empirical models can be
run at high spatial resolutions (<1 km) over large catchments
(>1000 km2), few observations are usually available to validate
spatial simulations explicitly. Snow depth maps from repeat
lidar surveys (Bair et al., 2016; Painter et al., 2016) and satellite
photogrammetry (Marti et al., 2016) are becoming increasingly
available, but they remain rare, so that snow cover area (SCA)
maps often represent the sole source of spatially distributed
snow information to validate distributed snow models. Snow
cover maps derived from the Moderate-Resolution Imaging
Spectroradiometer (MODIS) sensor onboard the Terra and Aqua
satellites, available since 2000 and 2002, respectively, have been
at the forefront of distributed snow model calibration and
validation efforts (Parajka and Blöschl, 2008; Finger et al., 2011;
Franz and Karsten, 2013; Gascoin et al., 2013; Duethmann
et al., 2014; He et al., 2014; Baba et al., 2018). However,
its spatial resolution (∼500 m) may often be larger than the
resolution of key processes, such as topographic radiation loading
and snow drifting.

This paper examines how temperature index snowmelt models
enhanced with different solar radiation components impact the
simulated spatiotemporal variability of SWE and snowmelt, and
investigates scaling issues arising when using MODIS snow
cover area maps for model validation. We specifically aim to
show (i) how solar radiation impacts the simulated snowmelt
dynamics and resulting spatiotemporal heterogeneity in snow
cover area, and (ii) if and how this heterogeneity is captured
by MODIS snow cover area products that are commonly used
for model calibration and validation. This question has not yet
been explored in the snow hydrology community and should thus
provide further guidance for the implementation and validation
of distributed empirical snow models.
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STUDY AREA

The study was carried out in the Rheraya headwater watershed in
the High Atlas Range in central Morocco (Figure 1). Snowmelt
in this region has important socio-economic implications by
providing fresh water to irrigate the arid plains downstream,
supplying drinking water for populations and supporting
hydropower generation (Chehbouni et al., 2008). The watershed
covers an area of 228 km2, and its elevation ranges from 1060
m a.s.l to the Jbel Toubkal summit at 4167 m a.s.l., the highest
summit of North Africa. Slopes in the basins are steep (mean of
∼24◦ from a 100 m resolution DEM) and characterized by sparse
vegetation in the spring which quickly disappears in summer
due to aridity. The Rheraya watershed has a mixed snow-rain
regime and constitutes the most important water supply for the
downstream region (Schulz and de Jong, 2004; Chaponnière et al.,
2005; Rochdane et al., 2012; Hajhouji et al., 2018). Average annual
precipitation was 520 mm from 1988 to 2010 as measured at
the Club Alpin Francais (CAF) station at 2612 m above sea
level (a.s.l), where 50% occurred as snow during winter months
(Boudhar et al., 2016). The snow cover is highly variable at annual
and inter-annual time scales and the snowmelt was found to
contribute from 28 to 48% of the annual river discharge (Boudhar
et al., 2009). The Rheraya has been used as an experimental
site for mountain hydrological studies in the Tensift River basin
(Jarlan et al., 2015), leading to a concentration of studies on snow
and hydrology in this basin (Boudhar et al., 2016; Baba et al.,
2018, 2019; Bouamri et al., 2018; Hajhouji et al., 2018).

DATA AND METHODS

The different datasets used in this study are summarized in
Table 1 and detailed in the following sub-sections.

Digital Elevation Model
A 4 m spatial resolution Digital Elevation Model (DEM) derived
from Pleiades stereoscopic imagery was used to represent the
basin topography. Details about DEM processing are provided
in Baba et al. (2019). The DEM was previously validated for the
Rheraya catchment, showing a vertical absolute accuracy of 4.72
m (Baba et al., 2019). The DEM was aggregated to a coarser 100 m
resolution using bilinear resampling. This resolution was chosen
as a good tradeoff allowing for a reasonable model computation
time while adequately representing the dominant topographic
features in the Rheraya catchment (Baba et al., 2019).

Meteorological Forcing Data
Daily meteorological data obtained from ten stations at various
locations within or near the Rheraya watershed were used
to distribute meteorological variables to the catchment area
(Figure 1 and Supplementary Table 1). While precipitation
measurements were available at all ten stations, the availability
of air temperature and relative humidity varied among stations
and over time (Supplementary Figure 1). Two high elevation
stations, Oukaimeden-SM (3230 m a.s.l.) and Neltner (3207 m
a.s.l.) have unheated rain gauges, so their precipitation records

were excluded to avoid interpolating unreliable observations in
winter. The CAF station (2612 m a.s.l.) is thus the only high
elevation station with reliable precipitation observations since
rainfall and snowfall are independently and manually measured
since 1988 (Figure 1).

Satellite Data
MODIS Daily Snow Product
Snow cover maps were derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) daily snow cover products
MOD10A1 and MYD10A1 (MODIS Snow Cover Daily L3 Global
500 m SIN GRID V006), respectively, generated from the Terra
and Aqua MODIS satellites, and acquired from the National
Snow and Ice Data Center (NSIDC) (Hall and Riggs, 2016). The
MODIS snow products from the Terra and Aqua satellites are
available since February 2000 and February 2002, respectively.
The datasets are produced in a Geographic projection and
were re-projected to the World Geodetic System 1984 (WGS84)
Universal Transverse Mercator (UTM) coordinate system using
the data transformation options available at NSIDC. A total of
4734 MOD10A1 images and 4760 MYD10A1 images, covering
13 years from September 2003 to August 2016, were used in
this study. Snow cover was identified using the Normalized
Difference Snow Index (NDSI), which captures the high contrast
between the characteristically high reflectance of snow in the
visible spectrum and its low reflectance in the shortwave infrared
spectrum (Hall et al., 1995). Starting in MODIS version 6, the
fractional snow cover (FSC) has been replaced by the NDSI which
is designed to detect snow cover with high accuracy over a wide
range of viewing conditions, besides providing more flexible data
to the user (Riggs et al., 2015).

Processing and Combining MOD10A1 and MYD10A1
Cloud obscuration is the main obstacle to using MODIS snow
cover products (Parajka and Blöschl, 2008; Xie et al., 2009;
Zhou et al., 2013). The Terra and Aqua satellites have an
approximate 3 h average overpass time difference, during which
cloud conditions can change significantly (Xue et al., 2014).
Various previous studies have shown that combining Terra
and Aqua observations reduces cloud obscuration (Parajka and
Blöschl, 2008; Gafurov and Bárdossy, 2009; Wang and Xie, 2009;
Xie et al., 2009; Gascoin et al., 2015). For example, Gao et al.
(2010) reported that combining Terra and Aqua improved cloud
filtering by reducing the influence of transient clouds in daily
reflectance data by 11.7% compared to using MOD10A1 alone,
and by 7.7% compared to using MYD10A1 alone. In this study,
the MOD10A1 and MYD10A1 were merged into a combined
product called CMXD10A (Figure 2) as follow: (i) on any given
day if only one source (either Terra or Aqua) was available it
was used for that day; (ii) for days when both products are
available, priority was given to the Terra product (e.g., Xie et al.,
2009) since the Aqua MODIS instrument provides less accurate
snow maps due to dysfunction of band 6 on Aqua (Riggs and
Hall, 2004; Salomonson and Appel, 2006; Gascoin et al., 2015;
Zhang et al., 2019). This means than any pixel classified as
either cloud, missing, or unclassified in MOD10A1 was filled
with the corresponding pixel in MYD10A1 if that pixel had a
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FIGURE 1 | Geographical location of the Rheraya basin and weather stations.

TABLE 1 | Data used in the current study.

Data Description Spatial resolution Temporal resolution Time coverage Source

MODIS MOD10A1 NDSI (0-1) ∼500 m Daily 2003–2016 NSIDC

MYD10A1 NDSI (0-1) ∼500 m Daily 2003–2016

DEM Pleiades Digital Elevation Model
(m)

100 m – – Baba et al. (2019)

Meteorological data Total precipitation (mm)
Temperature (◦C)
Relative humidity (%)

Point Daily 2003–2016 LMI-TREMA

SWE Reconstructed snow water
equivalent at Oukaimeden (mm)

Point Daily 2003–2010 Boudhar et al. (2009)

Model outputs Snowmelt (mm)
Snow water equivalent (SWE)
(mm)
Snow cover area (SCA) (binary)

100 m Daily 2003–2016 This study

NDSI value, else the original MOD10A1 pixel classification was
conserved (Figure 2). Subsequently, a spatiotemporal filter was
applied to the merged CMXD10A product to fill in missing
NDSI data, i.e., pixels classified as cloud, but also those classified
as either missing, saturated or unclassified, collectively referred
to as ‘missing’ therein. A spatial filter was first applied only if
less than 60% of the mountainous areas (elevations above 1000
m) were missing (Marchane et al., 2015). This filter classifies
missing pixels as being fully snow-covered (NDSI = 1) when
their elevations is higher than the average elevation of other fully
snow-covered pixels in the entire basin. Then, a temporal filter
was applied to linearly interpolate the remaining missing pixels
within a moving window extending 3 days prior and 2 days after
the current date. This time window was previously shown to be
efficient for cloud gap filling by Marchane et al. (2015) in the
Rheraya catchment. NDSI values in the blended and interpolated

CMXD10A product were converted to binary maps of snow cover
area (SCA) based on an NDSI threshold of 0.4, following previous
studies (Xiao et al., 2004; Marchane et al., 2015; Hall and Riggs,
2016), i.e., for each pixel, SCA = 1 when NDSI ≥ 0.4, otherwise
SCA = 0 (Figure 2). The number of pixel identified as missing
over the entire period was reduced from 22.35% in MOD10A1 to
0.84% after blending both MODIS products and applying cloud
interpolation, which is similar to previous results obtained in the
same area by Marchane et al. (2015).

Snowmelt Models
Four different melt models were used to simulate snowmelt
and SWE in the Rheraya watershed. The benchmark model
is a classical degree-day or ‘temperature index’ (TI) model
(Hock, 2003), which uses air temperature as the sole predictor
for melt. This model was ‘enhanced’ with different solar radiation
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FIGURE 2 | Flowchart describing the steps for processing MODIS data and comparing MODIS and simulated snow cover area (SCA). Purple color, data source;
pink, intermediate output; gray, main output.

terms: (i) Hock’s temperature index melt model (HTI) which
includes clear sky potential solar radiation (Hock, 1999); (ii) an
enhanced temperature-index (ETIA) including global radiation
and (iii) an enhanced temperature-index (ETIB) that includes
albedo (Pellicciotti et al., 2005; Table 2). These models were
previously calibrated and validated at the point scale at the
Oukaimeden-SM weather station site (Bouamri et al., 2018), and
the same model coefficients were used for the spatial simulations
in this study (Table 3). Further model descriptions and results
regarding model performances at the point scale are presented
in detail in Bouamri et al. (2018), and only the main model
equations are given in Table 2.

Sublimation losses are not accounted for in empirical
melt models. These can be significant in the Rheraya basin,
representing 7–20 % of annual snowfall (Boudhar et al.,
2016). To take into account sublimation losses, a constant
average mean daily sublimation rates was used over the
entire basin (Table 3), based on the energy balance study
at the Oukaimeden-SM site by Boudhar et al. (2016). While
this approach is admittedly simple, it allows correcting for
first order sublimation losses (Jost et al., 2012) and as
such avoid compensating these losses by artificially reducing
precipitation during spatial interpolation and/or overestimating

melt, as can be the case when sublimation losses are
completely ignored.

Rain/Snow Partition
Determination of the precipitation phase has a large influence
on hydrological modeling in mountain areas (Yasutomi et al.,
2011; Marks et al., 2013). A linear transition technique was used
for the rain-snow partition (e.g., Marks et al., 2013; Feiccabrino
et al., 2015). The snowfall fraction is linearly interpolated between
a temperature threshold for rain Train (◦C), and a temperature
threshold for snow Tsnow (◦C) (Tarboton and Luce, 1996; Moore
et al., 2012). The daily snowfall (SF) and rainfall (RF) are
computed as:

SF = Px (Train − Tx) / (Train − Tsnow) (1a)

RF = Px − SF (1b)

Where Px is total precipitation and Tx is air temperature
at gridpoint x. If the daily air temperature is above the Train
threshold then RF = Px and SF = 0, while if Tx < Tsnow then
RF = 0 and SF = Px. The two fixed temperature thresholds,
Train and Tsnow, were calibrated on odd years and validated
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on even years using independant observations of snowfall and
rainfall available at the CAF station over 2003–2016. Optimal
values for Tsnow and Train were -2.5 ◦C and 2.5 ◦C, respectively.
The agreement between simulated and measured precipitation
was fair for rainfall, with a Nash-Sutcliffe Efficiency score (NSE)
(Nash and Sutcliffe, 1970) of 0.54 and correlation coefficient
(r) of 0.75, and better for snowfall (NSE = 0.77, r = 0.88)
(Supplementary Figure 3). The better performance for snowfall
is encouraging for the ensuing SWE modeling.

Spatialization of Meteorological Forcing
Half-hourly meteorological observations retrieved from the
different weather stations were averaged to daily interval for the
entire study period (2003–2016). Relative humidity (RH) was
converted to dew point temperature (DP) following Liston and
Elder (2006), since RH is considered a non-linear function of
elevation. Mean monthly lapse rates (i.e., averaged over the whole
period) were determined by linear regression of air temperature
(Ta) and DP against elevation. Since the seasonal variability in
the lapse rates was small, a mean annual value was used in the
models (Table 3). To distribute Ta and DP observations, station
observations were first adjusted to a common elevation using
the calculated lapse rate for each variable, and then spatially
interpolated to the entire basin using the Barnes objective
analysis scheme, following Liston and Elder (2006). The Barnes
scheme is used for interpolating data from irregularly spaced
observations to a regular grid using a two-pass scheme (Barnes,
1964). The interpolated values are then lapsed back to their
original grid elevation using the same lapse rate, and the DP
reconverted to RH.

Precipitation was spatially distributed by combining spatial
interpolation with a non-linear lapse rate, following Liston and
Elder (2006). First, precipitation observations are interpolated
to the model grid using the Barnes objective analysis scheme.
A reference topographic surface is constructed by interpolating
the station true elevations (as measured by GPS) using the same
method. The modeled precipitation rate Px (mm d−1), at a grid
point x with elevation Zx is computed as:

Px = P0 ×
[1+ PLR (Zx − Z0)]
[1− PLR (Zx − Z0)]

(2)

Where P0 is the interpolated station precipitation, Z0 is
the interpolated station elevation, and PLR (mm km−1) is the
precipitation lapse rate, or ‘correction factor’ (Liston and Elder,
2006). An interpolated topographic reference surface (Zx) is used
rather than a fixed reference because the precipitation adjustment
function (equation (2)) is a non-linear function of elevation
(Liston and Elder, 2006).

Due to the large spatial and temporal heterogeneity of
observed precipitation in Rheraya, a specific calibration of PLR
was sought. A range of 0.21- 0.35 km−1 was used based on the
lapse rate value fitted to station observations and the typical
winter value set by Liston and Elder (2006) and also found by
Baba et al. (2019) in the Rheraya basin. The PLR was calibrated
against positive SWE changes at the Oukaimeden-SM station,
a proxy for snow accumulation, over a lumped 3-year period
(2003-2006) and validated separately on the remaining 2 years

TABLE 2 | Melt models equations used in this study.

Snowmelt models Equations

Classical temperature
index (TI) melt model M =

{
DDF × Ta Ta > TT

0 Ta ≤ TT
(3)

Hock’s temperature
index melt model (HTI) M =

{
(MF + RF×Ipot)Ta Ta > TT

0 Ta ≤ TT
(4a)

Ipot = I0(Dm/D)×ψa(P/P0 cos Z)
× cos θ (4b)

Enhanced
temperature-index
(ETIA) melt model

M =

{
TF × Ta + SRFin × I Ta > TT

0 Ta ≤ TT
(5a)

R = −0.000054× RH2
− 0.0024× RH+ 1.3 (5b)

I = R× Ipot (5c)

Enhanced
temperature-index
(ETIB) melt model

M =

{
TF × Ta + SRFnet(1− α)I Ta > TT

0 Ta ≤ TT
(6a)

α = p1 − p2(log10(PDD)) (6b)

Variables are defined in footnote --| and model parameters in Table 3 --|M is the
melt rate (mm d−1), Ta is daily mean air temperature (◦C) and TT is a threshold
temperature fixed at 0◦C. Ipot is the potential clear-sky incoming direct solar
radiation (W m−2), I0 is the solar constant (1368 W m−2), Dm and D are the
mean and actual Sun-Earth distance, ψa is the vertical clear-sky atmospheric
transmissivity (0.75), P is the atmospheric pressure in Pa and P0 is standard
atmospheric pressure (101 325 Pa). Z is the solar zenith angle, and θ is the
incidence angle of the Sun on the surface. I is incoming shortwave radiation (W
m−2), R is the ratio between the incoming shortwave radiation (I) and the potential
clear-sky direct solar radiation (Ipot).α is snow albedo, where PDD (mm ◦C−1 d−1)
is the positive degree-day sum since the last snowfall. The parameter p1 represents
a typical maximum albedo value for fresh snow (0.8) and p2 is the empirical snow
albedo decay parameter (0.21). RH is relative humidity.

(2007–2008, 2009–2010) (Supplementary Figure 2). The optimal
value found, 0.35 km−1, was used to distribute precipitation
using equation (2).

The extrapolation of precipitation using equation (2) can
result in unrealistically large accumulation rates at high elevations
where there are few stations to constrain precipitation. Several
studies have shown that while precipitation typically increases
with elevation in mountain basins due to orographic uplifting
of air masses, this increase can cease and precipitation even
decrease passed a certain elevation (Alpert, 1986; Roe and Baker,
2006; Eeckman et al., 2017; Collados-Lara et al., 2018). This is
caused by the progressive depletion of moisture available for
condensation within the rising air mass. As such, it is crucial
in hydrological modeling to limit the vertical extrapolation
of precipitation to avoid artificial snow build up at high
elevations (Freudiger et al., 2017). In this sense, Liston and
Elder (2006) limited the difference between the actual (Zx)
and interpolated (Z0) station elevation (4Z = Zx − Z0) to a
default maximum value (4Zmax) of 1800 m. Since there are no
stations with reliable precipitation data above the CAF station
(2612 m) to constrain this value, this parameter was subjected
to a calibration/validation procedure against the MODIS SCA
maps for all melt models. 4Zmax was calibrated on odd years
within a 300-1800 m range and validated on even years for
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TABLE 3 | Summary of prescribed and calibrated model parameters.

Prescribed
parameter1

Description Optimal value Unit Calibrated
parameter

Description Optimum
value

Unit

DDF Degree-day factor 2.7 mm d−1 ◦C−1 TLP Temperature lapse rate −0.56 ◦C 100 m−1

MF Melt factor 1.8 mm d−1 ◦C−1 DPLR Dew point lapse rate −0.68 ◦C 100 m−1

RF Potential radiation factor 0.005 m2 mm W−1 d−1 ◦C−1 PLR Precipitation lapse rate 0.35 km−1

TFA Temperature factor ETIA 1.1 mm d−1 ◦C−1 SWE0 SWE-SCA threshold 4 mm

SRFin Incoming shortwave radiation factor 0.025 m2 mm W−1 d−1
4Zmax Maximum elevation difference 1000 m

TFB Temperature factor ETIB 0.6 mm d−1 ◦C−1 Tsnow Temperature threshold for snow −2.5 ◦C

SRFnet Net shortwave radiation factor 0.07 m2 mm W−1 d−1 Train Temperature threshold for rain 2.5 ◦C

p1 Fresh snow albedo 0.8 –

p2 Albedo decay parameter 0.21 –

Subli Sublimation rate 0.244 mm d−1

1From Bouamri et al. (2018).

each model in order to reduce the climate dependency of
the calibration period (Arsenault et al., 2018). The validation
was done using the optimal parameter for each model as
well as with the mean of the optimal parameters of each
model (mean4 Zmax).

The potential, clear-sky direct solar radiation was calculated
as a function of solar geometry, topography and a constant
vertical atmospheric transmissivity following Hock (1999), and
includes topographic shading (Equation 4b in Table 2). Global
radiation is calculated using a cloud factor parameterization
based on relative humidity (Bouamri et al., 2018) (Equation 5b, c
in Table 2) and the net radiation uses an albedo parameterisation
based on accumulated positive degree days (Brock et al.,
2000) (Equation 6b in Table 2). Further details are given in
Bouamri et al. (2018).

Model Validation
The daily snow cover area (SCA) from the merged CMXD10A
product was used to assess the ability of each model to simulate
the spatiotemporal variability of snow cover in the Rheraya
basin over the 2013-2016 period. A conversion of the simulated
SWE to SCA was required to compare the simulated SCA
with MODIS SCA. This conversion was performed using a
constant threshold (SWE0), i.e., for each grid, SCA = 1 when
SWE ≥ SWE0 and SCA = 0 otherwise. The conversion was
done at the model resolution (100 m). The use of this fixed
threshold avoids more complex snow depletion curves that
require more parameters unknown in our area (Magand et al.,
2014; Pimentel et al., 2017). Therefore, SWE0 was subjected to the
same calibration/validation procedure as for4Zmax, using a range
of values from 1 to 20 mm following previous studies (Gascoin
et al., 2015; Baba et al., 2019).

Confusion matrices were used to assess the classification
accuracy of the simulated SCA maps relative to MODIS SCA.
Confusion matrices are two-dimensional contingency tables that
display the discrete joint distribution of simulated and observed
data frequencies (Zappa, 2008). Model skill scores were derived
from the confusion matrix (Table 4). The Heidke Skill Score
(HSS) (Heidke, 1926) which is equivalent to the Kappa coefficient
proposed by Cohen (1960), measures the classification accuracy

relative to that expected by chance and has been extensively
used for imbalanced datasets such as snow remote-sensing data
(e.g., Zappa, 2008; Notarnicola et al., 2013; Baba et al., 2019).
The HSS was thus the preferred global metrics used for model
assessment. Still, because no global metric is able to completely
depict the types of classification errors committed by a model,
four metrics based on marginal ratios of the confusion matrix
were also used to investigate model errors, as done in several
previous studies (e.g., Parajka and Blöschl, 2012; Rittger et al.,
2013; Zhou et al., 2013; Zhang et al., 2019). The true positive
rate (TPR) measures the proportion of MODIS snow-covered
pixels correctly identified as such by the model. Oppositely, the
true negative rate (TNR) measures the proportion of MODIS
snow-free pixels correctly simulated by the model. The false-
negative rate (FNR) measures the proportion of MODIS snow-
covered pixels incorrectly identified as snow-free by the model.
Complementarily, the false-positive rate (FPR) or ‘False Alarm
Rate’ (FAR) as called by Zappa (2008) is the proportion of
MODIS snow-free pixels incorrectly identified as snow-covered
by the model. Further descriptions of theses metrics are given
in Table 4.

TABLE 4 | Description of confusion matrix between simulated and MODIS SCA,
and the evaluation metrics used for model assessment.

SCA MODIS

SCAsim Snow Snow free

Snow TP FP

Snow free FN TN

Metrics Definitions

TPR TP/(TP+ FN)

TNR TN/(TN + FP)

FNR FN/(FN + TP)

FPR FP/(F + TN)

HSS 2×(TP×TN−FP×FN)
(TP+FP)×(FP+TN)+(TP+FN)×(FN+TN)

TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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RESULTS

Basin-Wide Snow Cover Area
Parameter Sensitivity and Calibration
The sensitivity of SCA model performance to the maximum
elevation difference (4Zmax) and SWE-SCA conversion
threshold (SWE0) was assessed using the mean daily HSS metric
computed over the calibration period, i.e., the odd years of the
2003-2016 period (Figure 3). Generally, the model performance
increases with model complexity, i.e., the HSS is lowest for TI
and highest for ETIB. All four models are more sensitive to
4Zmax than the SWE0 parameter. The mean optimal SWE0varies
between 3 mm for TI to 6 mm for ETIB, with little variations in
HSS score within this range as well as within each model. A mean
optimal SWE0 value of 4 mm was thus used for validation
on even years and for further inter-model comparisons. This
value is small compared to the 40 mm threshold used by Baba
et al. (2019) and Gascoin et al. (2015) but SWE0 is resolution
dependent, increasing with pixel resolution (Gascoin et al.,
2019). The optimal 4Zmax shows more variability between
models, increasing with model complexity, i.e., lowest for TI
and highest for ETIB. This is in fact to be expected from this
parameter, which should also partly correct errors in modeled
ablation. Using a common 4Zmax and SWE0 value avoids the
problem of compensating snowmelt parameterisation errors in
each model, which would prevent any further direct comparison
of the snowmelt parameterisations. A mean 4Zmaxof 1000 m,
which is within the zone of maximum performance for each
model (Figure 3) was thus used for validation across models and
for further inter-model comparisons. Choosing the multi-model
average parameter set (SWE0 = 4 mm, 4Zmax 1000 m) over the
model-specific optimal parameters affects little the performance
in validation (Figure 3). In fact, a slight increase in performance
is even noted for ETIB, which suggests that the model-specific
values may be slightly overfitted and less transferable compared
to the multi-model average parameter set.

The slight overall differences in performance between models
suggest that, on average, all models have similar abilities to
classify snow vs. snow free MODIS pixels, as assessed by the mean
HSS metric. The small differences could be partly attributed to
the fact that performance metrics are averaged over the whole
calibration period. Hence, interannual and seasonal differences
in model performance are investigated next.

Basin-Wide SWE and SCA
Time series of daily simulated basin wide SWE and fractional
snow cover (fSCA) show significant intra and inter-annual
variability over the period (2003-2016) (Figure 4). The fSCA
simulated by the four models are in good agreement overall with
MODIS observations, both in terms of timing and magnitude.
In some years, however, the simulated snow cover lasts longer
than observed in MODIS (2004, 2005, 2007, 2008, 2009, and
2012). Those years had above average basin-wide simulated SWE
(Figure 4A), so that overestimated accumulation in the upper
basin during these wetter years could be the cause for the longer-
lasting simulated SCA (Figure 4C). In contrast, in years with

scarce snowfall and thinner simulated snowpack (e.g., 2011,
2013, 2014, and 2016), the agreement between simulated and
observed fSCA is better (Figure 4D). The varying availability
of precipitation records over time could also partly explain this
pattern (Supplementary Figure 1).

All four models show slight differences in their basin-wide
fSCA and SWE predictions. Error metrics for the whole period
(2003-2016) show that increasing model complexity slightly
improves the correlation (r) and predictive skill (NSE) for basin-
wide fSCA (Figure 4E). Both the root mean squared error
(RMSE) and mean absolute error (MAE) also decrease with
model complexity, but a larger bias for the ETIB model slightly
increases its MAE relative to the ETIA model (Figure 4F). Hence,
overall, the best performance is primarily observed for both
enhanced radiative models ETIA and ETIB followed by the HTI
and the classical TI models. Still, given the slight differences
between models and the increased computational cost associated
with enhanced radiative models, the TI model offers at first glance
a satisfactory performance to simulate SWE for hydrological
applications in the High Atlas range. The causes for inter-model
differences in model performance and in simulated SWE and
melt are explored in the next sections.

Seasonality
The seasonality of the simulated SWE and fSCA was investigated
to better understand seasonal inter-model differences
(Figures 5A–C). The enhanced models were then contrasted
with the reference TI model to highlight the effect of the different
radiation terms on the simulated snow cover (Figures 5D,E). The
mean basin SWE seasonal cycle calculated over snow-covered
areas (‘SCA SWE’) shows similar variations among models,
particularly during the accumulation season (October-March)
(Figure 5A). The mean simulated peak occurs in April and varies
from 172 mm to 195 mm between models. Increasing differences
between the ETI models and TI from March to May reflect the
increasing ablation rates simulated by these models relative to TI,
while the HTI model differs significantly from TI only from May
onward when the SCA is low (Figure 5D). Maximum differences
with TI are reached at peak SWE in April for ETIA (-24 mm)
and ETIB (-14 mm) and in June for HTI (-21 mm) (Figure 5D).
The ETIA model, which does not include albedo feedbacks, thus
tends to accentuate most the melt rates in early spring compared
to TI. The melt coefficients of ETIA, previously calibrated at the
Oukaimeden station, may be slightly biased towards late spring
conditions, which results in exaggerated late-winter/early spring
melt rates (Bouamri et al., 2018).

When considering mean SWE over the whole basin surface
(“Basin SWE”), differences between the enhanced models and
TI are more positive during winter and occur at different times
(Figure 5B). ETIB stands out with the largest mean peak SWE
of 37 mm in March, followed by HTI and the other models. In
contrast to the classical TI model, all radiative models simulate
higher mean basin SWE during the accumulation period, while
ETIA and HTI simulate lower SWE in late spring compared to TI.

The different seasonal behaviors for the mean basin SWE
and mean SWE over snow covered areas can be explained
by differences in simulated SCA. All models, except ETIB,
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FIGURE 3 | Sensitivity of model SCA simulation performance, as assessed with the mean HSS index, to 4Zmax and SWE0 parameters over the calibration period.
Optimal parameter values are indicated by asterisks (*). The validation HSS statistics for the model-specific and multi-model average optimal parameters are shown
in white. (A) TI, (B) HTI, (C) ETIA, and (D) ETIB.

underestimated MODIS fSCA during accumulation, whereas
all models overestimated MODIS fSCA on average during the
ablation period, by up to 4.2% for ETIB and TI, and by 3.4%
for HTI and ETIA (Figures 5C,F). This confirms the tendency
identified in Figure 4 for wet years to have a longer-lasting snow
cover simulated by all models, relative to MODIS. Inter-model
differences show that all enhanced models simulate a larger snow
cover than TI during the accumulation period, with ETIB being
the most different and also most in line with MODIS, followed
by HTI and ETIA. This explains the positive differences in basin
SWE between these models and TI during the accumulation
period (Figures 5B,E).

Seasonal variations in SCA model performance, as measured
by the HSS index, were investigated over the whole period
(Figure 6). Globally, the HSS metric is highest (∼0.6-0.75) during
winter and spring (December-April) but decreases sharply during
the shoulder seasons (October to November and May to June).
This shows that the model performance is generally good during
most of the snow season, but that classification errors increase
when the snow cover is more restricted in the basin. All radiative
models performed better than TI especially in the accumulation
period, with ETIB performing best, with a maximum increase in
HSS of 0.03. The models become gradually more similar in late
spring (May-June).

Spatial Variability
Model performance in predicting spatial variations in SCA
was investigated by plotting the HSS metric by elevation bins

(Figure 7). Overall, the HSS index increases with elevation for
all models (Figure 7B). The mean simulated fractional snow
cover area (fSCA) also increases with elevation, in line with
MODIS fSCA, but all models start overestimating fSCA above
3500 m (Figure 7A). The worst model performance (lowest
HSS) are thus associated with the marginal and transient snow
conditions found at the lowest elevations of the basin. Since these
elevation areas represent a large share of the basin hypsometry
(Figure 7A), the higher classification errors in these areas have a
large influence on the basin-wide and time-averaged performance
metrics, as displayed on Figure 3.

All enhanced models perform generally better than TI,
although the gains in performance remain overall small
(Figures 7C–E). Elevation trends also differ between the radiative
models. ETIB performs best, but the improvement is most
pronounced at lower elevations (Z < 3000m), which represent
a large portion of the total basin but where there is less snow
present throughout the year (Figure 7A). At high elevations
(Z > 3000m) where mean SCA is above 30%, the gain in
performance becomes more marginal for ETIB, while it is
somewhat more pronounced for HTI and ETIA. While the
bulk of the elevation bands show increased performance of the
radiative models relative to TI, a small portion of grid points, in
some cases up to ∼20% (left side of boxes in Figure 7 boxplots),
actually suffer increased errors relative to TI.

Further insights into the performance behavior between
models can be obtained by looking at classification success (TPR,
TNR) and error rates (FPR, FNR) by elevation (Figure 8).
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FIGURE 4 | Time series of (A) simulated mean snow water equivalent (SWE), and (B) simulated mean fractional snow cover area (fSCA) of all models vs. MODIS;
(C) zoom in on 2009 year; (D) zoom in on year 2016; (E,F) errors statistics over the entire period 2003–2016 in the Rheraya catchment.

FIGURE 5 | Seasonal cycle of mean simulated snow water equivalent (SWE). (A) Over snow-covered area only. (B) Over the whole basin. (C) Mean simulated fSCA
vs. MODIS. (D,E) Difference between radiative models and the reference TI model for panels A and B. (F) Difference between modeled and MODIS fSCA.
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FIGURE 6 | Seasonal model performance. (A) Mean seasonal cycle of HSS
index over the whole 2003–2016 period. (B) Differences between enhanced
radiative models and the reference temperature index (TI) model.

Overall, the true positive rate (TPR) increases with elevation,
reaching a maximum value of∼0.9 around 3600 m (Figure 8: row
1). The enhanced models better classify snow presence than TI in

the more transient snow zone (∼1500–3200m), with ETIB clearly
performing best. The improvement for HTI is small but rather
consistent with altitude, whereas ETIA shows more variations
with even losses in performance in the highest and lowest
altitudes relative to TI. Opposite to TPR, the true negative rate
(TNR) decreases with altitude. Both ETI models show the largest
deviations with TI, but with decreased accuracy at medium
elevations, especially for ETIB (Figure 8: row 2). The elevation
profile of the false positive error rate (FPR) shows that all models
tend to over predict snow presence towards higher altitudes
(Figure 8: rows 3). Conversely, models rarely overpredict snow-
free conditions at high elevations but do so at the lower elevations
(Figure 8: rows 4). The enhanced models can be seen to reduce
both the FPR and FNR errors on average, but large scatter occurs
within elevation bands. The clearer improvement relative to TI is
the decreased FNR error for ETIB (Figure 8D: rows 4).

Despite the overall good performance for the simple TI model,
the enhanced models, especially ETIB, still explained more
variability in SCA within most elevation bands, but with notable
discrepancies among models (Figure 7). To better understand
these discrepancies, the simulated SWE and melt rates were
compared by elevation band (Figure 9). The HTI model shows
the smallest difference relative to TI, in line with its more
similar performance in SCA simulations. This can be attributed
to the fact that HTI only adjusts the degree-day factor based
on the potential clear-sky radiation and thus ignores temporal
variations in atmospheric transmissivity and albedo. On the other
hand, both ETI models show significant differences in simulated
SWE (Figures 9C,D) and melt rates (Figures 9G,H) relative
to TI. The best performing ETIB model simulates smaller melt
rates and larger SWE at middle elevations (2000–3500 m), and
higher melt rates and smaller SWE at the highest elevations
(>3500 m). Interestingly, the median differences in SWE and
melt rates between the enhanced models and TI per elevation
band are rather small, which again shows that the preponderant
influence of elevation on the simulated SWE is well captured
by the simple TI model. However, significant deviations occur,
up to ca. ± 20 mm for SWE and ca. ± 1 mm d−1 for

FIGURE 7 | Model validation and intercomparison by elevation. (A) Distribution of mean fSCA per elevation range and basin hypsometry. (B) Median HSS index of all
models by elevation. (C–E) HSS differences between radiative and reference TI model by elevation range: (C) HTI. (D) ETIA. (E) ETIB.
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FIGURE 8 | SCA classification errors by elevation; 1st row, true positive rate (TPR); 2nd row, true negative rate (TNR); 3rd row, false positive rate (FPR); 4th row, false
negative rate. (A) Median error rate. (B–D) Differences between radiative and classical TI model.

melt rates (Figures 9C,D,G,H). Given that the simulated SWE
diverges most between models from March onto the melt season
(Figure 5), it is intriguing that these significant differences in melt
rates and SWE do not result in larger inter-model differences
in simulated SCA and more so between the simulated SCA and
MODIS SCA (Figure 7). This suggests that these differences in
the spatial heterogeneity of melt rates between models may not
be adequately captured by the pixel resolution of MODIS snow
cover maps, a topic explored in the next section.

Effect of Spatial Resolution on SCA
Validation
In order to compare the simulated SCA with MODIS, the
modeled SCA was aggregated from 100 m to the 500 m resolution
of MODIS (Figure 2). This has the potential to suppress
significant spatial variability in the finer (100 m) scale simulated
SCA. To explore this further, the mean snow cover duration
(SCD = mean SCA × 365 days) simulated at the original 100 m
resolution was compared to that aggregated at the MODIS 500 m
resolution by aspect (Figure 10). The smoothing effect of model
aggregation is particularly evident: at the original 100 m model
resolution, all radiative models expectedly simulate smaller melt
rates and larger SWE on northern slopes, and vice-versa on

southern slopes (Figures 10A,B), which results in longer-lasting
snow on northern slopes compared to the TI model (Figure 10C).
Aggregation of the simulated SCA from 100 m to 500 m results
in significant disruption of this pattern (Figure 10D), which can
be attributed to changes in the distribution of slopes and aspects
following aggregation (Figure 10E).

To better constrain the influence of scaling effects on
the simulated SCD at 100 m resolution and its relationship
with MODIS, the subgrid variability (standard deviation) was
calculated for different pixel aggregation scales, from 200 m up
to 1000 m (Figure 11A). Both ETI enhanced models clearly show
higher subgrid variability than the TI model at scales below∼400
m, due to pronounced topographic-induced variability in solar
radiation at those scales. The ETIB model, which includes albedo,
shows the highest subgrid variability. The subgrid variability of
MODIS (here resampled at 100 m) is expectedly low below its
nominal resolution (500 m) and similar to that simulated by
the TI and HTI models. At large aggregation scales (>400 m)
elevation effects begin to dominate and the TI model displays
more subgrid variability than the enhanced models, while the
ETIB subgrid variability is most in line with MODIS. The
influence of the aggregation scale on model intercomparison is
seen in Figure 11B: the subgrid correlation between the enhanced
models and the reference TI model decreases at scales below 700
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FIGURE 9 | Mean simulated SWE and melt by elevation for days with snow. (A) Median SWE for all models. (B–D) SWE differences between radiative and reference
TI model. (E) Median melt rate for all models. (F–H) Melt differences between radiative and TI model.

m and show that the enhanced models are most different from
TI below 400 m. However, the subgrid correlations between the
simulated SCD and MODIS SCD show little differences between
models, because MODIS does not sample the spatial variability
below 500 m (Figure 11C). Hence, the consideration of global
(ETIA) and net (ETIB) solar radiation introduces significant
variability in SCD at scales not sampled by MODIS.

DISCUSSION AND CONCLUSION

Difference in Model Performance
The enhanced radiative models, especially ETIB, showed
increased performance relative to the simplest TI model for
predicting basin wide SCA over time (Figure 4). In particular,
the peak SCA in February was notably better simulated by
the ETIB model compared to the other models (Figure 5C).
However, overall differences in model performance were small.
Our results show that most of the snow cover variability is
driven by elevation and that this trend was adequately captured
by all four models (Figure 7). Hence the simple TI model
could be considered sufficient for melt simulations at the basin
scale, due to the strong dependence of temperature and related
melt rates on elevation, as found elsewhere (e.g., Vincent, 2002;
Hock, 2003; Réveillet et al., 2017). While the enhanced radiative
models improved the snow cover simulations as benchmarked by

MODIS snow cover maps, their significant extra computational
cost implies that the simpler TI would be adequate for operational
snow simulations in this basin. This contrasts with previous
studies that showed that including solar radiation improves the
performance of spatially distributed melt models for predictions
of glacier mass balance (Gabbi et al., 2014), snow cover area
(Cazorzi and Dalla Fontana, 1996; Follum et al., 2015), and
streamflow from snow-fed basins (Brubaker et al., 1996; Follum
et al., 2019). On the other hand, the use of a fully distributed
(grid-based) model improved the simulations of SCA relative to
semi-distributed temperature index models previously applied in
this basin (Boudhar et al., 2009).

The increasing false positive error rate (FPR) and decreasing
false negative error rate (FNR) with elevation suggest that
there may be a persistent elevation bias in the simulated
SCA (Figure 8), which is partly alleviated by the radiative
models, in particular ETIB. This suggests that increasing global
radiation with altitude due to higher atmospheric transmissivity
and the consideration of snow albedo result in steeper
ablation profiles compared to temperature-only melt calculations
with the TI model.

The effect of model parameters uncertainties must also be
considered. The remaining elevation trends in the error rates in
Figure 8 point to lingering problems with the distribution of
precipitation in the basin. The use of a constant non-linear lapse
rate for the spatial interpolation of precipitation to the basin is
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FIGURE 10 | Mean simulated SWE, melt rate, and snow cover duration (SCD) by aspect. (A) Mean SWE (mm). (B) Melt rate (mm d−1). (C) SCD (days) at 100 m
resolution. (D) SCD (days) at 500 m resolution. (E) DEM aspect at 100 and 500 m resolution.

an obvious limitation, common to many snow and hydrological
models. Calibrating the maximum difference elevation (4Zmax)
to limit the vertical extrapolation of precipitation may have
limited the errors associated with this approach, but significant
uncertainties remain around the precipitation lapse rate and its
limiting range (4Zmax). A sensitivity analysis to an uncertainty
of ± 200 m on 4Zmax showed that the inter-model differences
in simulated SWE and SCA performance relative to MODIS
remained similar to those found in Figures 7, 9 (Supplementary
Figures 4, 5). Still, better spatially distributed precipitation fields
would be needed in the future to improve snow simulations
for hydrological model applications in this basin. Outputs from
numerical weather models are increasingly used for this purpose,
but are still problematic for precipitation (Bellaire et al., 2011;
Réveillet et al., 2020). Scaling precipitation inputs by measured
snow distributions is another promising approach but requires
costly airborne surveys to acquire reliable snow depth maps
(Vögeli et al., 2016). Progresses in mapping snow depth from
high-resolution stereoscopic satellites images could, however,
open new avenues on this front (Marti et al., 2016). Assimilation
of snow cover maps within snow models can also help reducing
precipitations biases (Margulis et al., 2016; Baba et al., 2018), but
this increases computation costs which need to be minimized for
operational hydrological applications.

The choice of melt model parameters (Table 3) could also
affect the results. Bouamri et al. (2018) showed that enhanced
snowmelt models can suffer from parameter equifinality, i.e.,
several combination of temperature and radiation parameters

leading to a similar melt performance. Hence giving more weight
to radiation in an enhanced model would increase the spatial
heterogeneity of snowmelt rates and increase its difference with
the simple TI model, and vice-versa. However, calibrating the
models on a longer period tended to reduce the parameter
equifinality (Bouamri et al., 2018).

Effect of Spatial Resolution on SCA
Validation
Several previous studies found that snow on south-facing slopes
receive more solar radiation, generally melts faster and lasts
shorter than on north-facing slopes in the Northern Hemisphere
(e.g., López-Moreno and Stähli, 2008; Tong et al., 2009; Comola
et al., 2015; Baba et al., 2019). This topographic-induced melt
variability due to unequal radiation loading on slopes is mainly
lost upon aggregation to the coarser MODIS scale. This scaling
effect corroborates previous conclusions made by Baba et al.
(2019) concerning the influence of DEM resolution on the
simulation of snow cover in the Rheraya basin. Using the
physically based model SnowModel (Liston and Elder, 2006),
they found a significant degradation of model performance when
aggregating the model DEM to resolutions of 500 m and beyond,
which disrupted the representation of slopes in the basin and
affected solar radiation variability. It is also in line with recent
finding by Zhang et al. (2021) who found significant scaling
effects in MODIS NDSI products, which weakened the ability to
estimate fractional and binary snow cover from MODIS NDSI
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FIGURE 11 | Scale analysis of snow cover duration (SCD, in days).
(A) Subgrid (within pixel) variability (standard deviation) of simulated SCD at
increasing aggregation scales. (B) Subgrid correlation between SCD simulated
by the enhanced models and the reference TI model at increasing aggregation
scales. (C) Subgrid correlation between SCD simulated by all models and
MODIS SCD (resampled to 100 m resolution) at increasing aggregation scales.

data in the complex topography of the Tibetan Plateau. Steele
et al. (2017) also found that the spatial resolution of MODIS NDSI
products can obscure fine spatial patterning in snow cover and
limit its use over areas of patchy, discontinuous snow.

Comola et al. (2015) also who showed that the effects of solar
radiation patterns on the hydrologic response of snow-covered
basins are scale dependent, i.e., significant at small scales with
predominant aspects, and weak at larger scales where aspects

become uncorrelated and orientation differences average out.
These authors further found that a calibrated TI model on scales
larger than the aspect correlation length are well transferable.
Their conclusions find support in our results:

(i) The inclusion of radiation patterns in the large Rheraya
catchment has a small influence overall on basin-wide
simulated average SWE and SCA compared to the
reference TI model.

(ii) The influence of solar radiation on simulated SWE and
melt rates is greatly suppressed when aggregating model
outputs to the 500 m MODIS resolution, which smooths
out radiation effects and brings the radiative models
closer to simulations made with a simple temperature-
based (TI) model.

Hence our results support the notion that in large basins (i.e.,
larger than the correlation length of the terrain), topographic-
induced variations in solar radiation tend to average out so
that mean simulated melt rates, SWE, and SCA do not differ
greatly from using temperature alone to predict snowmelt.
A more uniform distribution of slope aspects in a basin, such
as observed here for Rheraya (Figure 10E), will reinforce this
phenomenon. In the context of operational flow forecasting in the
High Atlas Range, simple temperature index models could thus
provide sufficiently accurate snowmelt estimates. The impact of
including solar radiation patterns in snowmelt calculation on
streamflow simulations will, however, have to be investigated
in a future study.

Our findings call for caution when using medium resolution
satellite products such as MODIS to calibrate or validate spatially
distributed snow models. The necessary aggregation of finer-scale
model outputs to a resolution larger than key processes scales,
such as that where interactions between topography and solar
radiation are greatest, will suppress valid model information. The
increasing availability of publicly available high-resolution snow
cover maps imagery (Gascoin et al., 2019) should progressively
reduce our dependence on MODIS snow cover products and help
crash-testing high-resolution snow models in the future.

DATA AVAILABILITY STATEMENT

The MODIS data used in this study is openly available in the
National Snow and Ice Data Center (NSIDC) at (https://nsidc.
org/), and the meteorological data are available at LMI-TREMA
(https://www.lmi-trema.ma/) or upon demand with the authors.

AUTHOR CONTRIBUTIONS

HB: data processing, analysis, interpretation, and writing.
CK: conceptualization, supervision, analysis, interpretation, and
writing. AB: conceptualization, supervision, and interpretation.
SG: interpretation and writing. LH: discussion and editing. AC:
discussion and editing. All authors contributed to the article and
approved the submitted version.

Frontiers in Earth Science | www.frontiersin.org 15 April 2021 | Volume 9 | Article 640250

https://nsidc.org/
https://nsidc.org/
https://www.lmi-trema.ma/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-640250 April 23, 2021 Time: 15:54 # 16

Bouamri et al. Radiation-Induced Snow Cover Spatial Heterogeneity

FUNDING

This research was funded by the Natural Sciences and
Engineering Council of Canada, grant number RGPIN-2015-
03844 and the Canada Research Chair program, grant number
231380 to CK, as well as by a Ph.D. scholarship from
the CNRST (Centre National pour la Recherche Scientifique
et Technique of Morocco) to HB. AC, AB, and LH are
supported by the research program “MorSnow-1”, International
Water Research Institute (IWRI), Mohammed VI Polytechnic
University (UM6P), Morocco (Accord spécifique n◦ 39 entre
OCP S.A et UM6P).

ACKNOWLEDGMENTS

The authors would like to thank the Joint International
Laboratory TREMA (http://trema.ucam.ac.ma) for providing
meteorological data in the Rheraya basin.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/feart.
2021.640250/full#supplementary-material

REFERENCES
Abudu, S., Cui, C.-L., Saydi, M., and King, J. P. (2012). Application of snowmelt

runoff model (SRM) in mountainous watersheds: a review. Water Sci. Eng. 5,
123–136.

Aguilar, C., Herrero, J., and Polo, M. J. (2010). Topographic effects on solar
radiation distribution in mountainous watersheds and their influence on
reference evapotranspiration estimates at watershed scale. Hydrol. Earth Syst.
Sci. 14, 2479–2494. doi: 10.5194/hess-14-2479-2010

Alpert, P. (1986). Mesoscale indexing of the distribution of orographic
precipitation over high mountains. J. Clim. Appl. Meteorol. 25, 532–545. doi:
10.1175/1520-0450(1986)025<0532:miotdo>2.0.co;2

Anderton, S. P., White, S. M., and Alvera, B. (2004). Evaluation of spatial variability
in snow water equivalent for a high mountain catchment. Hydrol. Process. 18,
435–453. doi: 10.1002/hyp.1319

Arsenault, R., Brissette, F., and Martel, J.-L. (2018). The hazards of split-sample
validation in hydrological model calibration. J. Hydrol. 566, 346–362. doi:
10.1016/j.jhydrol.2018.09.027

Baba, M. W., Gascoin, S., Jarlan, L., Simonneaux, V., and Hanich, L. (2018).
Variations of the snow water equivalent in the Ourika Catchment (Morocco)
over 2000–2018 using downscaled MERRA-2 data. Water 10:1120. doi: 10.
3390/w10091120

Baba, M. W., Gascoin, S., Kinnard, C., Marchane, A., and Hanich, L. (2019).
Effect of digital elevation model resolution on the simulation of the snow cover
evolution in the high atlas. Water Resour. Res. 55, 5360–5378. doi: 10.1029/
2018wr023789

Bair, E. H., Rittger, K., Davis, R. E., Painter, T. H., and Dozier, J. (2016). Validating
reconstruction of snow water equivalent in California’s Sierra Nevada using
measurements from the NASAAirborne Snow Observatory. Water Resour. Res.
52, 8437–8460. doi: 10.1002/2016wr018704

Barnes, S. L. (1964). A technique for maximizing details in numerical weather map
analysis. J. Appl. Meteorol. 3, 396–409. doi: 10.1175/1520-0450(1964)003<0396:
atfmdi>2.0.co;2

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P. (2005). Potential impacts of a
warming climate on water availability in snow-dominated regions. Nature 438,
303–309. doi: 10.1038/nature04141

Bellaire, S., Jamieson, J. B., and Fierz, C. (2011). Forcing the snow-cover model
SNOWPACK with forecasted weather data. Cryosphere 5, 1115–1125. doi:
10.5194/tc-5-1115-2011

Berezowski, T., Chormañski, J., and Batelaan, O. (2015). Skill of remote sensing
snow products for distributed runoff prediction. J. Hydrol. 524, 718–732. doi:
10.1016/j.jhydrol.2015.03.025

Bouamri, H., Boudhar, A., Gascoin, S., and Kinnard, C. (2018). Performance of
temperature and radiation index models for point-scale snow water equivalent
(SWE) simulations in the Moroccan High Atlas Mountains. Hydrol. Sci. J. 63,
1844–1862. doi: 10.1080/02626667.2018.1520391

Boudhar, A., Boulet, G., Hanich, L., Sicart, J. E., and Chehbouni, A. (2016). Energy
fluxes and melt rate of a seasonal snow cover in the Moroccan High Atlas.
Hydrol. Sci. J. 61, 931–943.

Boudhar, A., Duchemin, B., Hanich, L., Jarlan, L., Chaponnière, A., Maisongrande,
P., et al. (2010). Long-term analysis of snow-covered area in the Moroccan

High-Atlas through remote sensing. Int. J. Appl. Earth Observ. Geoinform. 12,
S109–S115.

Boudhar, A., Hanich, L., Boulet, G., Duchemin, B., Berjamy, B., and Chehbouni,
A. (2009). Evaluation of the snowmelt runoff model in the Moroccan high
atlas mountains using two snow-cover estimates. Hydrol. Sci. J. 54, 1094–1113.
doi: 10.1623/hysj.54.6.1094

Brock, B. W., Willis, I. C., and Sharp, M. J. (2000). Measurement and
parameterization of albedo variations at Haut Glacier d ’ Arolla, Switzerland.
J. Glaciol. 46, 675–688. doi: 10.3189/172756500781832675

Brubaker, K., Rango, A., and Kustas, W. (1996). Incorporating radiation inputs into
the snowmelt runoff model. Hydrol. Process. 10, 1329–1343. doi: 10.1002/(sici)
1099-1085(199610)10:10<1329::aid-hyp464>3.0.co;2-w

Carenzo, M., Pellicciotti, F., Rimkus, S., and Burlando, P. (2009). Assessing the
transferability and robustness of an enhanced temperature-index glacier-melt
model. J. Glaciol. 55, 258–274. doi: 10.3189/002214309788608804

Carturan, L., Cazorzi, F., and Dalla Fontana, G. (2012). Distributed mass-balance
modelling on two neighbouring glaciers in Ortles-Cevedale, Italy, from 2004 to
2009. J. Glaciol. 58, 467–486. doi: 10.3189/2012jog11j111

Cazorzi, F., and Dalla Fontana, G. (1996). Snowmelt modelling by combining
air temperature and a distributed radiation index. J. Hydrol. 181, 169–187.
doi: 10.1016/0022-1694(95)02913-3

Chaponnière, A., Maisongrande, P., Duchemin, B., Hanich, L., Boulet, G.,
Escadafal, R., et al. (2005). A combined high and low spatial resolution approach
for mapping snow covered areas in the Atlas mountains. Int. J. Rem. Sens. 26,
2755–2777. doi: 10.1080/01431160500117758

Chehbouni, A., Escadafal, R., Duchemin, B., Boulet, G., Simonneaux, V.,
Dedieu, G., et al. (2008). An integrated modelling and remote sensing
approach for hydrological study in arid and semi-arid regions: the SUDMED
Programme. Int. J. Rem. Sens. 29, 5161–5181. doi: 10.1080/0143116080203
6417

Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B., Cullen,
N. J., et al. (2011). Representing spatial variability of snow water equivalent in
hydrologic and land-surface models: a review. Water Resour. Res. 47:W07539.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educ. Psychol.
Meas. 20, 37–46. doi: 10.1177/001316446002000104

Collados-Lara, A.-J., Pulido-Velazquez, D., Pardo-Igúzquiza, E., and Alonso-
González, E. (2020). Estimation of the spatiotemporal dynamic of snow water
equivalent at mountain range scale under data scarcity. Sci. Total Environ.
741:140485. doi: 10.1016/j.scitotenv.2020.140485

Collados-Lara, A. J., Pardo-Igúzquiza, E., Pulido-Velazquez, D., and Jiménez-
Sánchez, J. (2018). Precipitation fields in an alpine Mediterranean catchment:
inversion of precipitation gradient with elevation or undercatch of snowfall?
Int. J. Climatol. 38, 3565–3578. doi: 10.1002/joc.5517

Comola, F., Schaefli, B., Ronco, P. D., Botter, G., Bavay, M., Rinaldo, A., et al.
(2015). Scale-dependent effects of solar radiation patterns on the snow-
dominated hydrologic response. Geophys. Res. Lett. 42, 3895–3902. doi: 10.
1002/2015gl064075

De Jong, C., Lawler, D., and Essery, R. (2009). Mountain hydroclimatology and
snow seasonality – perspectives on climate impacts, snow seasonality and
hydrological change in mountain environments. Hydrol. Process. 23, 955–961.
doi: 10.1002/hyp.7193

Frontiers in Earth Science | www.frontiersin.org 16 April 2021 | Volume 9 | Article 640250

https://www.frontiersin.org/articles/10.3389/feart.2021.640250/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2021.640250/full#supplementary-material
https://doi.org/10.5194/hess-14-2479-2010
https://doi.org/10.1175/1520-0450(1986)025<0532:miotdo>2.0.co;2
https://doi.org/10.1175/1520-0450(1986)025<0532:miotdo>2.0.co;2
https://doi.org/10.1002/hyp.1319
https://doi.org/10.1016/j.jhydrol.2018.09.027
https://doi.org/10.1016/j.jhydrol.2018.09.027
https://doi.org/10.3390/w10091120
https://doi.org/10.3390/w10091120
https://doi.org/10.1029/2018wr023789
https://doi.org/10.1029/2018wr023789
https://doi.org/10.1002/2016wr018704
https://doi.org/10.1175/1520-0450(1964)003<0396:atfmdi>2.0.co;2
https://doi.org/10.1175/1520-0450(1964)003<0396:atfmdi>2.0.co;2
https://doi.org/10.1038/nature04141
https://doi.org/10.5194/tc-5-1115-2011
https://doi.org/10.5194/tc-5-1115-2011
https://doi.org/10.1016/j.jhydrol.2015.03.025
https://doi.org/10.1016/j.jhydrol.2015.03.025
https://doi.org/10.1080/02626667.2018.1520391
https://doi.org/10.1623/hysj.54.6.1094
https://doi.org/10.3189/172756500781832675
https://doi.org/10.1002/(sici)1099-1085(199610)10:10<1329::aid-hyp464>3.0.co;2-w
https://doi.org/10.1002/(sici)1099-1085(199610)10:10<1329::aid-hyp464>3.0.co;2-w
https://doi.org/10.3189/002214309788608804
https://doi.org/10.3189/2012jog11j111
https://doi.org/10.1016/0022-1694(95)02913-3
https://doi.org/10.1080/01431160500117758
https://doi.org/10.1080/01431160802036417
https://doi.org/10.1080/01431160802036417
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1016/j.scitotenv.2020.140485
https://doi.org/10.1002/joc.5517
https://doi.org/10.1002/2015gl064075
https://doi.org/10.1002/2015gl064075
https://doi.org/10.1002/hyp.7193
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-640250 April 23, 2021 Time: 15:54 # 17

Bouamri et al. Radiation-Induced Snow Cover Spatial Heterogeneity

DeBeer, C. M., and Pomeroy, J. W. (2009). Modelling snow melt and snowcover
depletion in a small alpine cirque, Canadian Rocky Mountains. Hydrol. Process.
23, 2584–2599. doi: 10.1002/hyp.7346

DeBeer, C. M., and Pomeroy, J. W. (2017). Influence of snowpack and melt energy
heterogeneity on snow cover depletion and snowmelt runoff simulation in a
cold mountain environment. J. Hydrol. 553, 199–213. doi: 10.1016/j.jhydrol.
2017.07.051

Dozier, J., Bair, E. H., and Davis, R. E. (2016). Estimating the spatial distribution
of snow water equivalent in the world’s mountains. WIREs Water 3, 461–474.
doi: 10.1002/wat2.1140

Duethmann, D., Peters, J., Blume, T., Vorogushyn, S., and Güntner, A. (2014).
The value of satellite-derived snow cover images for calibrating a hydrological
model in snow-dominated catchments in Central Asia. Water Resour. Res. 50,
2002–2021. doi: 10.1002/2013wr014382

Eeckman, J., Chevallier, P., Boone, A., Neppel, L., De Rouw, A., Delclaux, F.,
et al. (2017). Providing a non-deterministic representation of spatial variability
of precipitation in the Everest region. Hydrol. Earth Syst. Sci. 21, 4879–4893.
doi: 10.5194/hess-21-4879-2017

Fassnacht, S. R., López-Moreno, J., Ma, C., Weber, A., Pfohl, A., Kampf, S.,
et al. (2017). Spatio-temporal snowmelt variability across the headwaters of the
Southern Rocky Mountains. Front. Earth Sci. 11:505–514. doi: 10.1007/s11707-
017-0641-4

Fayad, A., Gascoin, S., Faour, G., López-Moreno, J. I., Drapeau, L., Le Page, M.,
et al. (2017). Snow hydrology in Mediterranean mountain regions: a review.
J. Hydrol. 551, 374–396. doi: 10.1016/j.jhydrol.2017.05.063

Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N., and Gustafsson, D. (2015).
Meteorological knowledge useful for the improvement of snow rain separation
in surface based models. Hydrology 2, 266–288. doi: 10.3390/hydrology2040266

Finger, D., Pellicciotti, F., Konz, M., Rimkus, S., and Burlando, P. (2011). The
value of glacier mass balance, satellite snow cover images, and hourly discharge
for improving the performance of a physically based distributed hydrological
model. Water Resour. Res. 47:W07519.

Follum, M. L., Downer, C. W., Niemann, J. D., Roylance, S. M., and Vuyovich,
C. M. (2015). A radiation-derived temperature-index snow routine for the
GSSHA hydrologic model. J. Hydrol. 529, 723–736. doi: 10.1016/j.jhydrol.2015.
08.044

Follum, M. L., Niemann, J. D., and Fassnacht, S. R. (2019). A comparison
of snowmelt-derived streamflow from temperature-index and modified-
temperature-index snow models. Hydrol. Process. 33, 3030–3045. doi: 10.1002/
hyp.13545

Franz, K. J., and Karsten, L. R. (2013). Calibration of a distributed snow model
using MODIS snow covered area data. J. Hydrol. 494, 160–175. doi: 10.1016/j.
jhydrol.2013.04.026

Freudiger, D., Kohn, I., Seibert, J., Stahl, K., and Weiler, M. (2017). Snow
redistribution for the hydrological modeling of alpine catchments. Wiley
Interdiscip. Rev. Water 4:e1232. doi: 10.1002/wat2.1232

Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., and Funk, M. (2014). A
comparison of empirical and physically based glacier surface melt models for
long-term simulations of glacier response. J. Glaciol. 60, 1140–1154. doi: 10.
3189/2014jog14j011

Gafurov, A., and Bárdossy, A. (2009). Cloud removal methodology from MODIS
snow cover product. Hydrol. Earth Syst. Sci. 13, 1361–1373. doi: 10.5194/hess-
13-1361-2009

Gao, Y., Xie, H., Yao, T., and Xue, C. (2010). Integrated assessment on multi-
temporal and multi-sensor combinations for reducing cloud obscuration of
MODIS snow cover products of the Pacific Northwest USA. Rem. Sens. Environ.
114, 1662–1675. doi: 10.1016/j.rse.2010.02.017

Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., and Hagolle, O. (2019). Theia
Snow collection: high-resolution operational snow cover maps from Sentinel-2
and Landsat-8 data. Earth Syst. Sci. Data 11, 493–514. doi: 10.5194/essd-11-
493-2019

Gascoin, S., Hagolle, O., Huc, M., Jarlan, L., Dejoux, J. F., Szczypta, C., et al.
(2015). A snow cover climatology for the Pyrenees from MODIS snow products.
Hydrol. Earth Syst. Sci. 19, 2337–2351. doi: 10.5194/hess-19-2337-2015

Gascoin, S., Lhermitte, S., Kinnard, C., Bortels, K., and Liston, G. E. (2013). Wind
effects on snow cover in Pascua-Lama, Dry Andes of Chile. Adv. Water Resour.
55, 25–39. doi: 10.1016/j.advwatres.2012.11.013

Grünewald, T., Schirmer, M., Mott, R., and Lehning, M. (2010). Spatial and
temporal variability of snow depth and ablation rates in a small mountain
catchment. Cryosphere 4, 215–225. doi: 10.5194/tc-4-215-2010

Hajhouji, Y., Simonneaux, V., Gascoin, S., Fakir, Y., Richard, B., Chehbouni, A.,
et al. (2018). Modélisation pluie-débit et analyse du régime d’un bassin versant
semi-aride sous influence nivale. Cas du bassin versant du Rheraya (Haut Atlas,
Maroc). La Houille Blanche 3, 49–62. doi: 10.1051/lhb/2018032

Hall, D. K., and Riggs, G. A. (2016). MODIS/Terra Snow Cover Daily L3 Global 0.05
Deg CMG, Version 6. Boulder, CO: NASA National Snow and Ice Data Center
Distributed Active Archive Center.

Hall, D. K., Riggs, G. A., and Salomonson, V. V. (1995). Development of
methods for mapping global snow cover using moderate resolution imaging
spectroradiometer data. Rem. Sens. Environ. 54, 127–140. doi: 10.1016/0034-
4257(95)00137-p

Han, P., Long, D., Han, Z., Du, M., Dai, L., and Hao, X. (2019). Improved
understanding of snowmelt runoff from the headwaters of China’s Yangtze River
using remotely sensed snow products and hydrological modeling. Rem. Sens.
Environ. 224, 44–59. doi: 10.1016/j.rse.2019.01.041

He, Z., Parajka, J., Tian, F., and Blöschl, G. (2014). Estimating degree day factors
from MODIS for snowmelt runoff modeling. Hydrol. Earth Syst. Sci. Discuss.
11, 4773–4789. doi: 10.5194/hess-18-4773-2014

Heidke, P. (1926). Berechnung des Erfolges und der Güte der
Windstärkevorhersagen im Sturmwarnungsdienst. Geografiska Annaler 8,
301–349. doi: 10.1080/20014422.1926.11881138

Herrero, J., Polo, M. J., Moñino, A., and Losada, M. A. (2009). An energy balance
snowmelt model in a Mediterranean site. J. Hydrol. 371, 98–107. doi: 10.1016/
j.jhydrol.2009.03.021

Hock, R. (1999). A distributed temperature-index ice-and snowmelt model
including potential direct solar radiation. J. Glaciol. 45, 101–111. doi: 10.1017/
s0022143000003087

Hock, R. (2003). Temperature index melt modelling in mountain areas. J. Hydrol.
282, 104–115. doi: 10.1016/s0022-1694(03)00257-9

Homan, J. W., Luce, C. H., Mcnamara, J. P., and Glenn, N. F. (2011). Improvement
of distributed snowmelt energy balance modeling with MODIS-based NDSI-
derived fractional snow-covered area data. Hydrol. Process. 25, 650–660. doi:
10.1002/hyp.7857

Hublart, P., Ruelland, D., Cortázar-Atauri, I. G. D., Gascoin, S., Lhermitte, S., and
Ibacache, A. (2016). Reliability of lumped hydrological modeling in a semi-arid
mountainous catchment facing water-use changes. Hydrol. Earth Syst. Sci. 20,
3691–3717. doi: 10.5194/hess-20-3691-2016

Jain, S. K., Goswami, A., and Saraf, A. K. (2010). Assessment of snowmelt runoff
using remote sensing and effect of climate change on Runoff. Water Resour.
Manag. 24, 1763–1777. doi: 10.1007/s11269-009-9523-1

Jarlan, L., Khabba, S., Er-Raki, S., Le Page, M., Hanich, L., Fakir, Y., et al. (2015).
Remote sensing of water resources in semi-arid mediterranean areas: the joint
international laboratory TREMA. Int. J. Rem. Sens. 36, 4879–4917.

Jost, G., Moore, R. D., Smith, R., and Gluns, D. R. (2012). Distributed temperature-
index snowmelt modelling for forested catchments. J. Hydrol. 420, 87–101.
doi: 10.1016/j.jhydrol.2011.11.045

Kampf, S. K., and Richer, E. E. (2014). Estimating source regions for snowmelt
runoff in a Rocky Mountain basin: tests of a data-based conceptual modeling
approach. Hydrol. Process. 28, 2237–2250. doi: 10.1002/hyp.9751

Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M., and Zappa,
M. (2006). ALPINE3D: a detailed model of mountain surface processes and its
application to snow hydrology. Hydrol. Process. 20, 2111–2128. doi: 10.1002/
hyp.6204

Letsinger, S. L., and Olyphant, G. A. (2007). Distributed energy-balance modeling
of snow-cover evolution and melt in rugged terrain: Tobacco Root Mountains,
Montana, USA. J. Hydrol. 336, 48–60. doi: 10.1016/j.jhydrol.2006.12.012

Liston, G. E., and Elder, K. (2006). A meteorological distribution system for high-
resolution terrestrial modeling (MicroMet). J. Hydrometeorol. 7, 217–234. doi:
10.1175/jhm486.1

López-Moreno, J. I., and Stähli, M. (2008). Statistical analysis of the snow cover
variability in a subalpine watershed: assessing the role of topography and forest
interactions. J. Hydrol. 348, 379–394. doi: 10.1016/j.jhydrol.2007.10.018

Magand, C., Ducharne, A., Le Moine, N., and Gascoin, S. (2014). Introducing
hysteresis in snow depletion curves to improve the water budget of a land

Frontiers in Earth Science | www.frontiersin.org 17 April 2021 | Volume 9 | Article 640250

https://doi.org/10.1002/hyp.7346
https://doi.org/10.1016/j.jhydrol.2017.07.051
https://doi.org/10.1016/j.jhydrol.2017.07.051
https://doi.org/10.1002/wat2.1140
https://doi.org/10.1002/2013wr014382
https://doi.org/10.5194/hess-21-4879-2017
https://doi.org/10.1007/s11707-017-0641-4
https://doi.org/10.1007/s11707-017-0641-4
https://doi.org/10.1016/j.jhydrol.2017.05.063
https://doi.org/10.3390/hydrology2040266
https://doi.org/10.1016/j.jhydrol.2015.08.044
https://doi.org/10.1016/j.jhydrol.2015.08.044
https://doi.org/10.1002/hyp.13545
https://doi.org/10.1002/hyp.13545
https://doi.org/10.1016/j.jhydrol.2013.04.026
https://doi.org/10.1016/j.jhydrol.2013.04.026
https://doi.org/10.1002/wat2.1232
https://doi.org/10.3189/2014jog14j011
https://doi.org/10.3189/2014jog14j011
https://doi.org/10.5194/hess-13-1361-2009
https://doi.org/10.5194/hess-13-1361-2009
https://doi.org/10.1016/j.rse.2010.02.017
https://doi.org/10.5194/essd-11-493-2019
https://doi.org/10.5194/essd-11-493-2019
https://doi.org/10.5194/hess-19-2337-2015
https://doi.org/10.1016/j.advwatres.2012.11.013
https://doi.org/10.5194/tc-4-215-2010
https://doi.org/10.1051/lhb/2018032
https://doi.org/10.1016/0034-4257(95)00137-p
https://doi.org/10.1016/0034-4257(95)00137-p
https://doi.org/10.1016/j.rse.2019.01.041
https://doi.org/10.5194/hess-18-4773-2014
https://doi.org/10.1080/20014422.1926.11881138
https://doi.org/10.1016/j.jhydrol.2009.03.021
https://doi.org/10.1016/j.jhydrol.2009.03.021
https://doi.org/10.1017/s0022143000003087
https://doi.org/10.1017/s0022143000003087
https://doi.org/10.1016/s0022-1694(03)00257-9
https://doi.org/10.1002/hyp.7857
https://doi.org/10.1002/hyp.7857
https://doi.org/10.5194/hess-20-3691-2016
https://doi.org/10.1007/s11269-009-9523-1
https://doi.org/10.1016/j.jhydrol.2011.11.045
https://doi.org/10.1002/hyp.9751
https://doi.org/10.1002/hyp.6204
https://doi.org/10.1002/hyp.6204
https://doi.org/10.1016/j.jhydrol.2006.12.012
https://doi.org/10.1175/jhm486.1
https://doi.org/10.1175/jhm486.1
https://doi.org/10.1016/j.jhydrol.2007.10.018
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-640250 April 23, 2021 Time: 15:54 # 18

Bouamri et al. Radiation-Induced Snow Cover Spatial Heterogeneity

surface model in an alpine catchment. J. Hydrometeorol. 15, 631–649. doi:
10.1175/jhm-d-13-091.1

Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., and Diffenbaugh, N. S. (2015).
The potential for snow to supply human water demand in the present and
future. Environ. Res. Lett. 10:114016. doi: 10.1088/1748-9326/10/11/114016

Marchane, A., Jarlan, L., Hanich, L., Boudhar, A., Gascoin, S., Tavernier, A., et al.
(2015). Assessment of daily MODIS snow cover products to monitor snow
cover dynamics over the Moroccan Atlas mountain range. Rem. Sens. Environ.
160, 72–86. doi: 10.1016/j.rse.2015.01.002

Margulis, S. A., Cortés, G., Girotto, M., and Durand, M. (2016). A Landsat-Era
Sierra Nevada snow reanalysis (1985–2015). J. Hydrometeorol. 17, 1203–1221.
doi: 10.1175/jhm-d-15-0177.1

Marks, D., Winstral, A., Reba, M., Pomeroy, J., and Kumar, M. (2013). An
evaluation of methods for determining during-storm precipitation phase and
the rain/snow transition elevation at the surface in a mountain basin. Adv.
Water Resour. 55, 98–110. doi: 10.1016/j.advwatres.2012.11.012

Marti, R., Gascoin, S., Berthier, E., De Pinel, M., Houet, T., and Laffly, D. (2016).
Mapping snow depth in open alpine terrain from stereo satellite imagery.
Cryosphere 10, 1361–1380. doi: 10.5194/tc-10-1361-2016

Massmann, C. (2019). Modelling snowmelt in ungauged catchments. Water 11:301.
doi: 10.3390/w11020301

Matin, M. A., and Bourque, C. P. A. (2013). Intra- and inter-annual variations
in snow–water storage in data sparse desert–mountain regions assessed from
remote sensing. Rem. Sens. Environ. 139, 18–34. doi: 10.1016/j.rse.2013.07.033

Mazurkiewicz, A. B., Callery, D. G., and Mcdonnell, J. J. (2008). Assessing the
controls of the snow energy balance and water available for runoff in a rain-
on-snow environment. J. Hydrol. 354, 1–14. doi: 10.1016/j.jhydrol.2007.12.
027

Molotch, N. P., Colee, M. T., Bales, R. C., and Dozier, J. (2005). Estimating the
spatial distribution of snow water equivalent in an alpine basin using binary
regression tree models: the impact of digital elevation data and independent
variable selection. Hydrol. Process. 19, 1459–1479. doi: 10.1002/hyp.5586

Moore, R., Trubilowicz, J., and Buttle, J. (2012). Prediction of Streamflow regime
and annual runoff for ungauged basins using a distributed monthly water
balance model 1. J. Am. Water Resour. Assoc. 48, 32–42. doi: 10.1111/j.1752-
1688.2011.00595.x

Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through conceptual
models part I – A discussion of principles. J. Hydrol. 10, 282–290. doi: 10.1016/
0022-1694(70)90255-6

Notarnicola, C., Duguay, M., Moelg, N., Schellenberger, T., Tetzlaff, A., Monsorno,
R., et al. (2013). Snow cover maps from MODIS images at 250 m Resolution,
Part 2: validation. Rem. Sens. 5, 1568–1587. doi: 10.3390/rs5041568

Olyphant, G. A. (1984). Insolation topoclimates and potential ablation in alpine
snow accumulation basins: Front Range, Colorado. Water Resour. Res. 20,
491–498. doi: 10.1029/wr020i004p00491

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S.,
Gehrke, F., et al. (2016). The Airborne snow observatory: fusion of scanning
lidar, imaging spectrometer, and physically-based modeling for mapping snow
water equivalent and snow albedo. Rem. Sens. Environ. 184, 139–152. doi:
10.1016/j.rse.2016.06.018

Parajka, J., and Blöschl, G. (2008). The value of MODIS snow cover data in
validating and calibrating conceptual hydrologic models. J. Hydrol. 358, 240–
258. doi: 10.1016/j.jhydrol.2008.06.006

Parajka, J., and Blöschl, G. (2012). “MODIS-based snow cover products,
validation, and hydrologic applications,” in Multiscale Hydrologic Remote
Sensing: Perspectives and Applications, eds N.-B. Chang and Y. Hong (Boca
Raton, FL: CRC Press).

Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., and Corripio,
J. (2005). An enhanced temperature-index glacier melt model including
the shortwave radiation balance : development and testing for Haut
Glacier d’Arolla, Switzerland. J. Glaciol. 51, 573–587. doi: 10.3189/
172756505781829124

Pimentel, R., Herrero, J., and Polo, M. J. (2017). Quantifying snow cover
distribution in semiarid regions combining satellite and terrestrial imagery.
Rem. Sens. 9:995. doi: 10.3390/rs9100995

Qin, Y., Abatzoglou, J. T., Siebert, S., Huning, L. S., Aghakouchak, A., Mankin, J. S.,
et al. (2020). Agricultural risks from changing snowmelt. Nat. Clim. Change 10,
459–465. doi: 10.1038/s41558-020-0746-8

Réveillet, M., Macdonell, S., Gascoin, S., Kinnard, C., Lhermitte, S., and Schaffer,
N. (2020). Impact of forcing on sublimation simulations for a high mountain
catchment in the semiarid Andes. Cryosphere 14, 147–163. doi: 10.5194/tc-14-
147-2020

Réveillet, M., Vincent, C., Six, D., and Rabatel, A. (2017). Which empirical model
is best suited to simulate glacier mass balances? J. Glaciol. 63, 39–54. doi:
10.1017/jog.2016.110

Riggs, G. A., and Hall, D. K. (2004). “Snow mapping with the MODIS Aqua
instrument,” in Proceedings of the 61st Eastern Snow Conference, Portland, ME,
9–11.

Riggs, G. A., Hall, D. K., and Román, M. O. (2015). VIIRS Snow Cover Algorithm
Theoretical Basis Document (ATBD). NASA VIIRS Project Document. Greenbelt,
MD: NASA Goddard Space Flight Center.

Rittger, K., Painter, T. H., and Dozier, J. (2013). Assessment of methods for
mapping snow cover from MODIS. Adv. Water Resour. 51, 367–380. doi:
10.1016/j.advwatres.2012.03.002

Rochdane, S., Reichert, B., Messouli, M., Babqiqi, A., and Khebiza, M. Y. (2012).
Climate change impacts on water supply and demand in Rheraya Watershed
(Morocco), with potential adaptation strategies. Water 4, 28–44. doi: 10.3390/
w4010028

Roe, G. H., and Baker, M. B. (2006). Microphysical and geometrical controls on the
pattern of orographic precipitation. J. Atmos. Sci. 63, 861–880. doi: 10.1175/
jas3619.1

Rohrer, M., Salzmann, N., Stoffel, M., and Kulkarni, A. V. (2013). Missing (in-
situ) snow cover data hampers climate change and runoff studies in the Greater
Himalayas. Sci. Total Environ. 468, S60–S70.

Salomonson, V. V., and Appel, I. (2006). Development of the Aqua MODIS NDSI
fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Rem.
Sens. 44, 1747–1756. doi: 10.1109/tgrs.2006.876029

Schneider, C., Kilian, R., and Glaser, M. (2007). Energy balance in the ablation zone
during the summer season at the Gran Campo Nevado Ice Cap in the Southern
Andes. Glob. Planet. Change 59, 175–188. doi: 10.1016/j.gloplacha.2006.11.033

Schulz, O., and de Jong, C. (2004). Snowmelt and sublimation: filed experiments
and modelling in the Hight Atlas Mounatains of Morocco. Hydrol. Earth Syst.
Sci. 8, 1076–1086. doi: 10.5194/hess-8-1076-2004

Senzeba, K. T., Bhadra, A., and Bandyopadhyay, A. (2015). Snowmelt runoff
modelling in data scarce Nuranang catchment of eastern Himalayan region.
Rem. Sens. Appl. Soc. Environ. 1, 20–35. doi: 10.1016/j.rsase.2015.06.001

Singh, P., and Bengtsson, L. (2003). Effect of warmer climate on the depletion of
snow-covered area in the Satluj basin in the western Himalayan region. Hydrol.
Sci. J. 48, 413–425. doi: 10.1623/hysj.48.3.413.45280

Sproles, E. A., Kerr, T., Orrego Nelson, C., and Lopez Aspe, D. (2016). Developing
a snowmelt forecast model in the absence of field data. Water Resour. Manag.
30, 2581–2590. doi: 10.1007/s11269-016-1271-4

Steele, C., Dialesandro, J., James, D., Elias, E., Rango, A., and Bleiweiss, M. (2017).
Evaluating MODIS snow products for modelling snowmelt runoff: case study of
the Rio Grande headwaters. Int. J. Appl. Earth Observ. Geoinform. 63, 234–243.
doi: 10.1016/j.jag.2017.08.007

Tarboton, D. G., and Luce, C. H. (1996). Utah Energy Balance Snow Accumulation
and Melt Model (UEB). Logan: Utah Water Research Laboratory Utah State
University.

Tong, J., Déry, S., and Jackson, P. (2009). Topographic control of snow distribution
in an alpine watershed of western Canada inferred from spatially-filtered
MODIS snow products. Hydrol. Earth Syst. Sci. 13, 319–326. doi: 10.5194/hess-
13-319-2009

Vicuña, S., Garreaud, R. D., and Mcphee, J. (2011). Climate change impacts on
the hydrology of a snowmelt driven basin in semiarid Chile. Clim. Change 105,
469–488. doi: 10.1007/s10584-010-9888-4

Vincent, C. (2002). Influence of climate change over the 20th Century on four
French glacier mass balances. J. Geophys. Res. 107:4375.

Viviroli, D., and Weingartner, R. (2008). ““Water Towers”–A global view of the
hydrological importance of mountains,” in Mountains: Sources of Water, Sources
of Knowledge, ed. E. Wiegandt (Dordrecht: Springer Netherlands), 15–20. doi:
10.1007/978-1-4020-6748-8_2

Vögeli, C., Lehning, M., Wever, N., and Bavay, M. (2016). Scaling
precipitation input to spatially distributed hydrological models by
measured snow distribution. Front. Earth Sci. 4:108. doi: 10.3389/feart.2016.
00108

Frontiers in Earth Science | www.frontiersin.org 18 April 2021 | Volume 9 | Article 640250

https://doi.org/10.1175/jhm-d-13-091.1
https://doi.org/10.1175/jhm-d-13-091.1
https://doi.org/10.1088/1748-9326/10/11/114016
https://doi.org/10.1016/j.rse.2015.01.002
https://doi.org/10.1175/jhm-d-15-0177.1
https://doi.org/10.1016/j.advwatres.2012.11.012
https://doi.org/10.5194/tc-10-1361-2016
https://doi.org/10.3390/w11020301
https://doi.org/10.1016/j.rse.2013.07.033
https://doi.org/10.1016/j.jhydrol.2007.12.027
https://doi.org/10.1016/j.jhydrol.2007.12.027
https://doi.org/10.1002/hyp.5586
https://doi.org/10.1111/j.1752-1688.2011.00595.x
https://doi.org/10.1111/j.1752-1688.2011.00595.x
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.3390/rs5041568
https://doi.org/10.1029/wr020i004p00491
https://doi.org/10.1016/j.rse.2016.06.018
https://doi.org/10.1016/j.rse.2016.06.018
https://doi.org/10.1016/j.jhydrol.2008.06.006
https://doi.org/10.3189/172756505781829124
https://doi.org/10.3189/172756505781829124
https://doi.org/10.3390/rs9100995
https://doi.org/10.1038/s41558-020-0746-8
https://doi.org/10.5194/tc-14-147-2020
https://doi.org/10.5194/tc-14-147-2020
https://doi.org/10.1017/jog.2016.110
https://doi.org/10.1017/jog.2016.110
https://doi.org/10.1016/j.advwatres.2012.03.002
https://doi.org/10.1016/j.advwatres.2012.03.002
https://doi.org/10.3390/w4010028
https://doi.org/10.3390/w4010028
https://doi.org/10.1175/jas3619.1
https://doi.org/10.1175/jas3619.1
https://doi.org/10.1109/tgrs.2006.876029
https://doi.org/10.1016/j.gloplacha.2006.11.033
https://doi.org/10.5194/hess-8-1076-2004
https://doi.org/10.1016/j.rsase.2015.06.001
https://doi.org/10.1623/hysj.48.3.413.45280
https://doi.org/10.1007/s11269-016-1271-4
https://doi.org/10.1016/j.jag.2017.08.007
https://doi.org/10.5194/hess-13-319-2009
https://doi.org/10.5194/hess-13-319-2009
https://doi.org/10.1007/s10584-010-9888-4
https://doi.org/10.1007/978-1-4020-6748-8_2
https://doi.org/10.1007/978-1-4020-6748-8_2
https://doi.org/10.3389/feart.2016.00108
https://doi.org/10.3389/feart.2016.00108
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-640250 April 23, 2021 Time: 15:54 # 19

Bouamri et al. Radiation-Induced Snow Cover Spatial Heterogeneity

Wang, X., and Xie, H. (2009). New methods for studying the spatiotemporal
variation of snow cover based on combination products of MODIS Terra and
Aqua. J. Hydrol. 371, 192–200. doi: 10.1016/j.jhydrol.2009.03.028

Willis, I. C., Arnold, N. S., and Brock, B. W. (2002). Effect of snowpack removal
on energy balance, melt and runoff in a small supraglacial catchment. Hydrl.
Process. 16, 2721–2749. doi: 10.1002/hyp.1067

Xiao, X., Zhang, Q., Boles, S., Rawlins, M., and Moore, B. (2004). Mapping
snow cover in the pan-Arctic zone, using multi-year (1998-2001) images from
optical VEGETATION sensor. Int. J. Rem. Sens. 25, 5731–5744. doi: 10.1080/
01431160410001719867

Xie, H., Wang, X., and Liang, T. (2009). Development and assessment of combined
Terra and Aqua snow cover products in Colorado Plateau, USA and northern
Xinjiang, China. J. Appl. Rem. Sens. 3:033559. doi: 10.1117/1.3265996

Xue, H., Wang, J., Xiao, Z., Chen, P., and Liu, Y. (2014). Combining MODIS and
AMSR-E observations to improve MCD43A3 short-time snow-covered Albedo
estimation. Hydrol. Process. 28, 570–580. doi: 10.1002/hyp.9570

Yasutomi, N., Hamada, A., and Yatagai, A. (2011). Development of a long-
term daily gridded temperature dataset and its application to rain/snow
discrimination of daily precipitation. Glob. Environ. Res. 15, 165–172.

Zappa, M. (2008). Objective quantitative spatial verification of distributed snow
cover simulations–an experiment for the whole of Switzerland / Vérification
quantitative spatiale objective de simulations distribuées de la couche de
neige—une étude pour l’ensemble de la Suisse. Hydrol. Sci. J. 53, 179–191.
doi: 10.1623/hysj.53.1.179

Zaramella, M., Borga, M., Zoccatelli, D., and Carturan, L. (2019). TOPMELT 1.0:
a topography-based distribution function approach to snowmelt simulation

for hydrological modelling at basin scale. Geosci. Model Dev. 12, 5251–5265.
doi: 10.5194/gmd-12-5251-2019

Zhang, H., Zhang, F., Zhang, G., Che, T., Yan, W., Ye, M., et al. (2019). Ground-
based evaluation of MODIS snow cover product V6 across China: implications
for the selection of NDSI threshold. Sci. Total Environ. 651, 2712–2726. doi:
10.1016/j.scitotenv.2018.10.128

Zhang, H., Zhang, F., Zhang, G., Yan, W., and Li, S. (2021). Enhanced scaling effects
significantly lower the ability of MODIS normalized difference snow index to
estimate fractional and binary snow cover on the Tibetan Plateau. J. Hydrol.
592:125795. doi: 10.1016/j.jhydrol.2020.125795

Zhou, H., Aizen, E., and Aizen, V. (2013). Deriving long term snow
cover extent dataset from AVHRR and MODIS data: central Asia
case study. Rem. Sens. Environ. 136, 146–162. doi: 10.1016/j.rse.2
013.04.015

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Bouamri, Kinnard, Boudhar, Gascoin, Hanich and Chehbouni.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science | www.frontiersin.org 19 April 2021 | Volume 9 | Article 640250

https://doi.org/10.1016/j.jhydrol.2009.03.028
https://doi.org/10.1002/hyp.1067
https://doi.org/10.1080/01431160410001719867
https://doi.org/10.1080/01431160410001719867
https://doi.org/10.1117/1.3265996
https://doi.org/10.1002/hyp.9570
https://doi.org/10.1623/hysj.53.1.179
https://doi.org/10.5194/gmd-12-5251-2019
https://doi.org/10.1016/j.scitotenv.2018.10.128
https://doi.org/10.1016/j.scitotenv.2018.10.128
https://doi.org/10.1016/j.jhydrol.2020.125795
https://doi.org/10.1016/j.rse.2013.04.015
https://doi.org/10.1016/j.rse.2013.04.015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles

	MODIS Does Not Capture the Spatial Heterogeneity of Snow Cover Induced by Solar Radiation
	Introduction
	Study Area
	Data and Methods
	Digital Elevation Model
	Meteorological Forcing Data
	Satellite Data
	MODIS Daily Snow Product
	Processing and Combining MOD10A1 and MYD10A1

	Snowmelt Models
	Rain/Snow Partition
	Spatialization of Meteorological Forcing
	Model Validation

	Results
	Basin-Wide Snow Cover Area
	Parameter Sensitivity and Calibration
	Basin-Wide SWE and SCA
	Seasonality

	Spatial Variability
	Effect of Spatial Resolution on SCA Validation

	Discussion and Conclusion
	Difference in Model Performance
	Effect of Spatial Resolution on SCA Validation

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


