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Many-body physics aims to understand emergent properties of systems made of many interacting
objects. This article reviews recent progress on the topic of radiative heat transfer in many-body
systems consisting of thermal emitters interacting in the near-field regime. Near-field radiative
heat transfer is a rapidly emerging field of research in which the cooperative behavior of emitters
gives rise to peculiar effects which can be exploited to control heat flow at the nanoscale. Using an
extension of the standard Polder and van Hove stochastic formalism to deal with thermally gener-
ated fields in N -body systems, along with their mutual interactions through multiple scattering,
a generalized Landauer-like theory is derived to describe heat exchange mediated by thermal pho-
tons in arbitrary reciprocal and non-reciprocal multi-terminal systems. In this review, we use this
formalism to address both transport and dynamics in these systems from a unified perspective.
Our discussion covers: (i) the description of non-additivity of heat flux and its related effects, in-
cluding fundamental limits as well as the role of nanostructuring and material choice, (ii) the study
of equilibrium states and multistable states, (iii) the relaxation dynamics (thermalization) toward
local and global equilibria, (iv) the analysis of heat transport regimes in ordered and disordered
systems comprised of a large number of objects, density and range of interactions, and (v) the
description of thermomagnetic effects in magneto-optical systems and heat transport mechanisms
in non-Hermitian many-body systems. We conclude this review by listing outstanding challenges
and promising future research directions.
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I. INTRODUCTION

Heat transfer in a given system is in its simplest
sense (i.e. ignoring multiple irreversible transport pro-
cesses (Onsager, 1931)) thermal energy in transit due to
a spatial temperature difference (Bergman et al., 2011).
There are three basic heat transfer modes: conduction,
convection, and radiation. In the case of a stationary
medium, which could be a solid or a fluid, conduction
refers to heat transfer through local agitation of atoms
or charges that occurs across the medium in response to a
temperature gradient. Ultimately, the carriers responsi-
ble for heat conduction are phonons, molecular vibrations
or electrons/ions in the case of electrical conductors. The
second mode of transport is convection, and refers to heat
transfer that occurs between a surface and a moving fluid
when they are at different temperatures (or by advection
inside the fluid itself). Finally, the third heat transfer
mechanism is thermal radiation, which is the topic of this
review. All bodies at a finite temperature emit energy in
the form of electromagnetic waves (or photons). Hence,
even in the absence of an intervening medium, there is
always heat transfer via thermal radiation between bod-
ies at different temperatures. This makes thermal radia-
tion one of the most ubiquitous physical phenomena and
its understanding of critical importance for many differ-
ent areas of science and engineering (Howell et al., 2016;
Modest, 2013; Zhang, 2007).

Traditionally, our understanding of thermal radiation
is based on Planck’s law (Planck, 1914), which estab-
lishes that a black body (an object that absorbs all the
radiation that impinges on it) emits thermal radiation
following a broadband distribution that only depends on
the body’s temperature. Planck’s law provides a uni-
fied description of a variety of thermal radiation phe-
nomena and, in particular, it sets an upper limit (Stefan-
Boltzmann’s law) for the radiative heat transfer (RHT)
between bodies. However, Planck’s law was derived using
ray optics and hence, it is expected to fail when the spa-
tial dimensions in a thermal problem are smaller than
or comparable to the thermal wavelength λTh defined
by Wien’s displacement law (∼10 µm at room temper-
ature) (Planck, 1914). In particular, Planck’s law fails
to describe RHT between objects separated by distances
. λTh (Pendry, 1999; Volokitin and Persson, 2007). In
this near-field regime, RHT can be dominated by evanes-
cent waves (or photon tunneling), not taken into account

in Planck’s law, and the Planckian (or black-body) limit
can be greatly overcome by bringing objects sufficiently
close, see Fig. 1. This phenomenon was first predicted
within the rigorous framework of fluctuational electro-
dynamics (FE) (Rytov et al., 1989) by Polder and Van
Hove in the early 1970s (Polder and Hove, 1971), see
Sec. II. This near-field radiative heat transfer (NFRHT)
enhancement was first hinted in several experiments in
the late 1960s (Domoto et al., 1970; Hargreaves, 1969),
but it was not firmly confirmed until the 2000s (Hu
et al., 2008; Kittel et al., 2005; Narayanaswamy et al.,
2008; Rousseau et al., 2009; Shen et al., 2009). Since
then, numerous experiments exploring different aspects
of NFRHT have been reported and they have boosted the
field of thermal radiation (Bernardi et al., 2016; DeSut-
ter et al., 2019; Fiorino et al., 2018a,b,c; Ghashami et al.,
2018; Guha et al., 2012; Ito et al., 2015, 2017; Kim et al.,
2015; Kráĺık et al., 2012, 2017; Lang et al., 2017; Lim
et al., 2015; Musilová et al., 2019; Ottens et al., 2011;
Shen et al., 2012; Shi et al., 2013; Song et al., 2015b, 2016;
St-Gelais et al., 2014, 2016; Worbes et al., 2013; van Zwol
et al., 2012a,b). These experiments have, in turn, gen-
erated hope that NFRHT may have an impact on differ-
ent technologies such as heat-assisted magnetic record-
ing, thermal lithography, scanning thermal microscopy,
coherent thermal sources, near-field based thermal man-
agement, thermophotovoltaics, and other energy conver-
sion devices, see (Basu et al., 2009; Cuevas and Garćıa-
Vidal, 2018; Komiyama, 2019; Song et al., 2015a) and
references therein.

In parallel to these experimental advances, over the
last two decades, there has been a huge amount of the-
oretical activity. Initially, attention was devoted to the
importance of choice of materials and the elucidation of
the different mechanisms of near-field thermal radiation.
In that regard, polar dielectrics exhibiting polaritonic res-
onances that lead to surface modes have played a promi-
nent role in this field (Mulet et al., 2002). Then, following
nanophotonics concepts, a lot of work has been devoted
to assess the possibility of further enhancing NFRHT and
to tune its spectral properties by using nanostructures
such as thin films and multilayer systems (Ben-Abdallah
et al., 2009a; Biehs, 2007; Biehs et al., 2007; Francoeur
et al., 2008; Maslovski et al., 2013; Volokitin and Pers-
son, 2007), photonic crystals and gratings (Ben-Abdallah
et al., 2010; Biehs et al., 2011; Guérout et al., 2012;
Messina et al., 2017b; Rodriguez et al., 2011), and meta-
surfaces (Dai et al., 2016a; Fernández-Hurtado et al.,
2017; Liu and Zhang, 2015a). The investigation of the use
of metamaterials for further enhancing NFRHT (Biehs
et al., 2011, 2012; Guo et al., 2012; Joulain et al., 2010)
or low-dimensional materials like graphene or phospho-
rene to tune NFRHT (Ilic et al., 2012a; Liu et al., 2019,
2014a; Rodriguez-Lopez et al., 2015; Svetovoy et al.,
2012; Volokitin and Persson, 2011; Zhang et al., 2018)
has also attracted significant attention. Another topic of
great importance has been the study of the active control
of NFRHT by different means, including the use of phase-
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FIG. 1 (a) Far-field radiative heat transfer between two in-
finite parallel plates (media 1 and 2) separated by a vacuum
gap. In this scenario, the gap size d is much larger than the
thermal wavelength, λTh, and the two plates exchange heat
only via propagating waves. The evanescent waves generated
in the vacuum gap by total internal reflection are not able
to reach the second plate and do not contribute to the heat
transfer. (b) When d < λTh the tunneling of evanescent waves
can give a significant contribution to the radiative heat trans-
fer and in this way the Planckian (or black-body) limit can
be greatly overcome in this near-field regime.

transition materials (Menges et al., 2016; van Zwol et al.,
2011a,b), the application of an external magnetic field
(Moncada-Villa et al., 2015), or the regulation of chem-
ical potentials for photons with an external bias (Chen
et al., 2015). There are also several theoretical proposals
for functional devices that make use of NFRHT for ther-
mal management (Ben-Abdallah and Biehs, 2015; Otey
et al., 2010), thermophotovoltaics (Basu et al., 2007;
Laroche et al., 2006; Narayanaswamy and Chen, 2003;
Zhao et al., 2017a), and other energy applications (Chen
et al., 2016, 2015). On a more fundamental level, quan-
tum approaches based on the Huttner-Barnett model,
quantum Langevin equations, non-equilibrium Green’s
function method, and the master-equation approach for
open quantum systems have been proposed (Barton,
2016; Biehs and Agarwal, 2013a; Janowicz et al., 2003;
Sääskilahti et al., 2014; Sasihithlu and Agarwal, 2018;
Wang and Peng, 2017).

From a broader perspective, a new general picture of
RHT has emerged in recent years with profound similar-
ities to other heat and charge transport phenomena, in-
cluding phonon conduction in nanoscale systems and co-
herent electronic transport in mesoscopic devices (Cuevas
and Scheer, 2017). In particular, RHT is now routinely
described in terms of the Landauer formula, originally

proposed in the context of electronic mesoscopic systems
(Datta, 1997; Imry and Landauer, 1999), where the en-
ergy and charge transport are mainly determined by the
transmission function describing the transfer probabil-
ity of the carriers. Moreover, techniques employed to
compute transmission functions (scattering approaches,
Green’s function techniques, etc.) are conceptually very
similar in all those contexts. This connection between
RHT and conduction allows us not only to profit from
the experience in other fields, but can also serve as the
starting point for a unified description of different heat
transfer modes in situations where different types of car-
riers may compete or even interfere. An example of this
type of situation is realized in the context of the heat
transfer in subnanometer gaps where recent experiments
have reported conflicting observations in an intermediate
regime where the contribution of different carriers (pho-
tons, phonons, and electrons) may be comparable (Cui
et al., 2017a; Kloppstech et al., 2017). While the situa-
tion seems to be clear in the limiting cases where either
conduction (Cui et al., 2019, 2017b; Mosso et al., 2017) or
NFRHT (Kim et al., 2015) are clearly expected to domi-
nate, the description of the crossover between them might
require novel theories where different carriers are treated
on an equal footing (Chiloyan et al., 2015; Venkataram
et al., 2018).

Conceptually speaking, a major advance in the field
in the last decade has been the development of theoret-
ical models of RHT in many-body systems, the central
topic of this review. Such a theory deals with radiative
heat exchange in systems composed of multiple thermal
emitters able to cooperatively interact. The collective
behaviors in these systems give rise to singular phenom-
ena that we discuss in the present manuscript. Until
2011, FE had been primarily used to describe RHT be-
tween two bodies, but the situation changed with the
report of the first version of a many-body theory of RHT
describing a collection of small dipolar particles (Ben-
Abdallah et al., 2011). Soon after, this many-body the-
ory was generalized to deal with bodies of arbitrary size
and shape (Krüger et al., 2012; Messina and Antezza,
2011a), and new refinements of the theory are being con-
stantly reported to deal with more complex optical ma-
terials. Again, there is here a clear analogy with develop-
ments in mesoscopic physics, where Büttiker’s extension
of the Landauer formalism to multi-terminal systems laid
down the basis for the understanding of numerous charge
and energy transport phenomena in mesoscopic systems
(Datta, 1997). As we shall discuss in detail in this re-
view, the many-body theory of NFRHT opened the door
for predicting and analyzing a plethora of novel physi-
cal phenomena with no analogues in two-body systems.
Thus, for instance, it became possible to explore ther-
mal analogues of intrinsic many-body phenomena like
the Hall effect (Ben-Abdallah, 2016) or heat persistent
current (Zhu and Fan, 2016). It has also made it possi-
ble to propose a wide range of thermal functional devices
that are intrinsically many-body in nature, such as the
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thermal transistor (Ben-Abdallah and Biehs, 2014). This
theory also allowed for the first time to understand the
different heat propagation regimes in disordered systems
involving large collection of objects, and paved the way
for hydrodynamic modelling of transport in these media.
Although recent experimental works have explored the
possibility to tune radiative heat transfers in many-body
systems (Thompson et al., 2020) by actively changing
the relative position of nearby objects, to our knowledge,
many-body systems have yet to be experimentally inves-
tigated in the purely near-field regime.

The field of NFRHT has been the subject of different
reviews over the years. Thus, for instance, the reviews by
(Joulain et al., 2005) and (Volokitin and Persson, 2007)
covered the FE theory and basic concepts of NFRHT, but
for obvious reasons do not include crucial theoretical and
experimental advances in recent years. The reviews by
(Basu et al., 2007) and (Ben-Abdallah and Biehs, 2019)
focus on potential applications of near-field thermal ra-
diation in thermophotovoltaics. There are recent reviews
like that of (Song et al., 2015a) that already presents
some of the most recent advances and, in particular, de-
scribes the main experimental techniques developed in
recent years. The review by (Cuevas and Garćıa-Vidal,
2018) provides an interesting and updated perspective of
the field, but does not contain an in-depth description
of theoretical developments. The present review article
focuses on the theory of NFRHT in many-body systems,
which has not been covered so far in a self-contained and
unified framework. This topic is becoming a central focus
of the field of thermal radiation, as it promises an entirely
new generation of thermal radiation applications, and its
understanding is likely to determine the future of RHT
as a forefront research line.

The structure of the paper goes as follows. In Sec. II,
we set the stage for this review by discussing NFRHT
in two-body systems. Here, we put the emphasis on the
modern view of NFRHT and review the most important
theoretical advances in this topic, as well as the experi-
mental state of the art. Specifically, we begin by briefly
recalling the basics of the theory of FE and then dis-
cuss its application to the important case of two parallel
plates (Sec. II.A). This basic configuration is used to il-
lustrate the critical role of material choice (Sec. II.B),
including a preliminary discussion of non-reciprocal ma-
terials in Sec. II.C. Section II.D is devoted to the analysis
of the role of nanostructuring in tailoring and most im-
portantly enhancing NFRHT, including recent works fo-
cused on multilayer structures, photonic crystals, meta-
materials, gratings, metasurfaces, graphene sheets, and
surface roughness. We then move beyond planar struc-
tures in Sec. II.E to discuss NFRHT between objects
of arbitrary size and shape. General-purpose numerical
methods developed so far for the description of NFRHT
in arbitrary geometries are then discussed in Sec. II.F.
We conclude this first part of the review in Sec. II.G with
an in-depth discussion of recently derived limits on the
largest NFRHT rates that could ever be realized by an

optimal choice of material and geometric configuration.
Specifically, we highlight the prohibitive role that multi-
ple scattering (a critical feature of many-body physics to
be further discussed in subsequent sections) plays in lim-
iting heat-transfer enhancements that may be achieved
through nanostructuring, resulting in optimal flux rates
not much larger than what is observed in planar polari-
tonic materials, at least in the context of two-body heat
exchange.

Section III constitutes the bulk of this review and cov-
ers a great variety of aspects of the theory of near-field
thermal radiation in many-body systems. We first discuss
the problem of light absorption by a set of non-emitting
objects which collectively interact and show that these
systems can be treated as a whole with a dressed sus-
ceptibility that takes into account both cooperative in-
teractions as well as the resonant response of individual
objects. Next, a generalized Landauer formula is de-
rived to describe radiative heat transfer in the general
situation in which all objects are emitting, using trans-
mission coefficients describing the pairwise efficiency of
coupling between any two objects. Using this theoreti-
cal framework, we highlight the singular aspects of heat
transport in these systems compared to those seen in two-
body systems. We start to illustrate these peculiarities
in Secs. III.A.3 and III.B.2, where we prove the non-
additivity of heat flux, a fundamental feature of these
systems. We also show that N -body interactions can am-
plify heat flux or lead to saturation mechanisms close to
the contact without the need to introduce non-locality in
material responsivity. In Sec. III.B.3, we discuss equilib-
rium conditions for any given system, and show that equi-
librium states are generally not unique and can be, along
with their stability, identified and characterized by stan-
dard perturbative techniques. We also show that multi-
stable systems can be exploited, for instance, to make a
boolean treatment of information with thermal photons
or build thermal self-oscillators. In the subsequent sec-
tion, we address the problem of heat transport in various
complex systems using both a kinetic approach based on
the approximate Boltzmann transport equation for the
resonant modes supported by the system, and from a
generalized Landauer theory that takes into account all
modes in the continuum. Several physical effects (radia-
tive drag effect, heat-flux focusing, heat pumping and
long-range heat transport) inherent to many-body sys-
tems are then introduced and discussed. In Sec. III.C.4,
we address the relaxation problem of many-body systems
and show that the temperature field can evolve at differ-
ent time scales, depending on the nature of interactions.
Furthermore, we discuss the current solutions proposed
to dynamically control the heat flux exchanged in these
systems by modulating either geometrical configuration,
optical properties, or via adiabatic control of their tem-
perature. In Sec. III.C.6, we analyze various heat trans-
port regimes in systems consisting of a large number of
objects, and show that RHT can be described as a gen-
eralized random walk with a non-Gaussian probability
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distribution function. Unlike what happens in solid-state
physics for heat conduction in bulk materials, we demon-
strate the existence of anomalous heat transport regimes
and highlight that these regimes closely depend on the
system dimension, drastically changing from dilute to
dense systems. The next few sections are devoted to non-
reciprocal systems. Unlike reciprocal systems, in these
non-Hermitian systems the classical notion of Lorentz
reciprocity is violated, giving rise to specific heat-transfer
mechanisms. After extending in Secs. III.D.2 and III.D.3
the theoretical framework to deal with heat exchange,
we discuss in Secs. III.D.4 several thermomagnetic effects
(magnetoresistance, permanent currents, Hall effect) that
take place in magneto-optical systems and we underline
in Sec. III.D.5 the link between these effects and the topo-
logical structure of the Poynting field. We also stress in
Sec. III.D.7 the potential of these systems to efficiently
tune the direction of heat flow. Finally, we conclude this
review by listing outstanding challenges and a broader
outlook of potential future research directions.

II. TWO-BODY SYSTEMS

Most theoretical work on the topic of NFRHT is pri-
marily based on Rytov’s FE theory. Developed in the
1950s (Rytov et al., 1989), FE is a semiclassical theory
which assumes that thermal radiation is generated by
random, thermally activated electric currents inside the
bodies. Thus, the technical problem in the description of
RHT between different objects boils down to the solution
of the stochastic Maxwell’s equations, with random elec-
tric currents as radiation sources. To illustrate the idea,
let us consider two optically isotropic and non-magnetic
bodies separated by a vacuum gap, see Fig. 2. In the
framework of FE, the RHT problem is completely speci-
fied by the temperature distributions Ti(r) (i = 1, 2) and
the dielectric functions of the materials, εi(r, ω). The
macroscopic Maxwell’s equations to be solved adopt the
following form in the frequency domain

∇×E(r, ω) = iωµ0H(r, ω), (1)

∇×H(r, ω) = −iωε0ε(r, ω)E(r, ω) + J(r, ω), (2)

where E and H are the electric and magnetic fields, r is
the position vector, and ε0 and µ0 are the vacuum per-
mittivity and permeability, respectively. In the second
equation, the fluctuating current density distributions
J(r, ω) within the bodies are the sources of the thermal
radiation. The statistical average of these currents van-
ishes, i.e., 〈J〉 = 0, but their correlations are given by the
fluctuation-dissipation theorem (Eckhardt, 1984; Joulain
et al., 2005; Rytov et al., 1989)

〈J(r, ω)⊗ J∗(r′, ω)〉 =
4~ω2ε0
π

Im{ε(r, ω)}

× n(ω, T (r))δ(r− r′),

(3)

where ~ is the Planck constant and n(ω, T ) =
1/(exp[~ω/kBT ] − 1) is the Bose function. In simple

FIG. 2 Fluctuational electrodynamics: Schematic of radia-
tive heat transfer in a two-body system. The two bodies
of volumes V1 and V2 have temperature profiles T1(r) and
T2(r) and frequency-dependent dielectric functions ε1(r, ω)
and ε2(r, ω). Electromagnetic fields E and H are generated by
the random currents J in the bodies due to their non-vanishing
correlations given by the fluctuation-dissipation theorem. The
net power exchanged by the two bodies is determined by the
total transmission T that can be expressed as a sum of indi-
vidual transmission coefficients τn.

terms, the calculation of the radiative power exchanged
by bodies 1 and 2 is done by first solving the Maxwell
equations with the appropriate boundary conditions de-
fined by geometries of the bodies and assuming that
the random electric currents occupy the whole body 1.
Then, with the solution for the fields around body 2, the
statistical average of the Poynting vector is computed:
〈S(r, ω)〉 = Re〈E(r, ω)×H(r, ω)〉/2. Finally, the results
are integrated over frequency and over a closed surface
enclosing body 2. Of course, to evaluate the net RHT,
one needs to calculate in a similar way the heat trans-
ferred from body 2 to body 1.

This innocent-looking problem is, however, quite chal-
lenging in general, and analytical solutions are only
known in a handful of situations. One of the main goals
of the rest of this section is to present the solution in
cases of increasing complexity focusing on two-body sys-
tems. Let us say at this stage that, as mentioned in the
introduction, the net power, Pnet, exchanged via thermal
radiation between two objects of (homogeneous) temper-
atures T1 and T2 can always be expressed via means of the
Landauer formula, as one can easily understand with the
following heuristic argument. The net radiative power
is the balance between the heat power transferred from
one body to the other: Pnet = P1→2 − P2→1, where the
individual contributions are given by

Pi→j =

∫ ∞
0

dω

2π
~ωn(ω, Ti)Tji(ω). (4)

Here, ~ω is the energy of an electromagnetic mode of
frequency ω and the Bose function n(ω, T ) is describ-
ing the thermal occupation of that mode, and Tji(ω) is
the total transmission coefficient that correspond to the
sum of the probabilities over all the modes of frequency
ω that can be transferred from body i to body j. In
the case of a two-body system (with no environment),
detailed balance imposes that T21(ω) = T12(ω) = T (ω)
and the expression of the net power reduces to the cel-
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ebrated Landauer formula (Ben-Abdallah and Joulain,
2010; Biehs and Greffet, 2010a; Polder and Hove, 1971)

Pnet =

∫ ∞
0

dω

2π
~ω [n(ω, T1)− n(ω, T2)] T (ω). (5)

Following the spirit of the Landauer approach in meso-
scopic physics, the total transmission can be analyzed in
terms of radiation channels and it can be expressed as

T (ω) =
∑
n

τn(ω), (6)

where the τ ’s are the individual transmission probabili-
ties of the different open channels (bounded between 0
and 1). This point is particularly useful to establish sim-
ple upper bounds for RHT, as we shall discuss later in
this review.

A. Parallel plates

As mentioned in the introduction, the importance of
the contribution of evanescent waves in the RHT be-
tween two objects and the possibility to overcome the
Planckian limit in the near-field regime was first put for-
ward by Polder and van Hove (Polder and Hove, 1971).
These authors calculated the NFRHT rate between two
infinite parallel plates, a geometry that has become the
workhorse of NFRHT and that is schematically repre-
sented in Fig. 1. We shall refer to the upper plate as
medium 1 and the lower plate as 2, and assume that they
are at constant temperatures T1 and T2, respectively. In
the case of optically isotropic and nonmagnetic materials,
Polder an Van Hove showed that the radiative power per
unit area, i.e. the heat flux Φ, between the parallel plates
is given by Eq. (5) with the following replacement of the
transmission coefficient by a transmission coefficient per
unit area:

T (ω) −→
∫ ∞

0

dκ

2π
κ τ(ω, κ, d). (7)

Here, κ =
√
k2
x + k2

y is the magnitude of the wave vector

parallel to the plates, see coordinate system in Fig. 1(a),
d is the gap size, and τ(ω, κ, d) is the total (sum over
polarizations) transmission probability of an electromag-
netic mode of frequency ω and parallel wave vector κ. In
the case of isotropic materials, this total transmission is
equal τ(ω, κ, d) = τs(ω, κ, d) + τp(ω, κ, d), where the con-
tributions of s- and p-polarized waves (or alternatively
TE- and TM-waves) are given by (α = s, p)

τα(ω, κ, d) =


(1−|rα1 |

2)(1−|rα2 |
2)

|Dα|2 , κ < k0

4Im(rα1 )Im(rα2 )e−2|qv|d

|Dα|2 , κ > k0 ,
(8)

where k0 = ω/c is the wavenumber in vacuum and Dα =

1− rα1 rα2 e2iqvd, c is the speed of light, qv =
√
ω2/c2 − κ2

is the perpendicular component of the wave vector in the
vacuum gap, and rαi are Fresnel (or amplitude reflection)
coefficients given by

rsi =
qv − qi
qv + qi

, rpi =
εiqv − qi
εiqv + qi

. (9)

Here, εi(ω) is the dielectric function of medium i = 1, 2,
assumed to only depend on frequency (local media), and

qi =
√
εik2

0 − κ2.
The key point in this result is that the integral in

Eq. (7) is carried out over all possible values of κ and
therefore, it includes the contribution of both propagat-
ing waves (κ < k0) and evanescent waves (κ > k0).
These latter ones are not taken into account in Stefan-
Boltzmann’s law. The contribution of the evanescent
waves decays exponentially with the gap size, see Eq. (8),
and it becomes negligible in the far-field regime (d �
λTh). However, in the near-field regime (d < λTh) the
contribution of evanescent waves, often referred to as
photon tunneling, can become very significant and for
sufficiently small gaps, it may completely dominate the
heat transfer. The black-body result is obtained from
Eq. (7) by ignoring the evanescent waves and assuming
perfect transmission for the propagating waves for all fre-
quencies and wave vectors. In that case, the radiative
power per unit area is given by Stefan-Boltzmann’s law:
ΦBB = σ(T 4

1 − T 4
2 ), where σ = 5.67× 10−8 W/(m2K4).

B. Metals vs. dielectrics

The parallel-plate configuration allows us to illustrate
not only the impact of evanescent waves in the near-field
regime, but also the importance of the choice of materials.
There are two main classes of materials when it comes to
NFRHT, namely metals (or related materials with free
carriers like doped semiconductors) and dielectrics (espe-
cially polar dielectrics that exhibit polaritonic resonances
like SiO2, SiN, SiC, etc.). As an example of the results for
these two types of materials, we show in Fig. 3(a,c) the
gap dependence of the room-temperature heat-transfer
coefficient, i.e. the radiative heat conductance per unit
area, for two parallel plates made of Au and SiO2. In
those panels we also show the individual contributions of
propagating and evanescent waves for TE and TM polar-
izations. Notice that in both cases the Planckian limit
(indicated with an horizontal line) is greatly overcome for
sufficiently small gaps. This is particularly remarkable in
the silica case, where for d = 1 nm the heat flux is almost
5 orders of magnitude larger than the black-body limit.
Notice also that there are clear differences between Au
and SiO2. For Au, the NFRHT rate is dominated by TE
evanescent waves, which originate from eddy currents in-
side the Au plates (Chapuis et al., 2008c). This typically
leads to a saturation of the heat transfer coefficient for
small gaps. On the contrary, in the silica case, NFRHT
is dominated by TM evanescent waves that can be shown
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FIG. 3 (a) Heat transfer coefficient at room temperature
(300 K) as a function of the gap size for two infinite paral-
lel plates made of Au. The different lines correspond to the
total contribution (black solid line) and to the contributions
of propagating and evanescent waves for TE and TM polar-
izations. The horizontal line shows the result for two black
bodies: 6.124 W/(m2 K). (b) The spectral heat flux (or con-
ductance per unit area and frequency) as a function of the
radiation frequency corresponding to the case of panel (a).
The solid lines correspond to three different values of the gap
size in the near-field regime, while the blue dashed line is the
result for two black bodies. (c,d) The same as in panels (a,b)
for SiO2.

to stem from surface phonon polaritons (SPhPs): quasi-
particle excitations that arise from the strong coupling of
electromagnetic fields with the optical phonon modes of
polar dielectrics (Mulet et al., 2002). These surface elec-
tromagnetic waves are hybrid or cavity modes that reside
in both plates and have a penetration depth that is on
the order of the gap size (Basu and Zhang, 2009), which
implies that they are more and more confined to the sur-
faces as the gap is reduced (Song et al., 2015b). The in-
crease of the density of the states of theses modes (Ben-
Abdallah and Joulain, 2010; Biehs and Greffet, 2010a)
upon reducing the gap size is reflected in a characteristic
1/d2 dependence of the heat transfer coefficient for polar
dielectrics.

Apart from enhancing NFRHT, evanescent waves are
also responsible for a drastic modification of the spectral
heat flux (or heat conductance per unit frequency), see
Fig. 3(b,d). Thus, for instance, in the SiO2 case the spec-
tral heat flux is dominated by two peaks that appear at
the frequencies of the optical modes of this polar dielec-
tric. This is dramatically different as compared to the
broadband Planck’s distribution and it is also due to the
fact that NFRHT in this case is dominated by SPhPs.

In principle, the plate-plate configuration discussed
above is ideally suited to experimentally investigate
NFRHT because some of the largest enhancements in this

FIG. 4 (a) Schematic illustration of NFRHT measurement
configuration used by (Fiorino et al., 2018b). The emit-
ter microdevice is comprised of a square mesa and Pt
heater/thermometer suspended on a thermally isolated island.
The receiver is a macroscopically large (1 cm × 1 cm) plate.
(b) The corresponding heat flux versus gap size in the case of
an emitter and an receiver made of SiO2. Measured data (red
squares) is compared to the theoretical result (solid black line)
obtained within FE. Reprinted with permission from (Fiorino
et al., 2018b). Copyright 2018 ACS.

regime are expected to occur in this setting. However,
this configuration is very difficult to realize in practice
because it is very complicated to achieve and maintain
good parallelism between macroscopic plates at nanome-
ter separations. In recent years several groups have over-
come this hurdle and have developed novel techniques
to explore the plate-plate configuration in the near-field
regime and they have been able to confirm the results
of the FE theory. Some of those experiments have made
use of macroscopic (∼cm× cm) planar surfaces (Bernardi
et al., 2016; DeSutter et al., 2019; Ghashami et al., 2018;
Hu et al., 2008; Ottens et al., 2011), while others are
based on microscopic plates (50 µm × 50 µm) (Fiorino
et al., 2018b; Song et al., 2016; St-Gelais et al., 2014,
2016). The use of macroscopic planar surfaces is con-
ceptually simple, but in practice it is more difficult to
ensure the parallelism and to have clean and smooth sur-
faces over such large areas. For this reason, the smallest
gaps achieved with this strategy are still above a hun-
dred nanometers (DeSutter et al., 2019). On the other
hand, the use of microdevices facilitates the paralleliza-
tion of the systems and the characterization of the sur-
faces. With this approach, it has become possible to
explore gaps as small as 30 nm (Fiorino et al., 2018b),
as we illustrate in Fig. 4. In this example, a microde-
vice comprising a Pt resistor, which heats up the emitter
and measures its temperature, was used to measure the
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NFRHT rate between two SiO2 surfaces down to gaps of
about 30 nm. For these tiny gaps, it was found that the
heat conductance was about 1200 times larger than in
the far-field regime and about 700 times larger than the
black-body limit, in excellent agreement with the theory
results based on FE.

C. Non-reciprocal materials

A special class of materials that has attracted a lot
of attention in the context of thermal radiation is that
of non-reciprocal materials. These materials do not sat-
isfy Lorentz reciprocity (Caloz et al., 2018) and, in prac-
tice, are optically anisotropic materials with dielectric
tensors which are non-symmetric. A paradigmatic exam-
ple is that of magneto-optical (MO) materials where the
non-reciprocity is induced either by an internal magne-
tization like in ferromagnets or by an external magnetic
field like in doped semiconductors. Part of the atten-
tion is due to the suggestion that these materials might
violate Kirchhoff’s law (Zhu and Fan, 2014), which es-
tablishes the equality of thermal emissivity and absorp-
tivity. Although it has been shown that this is not case
in a two-body situation (one body could be an environ-
ment) (Ekeroth et al., 2017), this class of materials does
give rise to countless novel thermal-radiation phenomena
in the context of many-body systems, as it will be amply
discussed later in this review.

In the context of NFRHT in two-body non-reciprocal
systems, most of the work so far has focused on the anal-
ysis of MO materials and, in particular, on the study of
the use of an external magnetic field as a way to actively
control thermal radiation. Special attention has been de-
voted to doped semiconductors, which in the presence
of an external magnetic field exhibit a very strong MO
activity in the infrared. The first theoretical study of
this kind was reported by (Moncada-Villa et al., 2015)
who analyzed the magnetic-field dependence of the heat-
transfer coefficient of two parallel plates made of doped
semiconductors (InSb or Si). These materials become op-
tically anisotropic and non-reciprocal in the presence of
an external magnetic field. Thus, the problem is to com-
pute the RHT between between two anisotropic parallel
plates. This generic problem was addressed by (Biehs
et al., 2011; Bimonte, 2009) and, similarly to the isotropic
case discussed in Sec. II.A, the net power per unit area or
heat flux Φ is given by the Landauer formula of Eq. (5)
with the substitution

T (ω) −→
∫

dκ

(2π)2
τ(ω,κ, d). (10)

Here, κ = (kx, ky)t is the wave vector parallel to the sur-
face planes, and τ(ω,κ, d) is the transmission probabil-
ity of the individual electromagnetic waves. Notice that
the integral in Eq. (10) is now carried out over all possi-
ble directions of κ (the RHT is no longer isotropic) and,
as usual, it includes the contribution of both propagat-

ing and evanescent waves. The transmission coefficient
τ(ω,κ, d) can be expressed as

τ(ω,κ, d) =Tr
{

[1−R1R
†
1]D†[1−R†2R2]D

}
, κ < k0

Tr
{

[R1 −R†1]D†[R†2 −R2]D
}
e−2|qv|d, κ > k0

(11)

where the 2 × 2 matrices Ri (with i = 1, 2) are the re-
flection matrices characterizing the two interfaces. These
matrices have the following generic structure

Ri =

(
rssi rspi
rpsi rppi

)
, (12)

where rαβi with α, β = s, p is the reflection amplitude
for the scattering of an incoming α-polarized plane wave
into an outgoing β-polarized wave. In particular, the off-
diagonal elements describe the polarization conversation,
which does not occur for isotropic materials. Finally, the
2× 2 matrix D in Eq. (11) is defined as

D = [1−R1R2e
2iqvd]−1. (13)

The different reflection matrices appearing in Eq. (12)
can be computed within standard approaches for
anisotropic multilayer systems.

This formalism was used in (Moncada-Villa et al.,
2015) to show that the NFRHT rate between two par-
allel plates made of doped InSb and Si can be strongly
affected by the application of a static magnetic field, and
relative changes of up to 700% were predicted for fields
of a few Teslas. These results are illustrated in Fig. 5
for the case of a magnetic field oriented parallel to the
plates. More recently, the same authors have also shown
that NFRHT between two parallel plates made of MO
materials can also be modulated by simply changing the
orientation of the external magnetic field (Moncada-Villa
and Cuevas, 2020), which is the thermal analogue of well-
known phenomenon of anisotropic thermal magnetoresis-
tance in the field of spintronics. This and other thermo-
magnetic phenomena in the context small MO particles
will be discussed in more detail in Sec. III.D.

D. Nanostructuring and Roughness

Following ideas and concepts of nanophotonics, many
groups have explored nanostructuring as a strategy to
further enhance NFRHT and to tune its spectral prop-
erties. In this subsection, we shall briefly review some
of the ideas put forward in recent years in the context
of NFRHT in nanostructured planar systems and also
discuss the impact of deviations from planarity.

1. Multilayer structures and photonic crystals

A natural extension of the plate-plate configuration
discussed above is to replace the plates by planar multi-
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FIG. 5 (a) Heat-transfer coefficient for two parallel plates
made of n-doped InSb at room temperature (300 K) as a
function of the gap size for different values of a magnetic field
applied parallel to the surfaces of the plates (x-direction).
The inset shows the ratio between the zero-field coefficient
and the coefficient for different values of the field in the near-
field region. (b) The corresponding spectral heat flux as a
function of the frequency (and wavelength) for a gap of d = 10
nm and different values of the parallel field. Reprinted with
permission from (Moncada-Villa et al., 2015). Copyright 2015
American Physical Society.

layer structures or 1D photonic crystals (Basu and Fran-
coeur, 2011; Ben-Abdallah et al., 2009a,b, 2010; Biehs,
2007; Biehs et al., 2007; Francoeur et al., 2008, 2010a,
2011; Iizuka and Fan, 2018; Jin et al., 2017a; Maslovski
et al., 2013; Miller et al., 2014). A central idea in this
case is to incorporate thin films in layered systems to
make better use of surface electromagnetic modes. In
practice, the RHT rate between two planar multilayer
bodies comprised of an arbitrary number of layers can
be formally described with the same formulas as in the
plate-plate case, see Eqs. (7) and (8), but in this case
rα1 and rα2 have to be interpreted as the reflection coef-
ficients of the two subsystems (including their complete
layered structures), see (Ben-Abdallah et al., 2010; Bi-
monte, 2009). To give a concrete example, let us follow
(Song et al., 2015b) and consider the multilayer structure
shown in the inset of Fig. 6 where the first body is an
infinite SiO2 plate (medium 1) and the second body fea-
tures a SiO2 film of thickness t (medium 3) deposited on

a semi-infinite layer of Au (medium 4), while the medium
2 is the vacuum gap of size d. In this case, rα2 in Eq. (8)
has to be replaced by (Biehs, 2007)

Rα =
rα23 + rα34e

2iq3t

1− rα34r
α
32e

2iq3t
, (14)

which is the reflection coefficient of the subsystem formed
by media 3 and 4. Here, as usual, the rαij are the Fresnel
coefficients of the different interfaces:

rsij =
qi − qj
qi + qj

and rpij =
εjqi − εiqj
εjqi + εiqj

, (15)

where qi =
√
εik2

0 − κ2. Finally, the Fabry-Pérot de-
nominator in Eq. (8) adopts now the form Dα = 1 −
rα21R

αe2iq2d.
In Fig. 6 we show representative results of the gap de-

pendence of the-heat transfer coefficient of this multilayer
structure for different values of the thickness of the silica
film, ranging from 50 nm to bulk. We also show the result
with no SiO2 film for comparison. Notice that for small
gaps (d < 100 nm), the results are independent of the
silica film thickness, which shows that the extraordinary
NFRHT enhancements that occur in the bulk systems
made of polar dielectrics are also possible in thin-film
structures as long as the gap size is smaller than the
film thickness (Biehs, 2007; Biehs et al., 2007). As ex-
plained above, the physical origin of these results can be
traced back to the fact that NFRHT is dominated by
electromagnetic cavity modes arising from SPhPs whose
penetration depth scales with the gap size. Thus, when
the gap is sufficiently small, all the heat transfer comes
from a shallow region on the surface of the two bodies
and NFRHT becomes independent of the film thickness.
These qualitative predictions were subsequently experi-
mentally confirmed by (Song et al., 2015b) using a 53-
µm-diameter silica sphere as an emitter, instead of the
silica plate used in the calculations of Fig. 6. The finite
curvature of the sphere results in smaller NFRHT en-
hancements, as compared to the planar structure, as it is
easy to understand with the standard proximity approx-
imation, see (Song et al., 2015b) for details.

To increase NFRHT beyond bulk systems, different
groups have proposed to combine several thin films to
make use of the hybridization of the surface modes in
different interfaces (Ben-Abdallah et al., 2009a; Biehs,
2007; Francoeur et al., 2008, 2011; Iizuka and Fan, 2018;
Jin et al., 2017a). Another proposed strategy to outper-
form bulk systems relies on the use of 1D photonic crys-
tals (Ben-Abdallah et al., 2010; Tschikin et al., 2012a).
In this case the heat transfer mechanism involves the sur-
face Bloch states coupling supported by these media.

2. Metamaterials

Another topic that has been extensively studied in the
context of NFRHT between nanostructured systems is
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FIG. 6 Computed heat transfer coefficient as a function of
gap size for the multilayer system shown in the inset at room
temperature (300 K). This structure comprises a thick, semi-
infinite silica surface separated by a vacuum gap of size d from
a silica thin film coating on a semi-infinite Au surface. Dif-
ferent curves correspond to different thicknesses of the silica
coating. Adapted from (Song et al., 2015b).

the use of metamaterials, i.e., artificial structures with
subwavelength features designed to exhibit complex op-
tical properties that are difficult to find in naturally oc-
curring (bulk) materials. In particular, special attention
has been devoted to hyperbolic metamaterials, which are
a special class of highly anisotropic media whose electro-
magnetic modes have an hyperbolic dispersion relation.
To be precise, they are uniaxial materials for which one
of the principal components of either the permittivity or
the permeability tensor is opposite in sign to the other
two principal components. These systems have been
primarily fabricated based on designs involving hybrid
metal-dielectric superlattices and metallic nanowires em-
bedded in dielectric hosts (Poddubny et al., 2013). The
interest in these metamaterials in the context of NFRHT
lies in the fact that they have been predicted to behave
as broadband super-Planckian thermal emitters (Biehs
et al., 2012; Guo et al., 2012; Nefedov and Simovski,
2011). This behavior originates from the fact that these
metamaterials can support electromagnetic modes that
are evanescent in a vacuum gap, but which are prop-
agating inside the material. This leads to broadband
enhancement of the transmission efficiency of the evanes-
cent modes (Biehs et al., 2012). From the computational
point of view, the heat transfer between hyperbolic meta-
materials can be described using either the scattering
approach for multilayer media described in the previous
subsection, or the more general method discussed in the
following subsection and applicable to laterally periodic
patterned structures. In this latter case, and for appropi-
ate (subwavelength) periodicities, it is typical to expoit
an effective medium theory in order to reduce the prob-
lem to one involving planar but optically anisotropic ma-
terials, allowing application of the approach described in
Sec. II.C.

FIG. 7 (a) Schematic of two doped-Si metasurfaces made
of 2D periodic arrays of square holes placed on semi-infinite
planar substrates and held at temperatures T1 and T2. (b)
Room-temperature heat transfer coefficient as a function of
the gap size for the doped-Si metasurfaces of panel (a) with
a = 50 nm and a filling factor of 0.9 (black line). For compar-
ison, the plot also includes the results for the Si metasurfaces
computed with an effective medium theory (orange dashed
line), SiO2 parallel plates (blue line), and doped-Si parallel
plates (red line). The horizontal dashed line shows the black-
body limit. Reprinted with permission from ref (Fernández-
Hurtado et al., 2017). Copyright 2017 by the APS.

The special properties of hyperbolic metamaterials
have spurred many theoretical investigations of their use
in the context of NFRHT (Biehs et al., 2013; Guo and Ja-
cob, 2013, 2014; Lang et al., 2015; Liu et al., 2013, 2014b;
Miller et al., 2014; Simovski et al., 2013; Tschikin et al.,
2015, 2013). These works have in turn demonstrated
that metamaterials do not outperform thin-film-based
structures exhibiting SPhPs, as their increased density
of states is compensated for by a decrease in the strength
of the evanescent fields (Miller et al., 2014). Neverthe-
less, metamaterials exhibit other interesting properties;
for instance, the long penetration depth of the hyperbolic
modes can be advantageous for applications in near-field
thermophotovoltaics.

3. Gratings and Metasurfaces

Also inspired by nanophotonic concepts, NFRHT be-
tween periodically patterned systems has been intensively
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investigated from a theoretical point of view, both in
1D (gratings) and in 2D (photonic crystals and periodic
metasurfaces). Again, the goal of such nanostructuring
is to tune the spectral heat transfer and enhance net
NFRHT. Technically speaking, the Landauer formula of
the previous subsections can be straightforwardly gener-
alized to deal with periodic systems by making use of
Bloch’s theorem. This was first done by Bimonte and we
refer to (Bimonte, 2009) for technical details. Using that
generalized formula in combination with different tech-
niques for the computation of reflection coefficients in
periodic systems, typically via the rigorous coupled wave
analysis (RCWA) method, several groups have reported
calculations of NFRHT between periodic metallic nanos-
tructures in both 1D (Dai et al., 2016a, 2015; Guérout
et al., 2012; Messina et al., 2017b) and 2D (Dai et al.,
2016b; Jin et al., 2019). The key idea in this case is
to use nanostructuring to create new surface modes, re-
ferred to as spoof plasmons (Pendry et al., 2004), whose
frequencies can be adjusted by tuning the length scales
of these periodic systems so that their surface modes can
be thermally populated at the desired working temper-
ature. The reported results have clearly demonstrated
the possibility of enhancing NFRHT over the correspond-
ing planar (bulk) materials. However, NFRHT in these
periodically patterned metallic structures continues to
be smaller than that observed in simple (unstructured)
planar polar dielectrics, with few exceptions (Jin et al.,
2019).

There has also been significant theoretical work on the
topic of NFRHT between dielectric photonic crystals and
metasurfaces (Liu and Zhang, 2015a; Liu et al., 2015;
Rodriguez et al., 2011). Again, these structured sys-
tems exhibit enhanced NFRHT with respect to their bulk
counterparts, but the resulting NFRHT rates are again
much smaller than those of planar polar dielectrics. In
this regard, it is worth mentioning that it has been pre-
dicted that metasurfaces can indeed provide a way to en-
hance NFRHT between extended structures (Fernández-
Hurtado et al., 2017). To be precise, it has been shown
that Si-based metasurfaces featuring two-dimensional pe-
riodic arrays of holes, see Fig. 7, can exhibit a room-
temperature near-field radiative heat conductance larger
than any unstructured material to date. This enhance-
ment relies on the possibility of largely tuning the spec-
tral properties of the surface plasmon polaritons that
dominate NFRHT in these structures. In particular,
nanostructuring enables the appearance of broadband
and lower-frequency surface modes, increasing their con-
tribution and occupation at room temperature, which
constitutes one of the main strategies being pursued to
enhance NFRHT. We conclude this subsection by not-
ing that, to our knowledge, no experiment has thus far
probed NFRHT between patterned structures.

4. Graphene

Two-dimensional materials are revolutionizing mate-
rial science and they also hold promise in the field of
NFRHT. In particular, graphene has attracted much at-
tention as it can support delocalized surface plasmon po-
laritons (SPPs) that can contribute to NFRHT in spite
of graphene’s ultrasmall (one-atom) thickness (Ilic et al.,
2012a; Volokitin and Persson, 2011). What makes these
surface modes so attractive, as compared to SPhPs in po-
lar dielectrics, is the possibility of modulating them elec-
tronically (Messina et al., 2013a), which can be achieved
by controlling graphene’s chemical potential by means of
a nearby gate electrode. Such a mechanism provides an
ideal strategy to actively control NFRHT in graphene-
based structures (Papadakis et al., 2019). On the other
hand, several theoretical studies have shown that coat-
ing structures with graphene sheets may lead to a sub-
stantial increase in NFRHT (Lim et al., 2013; Messina
et al., 2017a; Svetovoy et al., 2012). In this case, the
idea is that appropriate engineering of the coupling of
graphene’s SPPs with other surface modes, like SPPs in
doped Si or SPhPs in polar dielectrics, may increase the
efficiency of heat exchange in the near-field regime. An-
other topic of great interest that has been theoretically
investigated is the use of graphene-based structures in
thermophotovoltaics (Ilic et al., 2012b; Messina and Ben-
Abdallah, 2013; Svetovoy and Palasantzas, 2014). Fur-
thermore, the role of graphene in NFRHT has been the-
oretically studied in a wide variety of hybrid structures
(Liu et al., 2014b; Liu and Zhang, 2015b; Shi et al., 2017,
2018, 2019b; Zhao et al., 2017b).

From an experimental perspective, recent works have
confirmed that graphene enables enhanced NFRHT be-
tween polar dielectrics (Shi et al., 2019a; van Zwol et al.,
2012b) and between Si substrates (both insulating and
conductive) (Yang et al., 2018). In particular, Shi et
al. (Shi et al., 2019a) measured the NFRHT flux be-
tween two identical graphene-coated SiO2 heterostruc-
tures with millimeter-scale surface area and reported
a 64-fold enhancement compared to the corresponding
black-body limit for a gap size of 170 nm, see Fig. 8.
Moreover, these authors showed theoretically that the
physical mechanism behind this large NFRHT enhance-
ment is indeed the coupling between graphene’s SPPs
and silica’s SPhPs. It is also worth mentioning that the
first experimental demonstration of NFRHT modulation
by electronic gating of a graphene field-effect heterostruc-
ture was just recently reported (Thomas et al., 2019).

5. Surface roughness

Most calculations of NFRHT in planar structures as-
sume that the corresponding surfaces are perfectly flat.
Such an idealization, for instance, ignores practical con-
siderations such as surface roughness. The impact of
surface roughness on NFRHT was addressed theoreti-
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FIG. 8 Comparison of the NFRHT rate between
graphene(Gr)/SiO2 pair (red-solid line) and SiO2 pair
(blue-solid line) with various gap sizes. The temperatures
of the emitter and the receiver are 323.2 K and 301.5,
respectively. Lines show the calculated values and spheres
are the average values of four repeated measurements at
each point. The inset shows a schematic illustration of the
Gr/SiO2 heterostructure. The black-body limit has been
plotted for comparison (black-dashed line). Reprinted with
permission from (Shi et al., 2019a). Copyright 2019 ACS.

cally by Biehs and Greffet (Biehs and Greffet, 2010b),
in a plate-plate configuration. Using a form of perturba-
tion theory, they showed that assuming reasonable values
for the height of the roughness profile (∼ 5 nm), correc-
tions to the heat transfer coefficient due to roughness
can lead to roughly order of magnitude differences com-
pared to perfectly flat surfaces when the gap size is on
the order of a few tens of nm, both for metals and po-
lar dielectrics. Moreover, they showed that proximity
approximations previously used for describing rough sur-
faces are highly innacurate when gap sizes become much
smaller than the correlation length of the surface rough-
ness, even when the heat transfer is dominated by the
coupling of surface modes. We also note that the influ-
ence of surface roughness has also been studied by way
of the finite-difference time-domain method in combina-
tion with the Wiener chaos expansion approach (Chen
and Xuan, 2015), along with its interplay with surface
curvature (Krüger et al., 2013).

E. Impact of geometry

Thus far, we have mainly discussed NFRHT in planar
geometries in which the translational symmetry greatly
simplifies the resolution of Maxwell’s equations. In what
follows, we turn to the analysis of the impact of geometry
(heat exchange between structured bodies) and briefly
discuss how the aforementioned RHT formulas can be
generalized to handle objects of arbitrary size and shape.

The Polder-van Hove formula expressing T (ω) in terms

of Fresnel reflection coefficients or generalized reflection
matrices is well-suited for calculations of heat transfer in
systems with translational symmetry, including the afore-
mentioned uniform planar slabs, thin films, gratings, pho-
tonic crystals, and periodic metamaterials. However, this
leaves out a large class of systems of experimental and
theoretical interest that do not exhibit such translational
symmetries, particularly compact bodies like spheres or
structured nanoparticles whose finite dimensions are rele-
vant to the analysis of radiative heat transfer. Typically,
in such cases, it is incumbent to exploit general-purpose
techniques to compute field response quantities entering
T (ω), for the geometry in question, in terms of the sys-
tem’s Green’s function. One such powerful general scat-
tering formalism was developed by Krüger and cowork-
ers (Bimonte et al., 2017; Krüger et al., 2012), arriving
at the general formula (for reciprocal media),

T (ω) = 4 Tr
[
R∗2W1,2R1W∗2,1

]
(16)

in terms of the radiation operator Rp = G0(Im(Tp) −
TpIm(G0)T∗p)G∗0 and scattering operator Wpq = G−1

0 (1−
G0TpG0Tq)−1 for bodies p, q ∈ {1, 2} defined in terms of
the scattering T-operators Tp, which depend on the ma-
terial properties and shape of the bodies and the Green’s
function operator G0 in vacuum. The strength of this
formulation lies in its broad applicability, as it general-
izes beyond systems with discrete or continuous trans-
lational symmetry: it can in principle be used for arbi-
trary geometries, including compact bodies whose finite
sizes in each dimension are relevant, with faster numeri-
cal convergence for appropriate choices of basis functions.
Additionally, while this T-operator formalism casts ther-
mal radiation in terms of volumetric scattering quanti-
ties, related contemporaneous surface integral equation
formulations (Rodriguez et al., 2013a) can similarly re-
cover known semi-analytical results for uniform planar
media and be computationally amenable to general com-
pact or extended geometries by casting thermal radiation
purely in terms of surface unknowns, vastly reducing the
computational complexity of calculations.

Furthermore, beyond simply aiding in generalizations
of computations beyond extended media with transla-
tional symmetry, the T-operator formalism can shed fur-
ther light on the number of contributing transmission
channels to T (ω). In the operators of Eq. (16), an op-
erator of particular interest (Miller, 2000, 2007; Miller
et al., 2015; Molesky et al., 2020; Venkataram et al., 2020)
is the off-diagonal block G0(2,1) of the Green’s function
connecting points r′ restricted to the volume of body
1 and r restricted to the volume of body 2. At first
glance, the ability of electromagnetic fields to propagate
through vacuum, or equivalently the coupling of all pairs
of volumetric degrees of freedom in each of the differ-
ent bodies, suggests that the number of channels will
scale like the volume of each body. However, the electro-
magnetic surface equivalence theorem (Harrington, 1989;
Otey et al., 2014; Reid and Johnson, 2015; Reid et al.,
2013b; Rengarajan and Rahmat-Samii, 2000; Rodriguez
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FIG. 9 (Krüger et al., 2011) Transferred power Hs by
NFRHT between a SiO2 sphere with radius R = 5µm at
300 K and a SiO2 plane at 0 K as a function of distance d.
The transferred power is normalized to the power emitted by
a black body with a surface area given by the cross section of
the sphere. From (Krüger et al., 2011).

et al., 2013a) shows that the electromagnetic fields radi-
ated by any volumetric polarization distribution to the
exterior of some fictitious bounding surface can be ex-
actly reproduced in that exterior region by an equivalent
surface current distribution, therefore suggesting that the
rank of G0(2,1) actually scales with the surface area of
each body; as shown by Polimeridis et al. (Polimeridis
et al., 2015), it is indeed the effective rank of this off-
diagonal scattering operator that determines the number
of contributing transmission channels τn.

Based on the scattering approach and standard Green’s
function formalism, there have been many studies of the
heat flux between a sphere and a plane, as shown in
Fig. 9, and between two spheres (Krüger et al., 2011;
Narayanaswamy et al., 2008; Otey and Fan, 2011a; Sasi-
hithlu and Narayanaswamy, 2011). Reviews highlighting
other studies of NFRHT in non-planar geometries can
be found in (Bimonte et al., 2017; Otey et al., 2014).
Early studies of heat transfer between compact bodies
typically focused on high-symmetry objects with simple
shape. However, there have been far fewer studies of
NFRHT in nanostructured compact bodies compared to
the preponderance of examples for extended media (in-
cluding the previously-discussed gratings, photonic crys-
tals, and metasurfaces) because the former, unlike the
latter, does not easily succumb to semianalytical expres-
sions for arbitrary geometries in the absence of symme-
tries like continuous or discrete translational invariance.
With this in mind, the next section discusses the develop-
ment of various numerical methods to compute radiative
heat transfer in a broad array of systems.

F. Numerical methods

Advances in computational hardware and numerical
algorithms have led to an explosion of computational
methods to study radiative heat transfer. Notably, the
facts that the Landauer form of the radiative heat trans-
fer power depends only on the Bose function n(ω, T )
and the Landauer energy transmission spectrum T (ω),
and that the latter in Eq. (16) only depends on classical
electromagnetic scattering quantities, means that stan-
dard computational techniques may be readily applied
to studying radiative heat transfer. These methods, illus-
trated schematically with examples in Fig. 10, essentially
fall into one of two categories, depending on the choice
of either a spectral or localized basis expansion (Bimonte
et al., 2017; Cuevas and Garćıa-Vidal, 2018; Otey et al.,
2014; Reid et al., 2013a; Song et al., 2015a), each of which
brings a set of benefits and drawbacks.

1. Spectral methods

Techniques based on spectral expansions (Bimonte
et al., 2017; Krüger et al., 2012) express the T-operators
of each individual body in terms of delocalized spec-
tral functions (e.g. the spherical vector waves discussed
above). These basis functions include but are not lim-
ited to plane waves (Fourier basis) (Bimonte, 2009; Jin
et al., 2017a; Messina and Antezza, 2011b; Messina
and Ben-Abdallah, 2013; Messina et al., 2016b), Bloch
waves (Ben-Abdallah et al., 2010; Francoeur et al., 2009;
Messina et al., 2017b; Narayanaswamy and Chen, 2005;
Tschikin et al., 2012a), and spherical or cylindrical har-
monics (Krüger et al., 2011; McCauley et al., 2012;
Narayanaswamy et al., 2008; Otey and Fan, 2011a). The
use of these basis functions is most convenient when the
geometries involved exhibit discrete or continuous sym-
metries, like translation or rotation, as that can make
the resulting matrix expressions for the relevant opera-
tors nearly diagonal, making computations far more ef-
ficient. However, in the absence of such symmetries, or
when different bodies have shapes of different symme-
tries, not only are the resulting matrices dense, but the
convergence with respect to increasing numbers of basis
functions slows dramatically. Furthermore, we note that
with few exceptions, such as work on graphene sheets (Ilic
et al., 2012a; Neto et al., 2009; Sernelius, 2012; Wunsch
et al., 2006), most applications of these spectral tech-
niques have in practice focused on simple local isotropic
homogeneous susceptibilities χ(ω).

2. Decomposition methods

By contrast, techniques based on localized expan-
sions (Cuevas and Garćıa-Vidal, 2018; Otey et al., 2014;
Song et al., 2015a) express either T-operators or Maxwell
Green’s functions in terms of localized basis functions.
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FIG. 10 Collage of selected computational methods. Schematics of basis functions, along with selected results, for spec-
tral (Bimonte et al., 2017; Krüger et al., 2012; McCauley et al., 2012; Messina and Antezza, 2011b; Messina et al., 2017b),
finite-difference (Jin et al., 2019; Rodriguez et al., 2011; Werner et al., 2013), volume integral (Polimeridis et al., 2015), and
surface integral (Reid et al., 2013b; Rodriguez et al., 2013a,b) methods.

One such technique is the finite-difference frequency do-
main method (Jin et al., 2019; Wen, 2010), in which
Maxwell’s equations in the frequency domain are dis-
cretized on a lattice of grid points. In the context of RHT,
fields in response to individual dipolar sources embedded
in the radiating objects can be computed independently
and then summed according to weights determined by the
fluctuation–dissipation theorem; alternatively, the uncor-
related nature of dipolar sources at different spatial po-
sitions means that all such fluctuating sources can be
simultaneously introduced and modelled as stochastic,
random sources with correlation functions given by the
fluctuation–dissipation theorem (requiring ensemble av-
erages over many source realizations to reduce noise, as in

Monte-Carlo integration). The latter interpretation lends
itself to a direct Langevin or stochastic time-domain sim-
ulation of Maxwell’s equations (Rodriguez et al., 2011).
This last class of time-domain method has the added ben-
efit that discretized spatial differential operators are rep-
resented as sparse matrices, and allows representations
of broad classes of nonlocal (spatially dispersive) sus-
ceptibility models in terms of spatial differential oper-
ators, such as the hydrodynamic model (Klimchitskaya
and Mostepanenko, 2015; Xiao et al., 2016), all the while
being applicable to arbitrary body shapes. On the other
hand, multiscale or large problems become particularly
challenging to simulate as the propagation of electromag-
netic fields through vacuum means that the entire space
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between bodies must also be discretized, even if the sepa-
ration is much larger than relevant body feature sizes, so
the resulting convergence with respect to resolution can
be prohibitively slow.

A related class of technique is the so-called volume-
integral formulation of Maxwell’s equations (Jin et al.,
2017b, 2016; Polimeridis et al., 2015), of which the dis-
crete dipole approximation (DDA) (Edalatpour et al.,
2016; Edalatpour and Francoeur, 2014, 2016; Ekeroth
et al., 2017) may be thought of as a special case. In
general, volume integral formulations use various classes
of localized basis functions as basis expansions for T-
operators and G0. Unlike finite-difference methods, these
techniques have the advantage of only requiring basis
functions within the volumes of material bodies, with
the full scattering problem represented by expressing the
full Green’s function in terms of the individual materi-
als’ scattering matrices and the analytically known free-
space Green’s function of the corresponding intervening
medium. As expected, however, different choices of ba-
sis functions offer challenges and tradeoffs with respect
to numerical convergence. As further elucidated below,
DDA is effectively a volume integral formulation in which
each body is discretized into point dipolar particles with
equivalent Clausius–Mossotti polarizabilities: this ap-
proximation typically yields accurate results for dielectric
media, but suffers from poor convergence when simulat-
ing metals with highly delocalized plasmons. In contrast,
volume-integral formulations guaranteed to converge re-
quire a so-called Galerkin discretization of the problem
based on use of either voxel (Polimeridis et al., 2015)
or Schaubert-Wilton-Glisson (tetrahedral) (Reid et al.,
2017) basis functions. In either case, the basis functions
may be identical and displaced on a regular grid/lattice
covering each body, in which case the matrix representa-
tion of G0 may be sparse (and therefore computationally
easier to handle) due to the translational symmetries in-
herent in G0, though this often comes at the costs of com-
puting matrix elements of G0 for regions where no mate-
rials are present, or of losing flexibility over discretizing
certain regions more finely than others (Polimeridis et al.,
2015). Exactly the opposite tradeoff occurs if the vol-
umes are discretized in an irregular manner, with differ-
ent weights given to different basis functions (Reid et al.,
2017): it then becomes possible to discretize certain re-
gions more finely than others, which is of particular rele-
vance to near-field radiative heat transfer between large
bodies where only a few fine features are very close to
one another, but at the cost of the matrix representation
of G0 becoming dense due to the loss of obvious symme-
tries in the representation. Furthermore, in all cases, vol-
ume integral formulations can model inhomogeneous and
anisotropic susceptibilities and even temperature gradi-
ents (Jin et al., 2016; Polimeridis et al., 2015), but mod-
eling nonlocal susceptibilities has proved to be more of a
challenge.

A class of techniques related to the volume integral for-
mulation are those based on the surface integral formula-

tion (Rodriguez et al., 2013a,b) of Maxwell’s equations.
These techniques compute the Landauer energy trans-
mission spectrum T according to a formula that looks
superficially similar to Eq. (16) but whose derivation and
implementation requires a different set of techniques. In
particular, surface-integral formulations make consistent
use of the surface equivalence theorem (Harrington, 1989;
Otey et al., 2014; Reid and Johnson, 2015; Reid et al.,
2013b; Rengarajan and Rahmat-Samii, 2000; Rodriguez
et al., 2013a) to recast all free polarization sources and
total electromagnetic fields in terms of equivalent surface
currents, with the relevant operators being the Green’s
functions of the homogeneous susceptibilities comprising
each body, as well as the surface integral operator re-
lating incident fields to induced equivalent surface cur-
rents. In principle, the operators relevant to the surface
integral formulation can be expanded in a spectral ba-
sis (Rodriguez et al., 2013a), but as in the T-operator
formulation, convergence suffers for bodies that do not
exhibit requisite symmetries. Instead, it is more common
to expand the relevant operators in a localized basis like
the Rao-Wilton-Glisson basis (Rodriguez et al., 2013a,b)
of tetrahedral functions.

Finally, we point out that any of these frequency do-
main methods could have instead been cast in the time
domain. In the context of computational electromag-
netism, this is most commonly achieved by using the
finite-difference time domain method (Luo et al., 2004;
Rodriguez et al., 2011). This has many of the same
benefits and detriments of the aforementioned finite-
difference frequency domain method. Techniques based
on molecular dynamics have also been used to compute
radiative heat transfer in systems comprising nanoparti-
cles (Domingues et al., 2005), though the scaling of the
volume with the cube of the number of atoms makes
computations unwieldy in practice for large nanoparti-
cles. For both of these time domain techniques, the main
advantages are their generality with respect to materi-
als, the simple computational implementation (as the
temporal evolution operators are represented as sparse
matrices), the ability to extract dynamical information,
and their ability in principle to incorporate nonlinear
material response. In the case of molecular dynamics,
susceptibilities can be simulated fairly generally as the
method is based on simulating classical Newtonian par-
ticle dynamics, though interactions other than harmonic
or Coulomb couplings are typically based on empirical
rather than ab-initio models. The main disadvantages
for both sets of techniques are losses in computational
efficiency from needing to explicitly simulate fluctuat-
ing polarization sources obeying fluctuation–dissipation
statistics, which requires that averages be taken over a
large ensemble of calculations.
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G. Upper bounds on near-field heat transfer

As noted above, the Stefan–Boltzmann formula or
blackbody limit was derived over a century ago under
the assumptions of ray optics, and consequently fails to
provide an upper bound of the maximum heat flux that
can be extracted from an object in the near-field regime.
While it is known that, as in far-field emission, appropi-
ate choice of object geometry (nanostructuring) and ma-
terials can enhance NFRHT, the lack of such a limit ap-
plicable in the near field begs the question: how much
more room for improvement can be expected from ei-
ther of these design criteria? Over the past few decades,
there have been several succesful attempts at addresing
this fundamental question, starting with analyses of max-
imum NFRHT achievable in planar geometries (where
the main design criterion is the choice of material) (Ben-
Abdallah and Joulain, 2010; Biehs et al., 2012; Volok-
itin and Persson, 2004) and followed more recently by
limits applicable to arbitrary nanostructures and materi-
als (Miller et al., 2015; Venkataram et al., 2020). Tech-
nically speaking, it is clear that upper limits to the heat
flux are determined by bounds on the transmission coef-
ficient T (ω) per unit area in Eq. (5), which is itself de-
termined by the per-channel transmission factors τn(ω)
entering Eq. (6). The aim of arriving at a bound on RHT
is therefore to discern the maximum number and contri-
bution of tranmission channels that may be excited by a
yet unknown optimal choice of material and geometry.

In the case of two planar bodies, the maximum heat
flux is determined by the bounds on the transmission
coefficient T (ω) per unit area in Eq. (7), which is deter-
mined by the transmission factor τα(ω, κ) ∈ [0, 1] cor-
responding to transversal waves of frequency ω, lateral
wavevector κ, and polarization α = s, p. It is then clear
that T (ω) can be maximized if the transmission factor
τα(ω, κ) is maximal over a broad frequency and lateral
wavevector range. For example, when assuming that at a
given frequency, all transversal waves contribute a max-
imal transmission factor of unity up to some threshold
value κmax, the upper bound for the transmission coef-
ficient per unit area between two planar bodies can be
written as

Tpl(ω) ≤ 2

∫ κmax

0

dκ

2π
κ = N(ω), (17)

where N(ω) may be interpreted as the number of
contributing transmission modes or channels per unit
area (Ben-Abdallah and Joulain, 2010; Biehs and Greffet,
2010a). By definition, the contribution of propagating
waves is restricted to κ < k0. Hence, setting κmax = k0,
one obtains the maximum value of T (ω) = k2

0/2π for
propagating waves. Inserting this maximum value in
Eq. (7), one finds that the largest heat flux Φmax

pr that
can ever be carried by propagating waves is precisely
the black-body value ΦBB given by Stefan-Boltzmann’s
law (Bergman et al., 2011; Planck, 1914). Thus, it is the
additional contribution coming from evanescent waves

with κ ≥ k0 and not accounted for in Stefan-Boltzmann’s
law that allows NFRHT to surpass the blackbody limit.

At first glance, it may appear that there is no upper
bound to κmax in the evanescent sector, at least within
the scope of local continuum electromagnetism, suggest-
ing that Tpl(ω) is unbounded. However, even simple con-
siderations imply otherwise. For instance, inside a di-
electric, the largest possible lateral wavevector allowed is
given by the edge of the Brillouin zone π/a, where a is
the lattice constant of the medium. Hence, only waves up
to wavevectors κmax ≈ π/a contribute heat flux. Ignor-
ing possible band degeneracies and physical constraints
imposed by material and geometric considerations, this
gives the following idealized upper bound on the maxi-
mum possible heat flux between two dielectrics (Volokitin
and Persson, 2004):

Φmax
pl,ideal ≈

k2
Bπ

2

24~a2
(T 2

1 − T 2
2 ). (18)

Assuming a wavevector cutoff set by a lattice constant on
the order of the atomic scale (a ≈ 10−10 m), and room-
temperature operation (T1 = 300 K and T2 = 0 K), yields
a heat flux of 1013 Wm−2 that is unrealistically large com-
pared to the black-body value of about 460 Wm−2. Tak-
ing into account the nature of evanescent waves within
the vacuum gap between the two planar materials, one
may derive a more sensible upper bound. For instance,
the field amplitude of evanescent waves of a given κ in the
quasi-static regime drops exponentially as exp(−κz) with
respect to the distance z from the interface. As a conse-
quence, one can expect that only evanescent waves having
1/κ ≈ z > d or κ < 1/d can meaningfully contribute to
the heat flux between two planar interfaces a distance d
apart, suggesting that κmax ≈ 1/d. In (Ben-Abdallah
and Joulain, 2010), it is argued that only evanescent
modes with 1/κ ≈ z > d/2 overlap significantly and
contribute, so a distance-dependent cutoff κmax ≈ 2/d
is used to provide an estimate of the upper limit for
T ≤ 2/πd2, leading to the following gap-dependent upper
bound on the net heat flux (Ben-Abdallah and Joulain,
2010):

Φmax
pl,gap =

k2
B

6~d2
(T 2

1 − T 2
2 ). (19)

The choice of κmax = 1/d would decrease this estimate
by a factor of 1/4. Note that this cutoff is consistent with
the fact that T scales as exp(−2κd) with the separation
distance d. A similar simple and general, albeit material
independent expression for the upper limit of the heat
flux contribution has also be found for the case of two
hyperbolic metamaterials (Biehs et al., 2012).

Material considerations further constrain the allowed
heat flux between planar media. In particular, Biehs and
Greffet (Biehs and Greffet, 2010a) derived a more real-
istic frequency-dependent cutoff κmax = ln[2/Im(χ)]/d
that accounts for the impact of material absorption
through the material-specific loss rate Im[χ(ω)], where
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χ is the medium’s susceptibility. In particular, knowl-
edge of the analytical form of the reflection coefficients
at an interface can be used to show that the maximum
flux occurs for materials satisfying the surface-mode res-
onance condition, Re(1/χ) = −1/2. The fact that in the
quasi-static regime the heat flux scales like 1/d2 can be
understood from the fact that the number of contribut-
ing evanescent modes per unit area scales like 1/d2 (Ben-
Abdallah and Joulain, 2010; Biehs and Greffet, 2010a;
Biehs et al., 2012). Generalizations of related analysis to
bound the performance of planar metasurfaces (nanstruc-
tured materials with subwavelength systems) have re-
cently been made (Biehs et al., 2012; Miller et al., 2014),
showing for instance that metasurfaces cannot signifi-
cantly enhance NFRHT beyond planar thin films.

Efforts aimed at identifying the number and relative
contribution of transmission channels that may arise in
non-planar media require a different framework. Re-
cently, Miller et al (Miller et al., 2015) recast radiative
heat transfer between two bodies as a series of indepen-
dent absorption and emission problems (ignoring addi-
tional constraints posed by the presence of multiple scat-
tering among the two objects) to obtain bounds that only
depend on the bodies’ material susceptibilities and sep-
aration. In particular, recent work showed that given
an incident field on an object of susceptibility χ(ω), the
maximum polarization field that can arise at any point
inside the object at a frequncy ω depends on the “mate-
rial response factor” (Miller et al., 2016),

ζ(ω) =
|χ(ω)|2

Im[χ(ω)]
(20)

Such a figure of merit yields a measure of the resis-
tivity or dissipation of the medium and thereby cap-
tures the impact of losses on the resonant optical re-
sponse of a body. The material response factor arises
from the optimal magnitude of the T-operator for max-
imal absorption in isolation (Miller et al., 2016), and
encodes electromagnetic many-body and multiple scat-
tering effects within the body in isolation; this opti-
mal magnitude is achievable at a polaritonic resonance,
determined by the value of Re(1/χ), which in turn
can be tailored through nanostructuring. Exploiting
the maximum polarization responsivity of a medium
in combination with electromagnetic reciprocity, Miller
et al found an upper bound on the net transmission
T ≤ 4ζ1ζ2

∫
V1

dr′
∫
V2

dr
∑
i,j |G0(ω, r, r′)|2 that depends

quadratically on the effective loss rate of the system
ζ =

√
ζ1ζ2, with ζ1 and ζ2 denoting the material fac-

tors of the bodies, and on the integral of the vacuum
Green’s function over volumes V1 and V2 representing
any convenient domain that may contain bodies 1 and
2, respectively. Such a double integral may be cast as a
Frobenius norm of the off-diagonal matrix G0(2,1), which
was previously identified in related works by D. A. Miller
et al (Miller, 2000, 2007) on optical communication lim-
its. However, such an analysis depends crucially on the
assumption that each body is capable of simultaneously

and optimally emitting electromagnetic fields in the ab-
sence of the other, and of optimally absorbing electro-
magnetic fields in the presence of the other, which ef-
fectively neglects additional physical constraints arising
from the unavoidable impact of multiple scattering be-
tween the two bodies. As a result, the limits have been
shown to be tight in situations where multiple scattering
can be neglected, namely quasistatic media subject to rel-
atively large material losses (Jin et al., 2019). This prob-
lem becomes particularly acute in the context of bounds
on extended structures, where the inability to account for
tighter bounds on the transmission eigenvalues causes the
quadratic dependence on ζ to far outstrip the observed
logarithmic dependence on ζ seen in polaritonic planar
media near the resonance condition Re(1/χ) = −1/2
(and predicted by the above planar bounds), suggesting
more room for enhancements in NFRHT through nanos-
tructuring than has been observed in practice.

In recent work, Venkataram et al (Molesky et al., 2020;
Venkataram et al., 2020) developed a set of algebraic
techniques to derive tighter bounds on NFRHT that in-
corporate not only constraints on material response but
also multiple scattering. Specifically, the transmission
coefficient for two arbitrarily shaped bodies at any given
frequency ω was found to be bounded above by,

Tarb(ω) =
∑
n

τn(ω)

≤
∑
n

{
1, ζ1ζ2g

2
n ≥ 1

4ζ1ζ2g
2
n

(1+ζ1ζ2g2n)2 , ζ1ζ2g
2
n < 1

(21)

where the dependence on ω inside the various factors has
been deprecated. These bounds depend not only on the
resistivity ζi(ω) of each body i = {1, 2} at the given fre-
quency, but also on a set of “radiative efficacy” coeffi-
cients gn(ω) denoting the singular values of the vacuum
off-diagonal Maxwell Green’s function G0(2,1) connecting
dipoles in one object to the resulting fields on the other.
Moreover, the bounds move beyond simply identifying
the set of channels able to contribute to heat transfer,
previously estimated on the basis of the effective rank of
G0(2,1), and instead exploit the specific singular values of
G0(2,1) in combination with the loss rate of the medium
to quantitatively determine the maximum possible trans-
mission for each channel. Once the set of channels that
could possibly contribute (having nonzero radiative cou-
pling gn) is identified, the ability of each transmission
channel to saturate the Landauer upper bound of unity
(τn ≤ 1) is determined by the degree to which the ra-
diative efficacies are able to overcome material losses,
captured by the condition ζ1ζ2g

2
n ≥ 1; the per-channel

bound is less than unity for those channels unable to meet
such a condition. In addition to correctly reproducing
the transition and eventual saturation in the growth of
NFRHT between dipolar nanoparticles, from material-
loss-dominated growth in the polarization response to
the Landauer tranmission bounds of unity, these limits
reveal that extended nanostructured bodies cannot sig-
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nificantly outperform resonant planar polaritonic slabs
even in principle. Specifically, evaluation of the radiative
efficacies for any set of nanostructures contained within
semi-infinite half-space domains yields a limit on the net
transmission of

Tarb(ω)× d2/A ≤

1

2π

ln
(

1 + ζ1ζ2
4

)
, ζ1ζ2 < 4

1
2 ln(ζ1ζ2) + 1

8

[
ln
(
ζ1ζ2

4

)]2
, ζ1ζ2 ≥ 4

(22)

which exhibits a weak squared-logarithmic dependence
on ζ, in line with the observed logarithmic peak value of
T for planar slabs at a polaritonic resonance (Biehs and
Greffet, 2010a; Miller et al., 2015).

Based on this recent analysis, it is evident that the
observed inability of nanostructuring to significantly en-
hance the amplitude of T at any given frequency be-
yond what is achievable with resonant planar materi-
als is a “feature” of the underlying physics of NFRHT,
and not a “bug” in sampling a limited design space: the
maximum channel able to saturate the Landauer trans-
mission limit of unity for any nanostructure scales loga-

rithmically as 1
2d ln

(
ζ1ζ2

4

)
provided the system is in the

underdamped (resonant) regime ζ1ζ2 ≥ 4. Intuitively,
this result may be seen as dissonant with the established
utility of nanostructuring for enhancing far-field electro-
magnetic absorption and scattering, and the significantly
stronger enhancements of local densities of states that
can arise in the vicinity of structured materials. How-
ever, the channels of radiative heat transfer between two
separable bodies in proximity have little to do with the
channels that carry energy away from a body (or an ag-
gregate two-body system), so there is no reason to believe
that enhancement of the latter transmission channel con-
tributions would necessarily increase the former.

The transition from a quadratic (Miller et al., 2015)
to a much weaker logarithmic (Venkataram et al., 2020)
dependence of the bounds on material conductivity once
multiple-scattering constraints are introduced illustrates
the restricted and prohibitive nature of nanostructuring
in tailoring mutual scattering across a wide range of res-
onant channels. Such a tradeoff precisely explains why
the success of nanostructuring in enhancing local fields
does not readily translate into equivalent enhancements
in NFRHT. As reviewed in Sec. II.B and Sec. II.D, metal-
lic nanostructures can indeed greatly enhance heat ex-
change compared to their planar counterparts, but as
these limits suggest, not much more than what may be
achieved with planar polar dielectrics. Finally, while mul-
tiple scattering ultimately hampers the maximum heat
exchange that any two bodies can experience, as we shall
see in the next section, it underlies several important
transport effects in many-body systems.

III. MANY-BODY SYSTEMS

Until this last decade, theoretical and experimental
work in the topic near-field radiative heat transport was
primarily relegated to the study of heat exchange between
two objects, while transport in systems composed of ob-
jects in mutual interactions remained largely unexplored
and out of the reach of classical FE. In 2011, Ben Abdal-
lah et al. (Ben-Abdallah et al., 2011) laid out the theo-
retical foundations for studying NFRHT in simple many-
body systems made of small interacting objects in the
dilute regime, paving the way for a new research direc-
tion on the topic of nanoscale heat transfer. Since then,
numerous works have revealed new many-body effects,
including the emergence of new physical and transport
behaviors, and unraveling a large number of potential
applications in domains such as nanoscale thermal man-
agement, energy-conversion technology, and information
processing. In the following sections, we describe these
peculiarities.

A. Heat flux in dipolar many-body systems

Understanding the mechanisms that drive light matter
interactions is one of the main goal in optics. In the fol-
lowing, we address the problem of light absorption and
thermal emission by a set of small objects in which coop-
erative interactions as well as heat exchange take place
in these systems.

1. Light absorption in dipolar systems

To start let us consider the case of non-emitting ob-
jects which are only able to scatter and absorb light from
an external source, i.e. we are neglecting thermal radia-
tion at this stage. In the simplest case of a small isolated
particle located at position r′ in vacuum, the optical re-
sponse of this particle can be described by the response
to a simple permanent dipolar electric moment p(r′).

The electric field produced at point r around this
dipole takes the following form

Ep(r) = ω2µ0G0(r, r′)p(r′). (23)

Here (Novotny and Hecht, 2006)

G0(r, r′) =
exp(ik0ρ)

4πρ

[(
1 +

ik0ρ− 1

k2
0ρ

2

)
1

+
3− 3ik0ρ− k2

0ρ
2

k2
0ρ

2
ρ̂⊗ ρ̂

] (24)

is the free space Green tensor defined with the unit vec-
tor ρ̂ ≡ ρ/ρ, ρ = r − r′, k0 = ω/c is the wave vector
while 1 denotes the unit dyadic tensor and µ0 denotes
the vacuum permeability. When this particle is illumi-
nated by an incident field Einc, the local electric field
Eloc measured at any point r is the superposition of the
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incident field and the field generated (scattered) by the
dipole. Therefore, according to expression (23), this field
decomposes into

Eloc(r) = Einc(r) + ω2µ0G0(r, r′)p(r′). (25)

The electromagnetic power P dissipated in the particle
can be calculated from the rate of work

Pabs =
1

2

∫
V

dV Re
(
j∗ ·Eloc

)
(26)

done by the electromagnetic field in a volume V including
the particle. Here j denotes the local electric current
density in the volume V . In the dipolar approximation
j(r′) = −iωpδ(r− r′) so that

Pabs =
1

2
Re
(
iωp∗ ·Eloc

)
= −ω

2
Im
(
p∗ ·Eloc

)
. (27)

Using the following relation

p(r′) = ε0αEinc(r′) (28)

between the incident field and the dipolar moment, where
α is the electric polarizability, the power dissipated in the
particle reads (Tretyakov, 2014)

Pabs =
ω|Einc|2ε0

2

(
Im[α]− k0

6π
|α|2

)
. (29)

It is common to quantify light absorption using the ab-
sorption cross-section defined as the ratio

σabs =
Pabs

Finc
(30)

of this dissipated power by the incident flux

Finc =
cε0
2
| Einc |2 . (31)

For a collection of dipoles located at the position ri
(i = 1, . . . , N) the multi-scattering process between the
particles must be taken into account (Langlais et al.,
2014). Under an external illumination by an incident
field Einc, the local electric field Eloc measured at any
point results from the superposition of the incident and
all scattered fields as

Eloc(r) = Einc(r) + ω2µ0

N∑
j=1

G0(r, rj)pj . (32)

By introducing the notation pi = p(ri), Eloc,i = Eloc(ri),
Einc,i = Einc(ri) the total power absorbed by this set of
dipoles takes the general form (Hugonin et al., 2015)

Pabs =
ω

2

( N∑
i=1

Im
(
pi ·Einc,i

∗)
−

N∑
i,j=1

Im
(
p∗iDijpj

)) (33)

FIG. 11 (a) Absorption cross-section of spherical silver
nanoparticles with respect to the wavelength. (b) Orthogonal
and parallel configurational resonance frequencies for a dimer
of silver nanoparticles (R = 10 nm) in vacuum with respect
to their separation distance d. The red horizontal line rep-
resents the plasmon resonance of an isolated particle.(c)-(d)
Absorption cross-sections for a dimer of silver nanoparticles
(R = 10 nm) and normalized by the absorption of a single
particle. From (Raj et al., 1995)

.

where we have introduced the N ×N block matrix

Dij = µ0ω
2G0(ri, rj). (34)

This relation generalizes expression (29) to arbitrary sys-
tems of coupled dipoles. For isotropic and homogeneous
particles the generalized vector field of dipolar moments
reads p1

...
pN

 = A

Eloc,1

...
Eloc,N

 (35)

introducing the block matrix

Aij = ε0δijαi (36)

where α
i

is the electric polarizability tensor associated to

the ith particle. Using Eq. (32), this expression can be
reformulated with respect to vectorial incident field asp1

...
pN

 = AT̃−1

Einc,1

...
Einc,N

 (37)

with

T̃ij = δij1− (1− δij)k2
0G0(ri, rj)αj . (38)

This block matrix T̃−1 defines the interplay between all
dipoles and the block matrix

αdr =
1

ε0
AT̃−1 (39)
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also called dressed polarizability (Castanié et al., 2012)
results from the multi-scattering process in the set of
dipoles. Using the slightly different block matrix

Tij = δij1− (1− δij)k2
0αiG0(ri, rj). (40)

it can also be expressed as

αdr =
1

ε0
T−1A, (41)

because TA = AT̃ and T−1A = AT̃−1. This dressed
polarizability shows that two types of resonances play a
role in the interaction of light with the set of coupled
dipoles. The first ones are the resonances of the isolated
particles themselves (i.e. the poles of α

i
) while the sec-

ond (i.e. the poles of the determinant of αdr or T−1)
are configurational resonances (see Fig. 11) and they de-
pend on the spatial distribution of dipoles. So that the
3N dipolar resonance which are degenerate for spheri-
cal nanoparticles, for instance, couple and form a band
of 3N resonances in general. Depending on the symme-
try in the configuration some of the resonances remain
degenerate despite the coupling. A simple example is a
chain of nanoparticles. There one finds N two-fold de-
generate vertical and N longitudinal resonances (Weber
and Ford, 2004) forming bands of coupled modes. A gen-
eral consequence of this dressing due to the coupling is
a broadening of the absorption spectrum in a coupled
N -dipole system.

2. Exchanged Power and Poynting vector

Now we consider the most general situation where the
particles are also emitting heat radiation. The funda-
mental relations to describe heat exchange in a system
of N dipoles having temperatures T1, . . . , TN within the
framework of the FE have first been derived in (Ben-
Abdallah et al., 2011). In Ref. (Messina et al., 2013b)
the relations for the heat exchange were generalized to
treat also the interaction of the N dipolar objects with
an environment or background in thermal equilibrium at
some temperature Tb, but only for isotropic dipolar ob-
ject. Subsequently, these expressions have been extended
to anisotropic and non-reciprocal systems taking also the
radiation correction into account (Ekeroth et al., 2017;
Nikbakht, 2014) and the expression for the mean Poynt-
ing vector of such an N -dipole system have been deter-
mined to quantify its far-field thermal emission (Ekeroth
et al., 2017). Finally, in Refs. (Ott and Biehs, 2020;
Ott et al., 2019a) the method from Ref. (Messina et al.,
2013b) was used to determine the general expressions for
the mean Poynting vector and the exchanged heat in a
system of N dipoles immersed in an environment at tem-
perature Tb which can also be non-reciprocal. A further
generalization which takes the possibility of magnetic po-
larizabilities into account can be found in Ref. (Dong
et al., 2017a; Manjavacas and de Abajo, 2012). Here

we review mainly the derivation of the heat exchange
and the mean Poynting vector for N dipolar objects de-
scribed by an electric polarizability tensor α within the
framework of (Messina et al., 2013b). This approach is
valid for nanoparticles with a size much smaller than the
thermal wavelength and for inter-particle distances and
distance between the particles and interfaces of the en-
vironment larger than twice the diameter (Becerril and
Noguez, 2019; Narayanaswamy and Chen, 2008; Otey and
Fan, 2011b).

To derive the exchanged power and the mean Poynting
vector in an N-dipole system we consider the total electric
and magnetic fields

E(r, ω) = ω2µ0

N∑
i=0

GEE(r, ri)pi + Eb(r, ω), (42)

H(r, ω) = ω2µ0

N∑
i=0

GHE(r, ri)pi + Hb(r, ω) (43)

which are generated by the fluctuational background
fields Eb(r) and Hb(r) and the induced and fluctuational
dipoles of all particles (i = 1, . . . , N)

pi = pind
i + pfl

i (44)

where the induced dipole moments

p
(ind)
i = ε0αiE(ri) (45)

can be expressed in terms of the polarizability tensor
α
i

of the ith dipole. Here we have introduced the elec-

tric and magnetic Green functions GEE and GHE gener-
ated by electric dipole moments as defined in Ref. (Eck-
hardt, 1984) which are now not necessarily the vacuum
Green functions, but the general Green functions taking
the geometry and material properties of the backround
into account. As a consequence the total electric field
Ei = E(ri) at the position of the i-th dipole is given by
the field contributions due to the fluctuating dipole mo-
ments p fl

j of all other dipoles j 6= i and the background

field Ebi = Eb(ri) including direct thermal emission and
multiple scattering. It can be written as (Messina et al.,
2013b)E1

...
EN

 = DT−1

pfl
1
...

pfl
N

+(1+DT−1A)

Eb
1
...

Eb
N

 . (46)

Similarly the induced dipole moments pi for each par-
ticle i can be expressed in terms of the fluctuating
dipole moments of all other particles and the background
field (Messina et al., 2013b)p1

...
pN

 = T−1

pfl
1
...

pfl
N

+ (T−1A)

Eb
1
...

Eb
N

 . (47)
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The auxilliary 3N × 3N -block matrices D, A, and T are
defined as in Eqs. (34), (36), (40) but with the vacuum
Green function G0(ri, rj) replaced by GEE

ij = GEE(ri, rj)
and by 1ij = δij1.

Equipped with this set of expressions it is now possible
to derive the dissipated heat in a given dipole i and the
mean Poyting vector in a general N dipole system. Anal-
ogous to (26) the mean power received by the ith dipole
is defined as the power dissipated in dipole i

Pi =

〈
dpi(t)

dt
·Ei(t)

〉
= 2Im

∫ ∞
0

dω

2π
ω〈pi(ω) ·E∗i (ω)〉.

(48)

Hence by definition the dissipated power inside dipole i,
i.e. the heat flowing into that dipole, is positive. The
mean Poynting vector due to the dipoles and the back-
ground fields is given by

〈S(r)〉 = 〈E(t)×H(t)〉

= 2Re

∫ ∞
0

dω

2π
〈E(r, ω)×H∗(r, ω)〉.

(49)

These expressions already include the fact that the fluctu-
ational fields and dipole moments are stationary so that
the mean power and mean Poynting vector do not de-
pend on time. They can be evaluated by assuming that
the fluctuational dipole moments and the background
fields are in local thermal equilibrium at temperatures
Ti (i = 1, . . . , N) and Tb. Then the mean values for
the power and Poynting vector which are obviously given
by the correlation functions of the fields and the dipole
moments can be evaluated by employing the fluctuation-
dissipation theorem (Kubo, 1966) and assuming that the
background fields and the dipole moments are statisti-
cally independent, i.e. correlation functions between the
background field and the fluctuating dipoles 〈Eb ⊗ pi〉
vanish. For the fields the fluctuation-dissipation theo-
rems are (Agarwal, 1975a)

〈Eb
i ⊗Eb∗

j 〉 = 2ω2µ0~
(
nb +

1

2

)GEE
ij −GEE

ji
†

2i
, (50)

〈Eb
i ⊗Hb

j 〉 = 2ω2µ0~
(
nb +

1

2

)GEH
ij −GHE†

ji

2i
(51)

using the notation GEH
ij = GEH(ri, rj) and GHE

ij =

GHE(ri, rj). Analoguously, for the dipole mo-
ments the fluctuation-dissipation theorem is determined
by (Messina et al., 2013b)

〈pfl
i ⊗ pfl

j

∗〉 = 2ε0~δij
(
ni +

1

2

)
χ
i
. (52)

The generalized susceptibility of the ith particle is given
by (Ekeroth et al., 2017; Herz and Biehs, 2019; Messina
et al., 2013b)

χ
i

=
α
i
− α†

i

2i
− k2

0αi
GEE
ii −GEE

ii
†

2i
α†
i
. (53)

The first term of the generalized susceptibility describes
simply the intrinsic absorptivity of the dipole, whereas
the second term is a radiation correction taking into ac-
count that the dipole is coupled to the environment which
modifies its absorptivity. In free space this second term
simply reads −k3

0/(6π)αα† (Ekeroth et al., 2017). Hence,
by comparing with Eq. (29) we see that with χ

i
we re-

trieve the absorptivity of a dipole i placed in vacuum for
the isotropic case α

i
= αi1.

Inserting the expressions for the fields and dipole mo-
ments into the definitions (48) one obtains for the mean
power received by particle i (Ott and Biehs, 2020)

Pi = 3

∫ ∞
0

dω

2π
~ω

N∑
j=1

(nj − nb)Tij (54)

where the transmission coefficients are defined as

Tij =
4

3
ε0ImTr

[
T−1
ij χ

j
(DT−1)†ij

]
. (55)

Equation (54) is the general expression for the dissipated
power or heat flowing into a dipole at temperature Ti
surrounded by N − 1 dipoles at temperatures Tj (j 6= i)
described by an anisotropic or even non-reciprocal po-
larizability immersed in a general environment or back-
ground at temperature Tb which can itself be anisotropic
or non-reciprocal, properties which are taken into ac-
count via the polarizability and the Green function. In
general, if either the dipole or the background or both
are non-reciprocal one has Tij 6= Tji (Herz and Biehs,
2019; Zhu et al., 2018). It should be noted that in the
literature a variety of different equivalent expressions for
the transmission coefficients Tij can be found as for in-
stance in (Ben-Abdallah et al., 2011; Ekeroth et al., 2017;
Messina et al., 2013b; Nikbakht, 2014; Ott and Biehs,
2020; Ott et al., 2019a). Finally, when replacing nj − nb
by nj −ni +ni−nb Eq. (54) can be recast into the more
intuitive form (Messina et al., 2013b)

Pi = 3

∫ ∞
0

dω

2π
~ω
(∑
j 6=i

(nj −ni)Tij + (ni−nb)Tib
)

(56)

with Tib =
∑
j Tij . This formula has the advantage that

it clearly expresses the power dissipated into dipole i by
the power exchanged between dipole i and all the other
dipoles and the power of dipole i exchanged with the
environment.

Similarly, by starting with the definition of the mean
Poynting vector in (49) one obtains for the spectral heat
flux for the N fluctuating dipoles immersed in a back-
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ground (Ott and Biehs, 2020)

〈Sω,α〉 = 4~ω2µ0k
2
0

∑
β,γ=x,y,z

εαβγRe

[
N∑
j=1

(nj − nb)
N∑
i=1

(
GEE

0i T
−1
ij

)
χ
j

N∑
k=1

(
GHE

0k T
−1
kj

)†
+
nb
2i

N∑
i,j=1

(
GEE

0i T
−1
ij α

j
GEH
j0 −

(
GHE

0i T
−1
ij α

j
GEE
j0

)†)

+
nb
k2

0

(GEH
00 −GHE†

00

2i

)]
βγ

(57)

where εαβγ is the Levi-Civita tensor and GEE
0i =

GEE(r, ri),G
EE
00 = GEE(r, r), etc. The first term de-

scribes the heat flux emitted by the particles into the
background, the last term describes the heat flux of the
background fields without the dipoles, and the second
term describes the interference of the background fields
due to the presence of the dipoles. In the case that the
background geometry fulfills Lorentz reciprocity (Caloz

et al., 2018) the last terms vanishes since then GEH
ij
†

=

−GHE
ji
∗
. This simply means that if we have no dipoles the

mean heat flux in the background 〈Sb〉 = 〈Eb(t)×Hb(t)〉
which is at local thermal equilibrium vanishes. On the
other hand, as shown by Silvereinha (Silveirinha, 2017)
for a non-reciprocal background there can be a non-
vanishing mean Poynting vector even in thermal equi-
librium.

In certain cases the heat flux between the dipolar ob-
jects is dominant so that the emission into the back-
ground is negligibly small. If for example the dipoles
are placed into a vacuum at temperature Tb then the
power exchanged between the dipoles is for distances
much smaller than the thermal wavelength, i.e. in the
near-field regime, much larger then the power exchange
with the background (Messina et al., 2013b). When plac-
ing the dipolar objects, for instance, close to a substrate
then the inter-dipole heat exchange is still dominating if
the distance between the dipoles is much smaller than
the distance to the substrate (Ott and Biehs, 2020). In
such situations, the N -dipole system can also be treated
as a closed system. This can be done by neclegting in the
above expressions the heat exchange between the dipoles
and the background and the heat flux due to the back-
ground fields so that

Pi = 3

∫ ∞
0

dω

2π
~ω
∑
j 6=i

(nj − ni)Tij (58)

and

〈Sω,α〉 = 4~ω2µ0k
2
0

∑
β,γ=x,y,z

εαβγ

N∑
j=1

nj

× Re

[
N∑
i=1

(
GEE

0i T
−1
ij

)
χ
j

N∑
k=1

(
GHE

0k T
−1
kj

)†]
βγ

.

(59)

Note that, even though Pi contains only the power dissi-
pated in dipole i due to the heat exchange with all other
dipoles, the mean Poynting vector includes also the ther-
mal radiation of all dipoles into their background which
is assumed to have zero temperature. To be fully consis-
tent with the assumption that the background is simply
removed from the description the second term in the gen-
eralized susceptibility χ

j
in Eq. (53) might be neglected.

For systems where the dipole approximation is valid this
term is typically very small and can therefore often be
neglected anyway.

The same equations can be obtained by neglecting in
the derivation right from the start any contribution from
the background fields. In this case Pi can also be ob-
tained by considering the power exchanged between all
pairs of dipoles, only, as originally done in many works
as for instance in Ref. (Ben-Abdallah et al., 2011). To
this end, the heat dissipated in dipole i due to a fluctu-
ational field Eij =

(
DT−1

)
ij
pfl
j generated by a fluctu-

ational dipole pfl
j is considered as the power flow from

dipole j to i yielding

Pj→i =

〈
dpi(t)

dt
·Eij(t)

〉
= 3

∫ ∞
0

dω

2π
~ωnjTij(ω).

(60)

Then the power dissipated by the ith dipole is just the
sum of the power flowing between dipole i and the other
objects

Pi =
∑
j 6=i

(
Pj→i − Pi→j

)
=
∑
j 6=i

3

∫ ∞
0

dω

2π
~ω
(
njTij(ω)− niTji(ω)

)
.

(61)

Since in thermal equilibrium Pi = 0 we can derive the
condition (Latella and Ben-Abdallah, 2017; Ott et al.,
2019a) ∑

j 6=i

Tij(ω) =
∑
j 6=i

Tji(ω). (62)

This condition simply expresses the fact that even though
Tij 6= Tji in general, the heat flux from i to all other
dipoles [rhs of (62)] must be the same as the heat flow
from all other dipoles to i [lhs of (62)] in equilibrium. By
inserting this equilibrium condition into the second term
of (61) we retrieve (58).
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3. Non-additivity in many-dipole systems

Before we discuss the non-additivity of the power ex-
change in a N -dipole system based on Eq. (60), let us fo-
cus on the power exchange between two dipoles (N = 2).
The first derivation of the heat exchange between two
dipolar objects within the framework of FE was given in
(Volokitin and Persson, 2001) and extended to take mag-
netic dipole moments into account (Chapuis et al., 2008a;
Manjavacas and de Abajo, 2012) as well as multipolar
contributions (Becerril and Noguez, 2019; Pérez-Madrid
et al., 2008). A quantum dynamical description can be
found in (Barton, 2016; Biehs and Agarwal, 2013a) and
a discussion of different prefactors found in the literature
in (Dedkov and Kyasov, 2011; Sasihithlu, 2019). Using
our expression in Eq. (60) for N = 2 and temperatures
T1 6= 0 K and T2 = 0 K we obtain for the power received
by dipole 2

P1→2 = 3

∫ ∞
0

dω

2π
~ωn1T21. (63)

The transmission coefficient T12 can be expressed as

T21 =
4

3
k4

0ImTr
[
D−1G21χ

1

(
D−1G21

)†
χ̃

2

]
. (64)

with D = (1 + k4
0G21α1

G12α2
) introducing the general-

ized susceptibility

χ̃
2

=
α

2
− α†

2

2i
− k2

0α
†
2

G22 −G†22

2i
α

2
. (65)

Note that this general susceptibility only differs slightly
from the definition (53), whereas for isotropic dipoles
both definitions coincide. This is the most general expres-
sion of the transmission coefficient for two dipolar objects
in a given environment of any shape. The appearance of
the terms D−1 in the transmission coefficient are due to
multiple interactions between the dipoles. Therefore the
hybridization of any localized dipole resonance due to
the strong coupling for small distances is accounted for
in this expression. Note that Eq. (64) resembles Eq. (36)
of (Ekeroth et al., 2017) but with the slight difference
that in that work χ

2
is used instead of χ̃

2
. On the other

hand, the form of the transmission coefficient (64) has
also been found in (Herz and Biehs, 2019; Krüger et al.,
2012) within the scattering approach of (Krüger et al.,
2012). However, within the range of validity of the dipole
approximation the second term in χ or χ̃ typically can

be neglected and many works simply use

χ
i
≈ χ̃

i
=
α
i
− α†

i

2i
. (66)

Now, when adding a third dipole at T3 = 0 K then
we still can use (63) and (64) to quantify the power ex-
changed between dipole 1 and 2. The main difference is
that T−1

12 now also contains the coupling with the third
dipole. Hence the sheer presence of the third particle

FIG. 12 Power flow exchanged between two SiC nanoparti-
cles at T1 = 300 K (red) and at T2 = 0 K (blue) in presence of
a third SiC nanoparticle at temperature T3 = 0 K (grey) and
normalized by the power exchanged between two isolated par-
ticles, i.e. ϕ∗12 = P1→2(T1, T2, T3)/P1→2(T1, T2). From (Ben-
Abdallah et al., 2011).

FIG. 13 Transmission coefficient T21 between (a) two SiC
nanoparticles and (b) between two SiC nanoparticles in pres-
ence of a third SiC nanoparticles as in Fig. 12 for d = 0.
The dashed line marks the region where the particles would
touch. The unphysical region beyond this line is shown to
illustrate the hybridization mechanism of dipolar resonances,
which can be nicely seen in that region. From (Ben-Abdallah
et al., 2011).
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changes the transmission coefficients due to the fact that
it changes the mode structure which is for dipoles with
a localized resonance again due to the hybridization for
three dipoles this time (see Fig. 13) responsible for the
broadening of the absorption spectrum as discussed in
Sec. III.A.1. As a consequence, the presence of a third
dipole changes the power exchange P1→2 proving that
the heat exchange in an N -dipole system is non-additive.
This formalism is only valid for interparticles distances
larger than 4R, R being the radius of the particles. It can
be extended to smaller distances by including multipolar
contributions (Czapla and Narayanaswamy, 2019).

This many-body effect can be exploited to enhance
for example the exchanged power between two dipolar
objects 1 and 2 by bridging the distance via a third
dipole which is placed between 1 and 2 as shown in (Ben-
Abdallah et al., 2011) (see Fig. 12). However, it should
be kept in mind that the heat flux between two dipoles
in a N -dipole system cannot be arbitrarily enhanced. As
discussed in (Ben-Abdallah et al., 2011) it can be easily
shown that each of the conductance between two dipoles
can be at most 3 times the quantum of thermal conduc-
tance. Nonetheless, this upper limit is difficult to achieve
leaving much space for optimmizations. Several works
have shown that it is possible to tailor the inter-dipole
heat flux via a third dipole or third object. For exam-
ple, (Messina et al., 2013b) has studied the relaxation
dynamics for the three-body configuration and (Dong
et al., 2017a) have also included the possibility to have
a magnetic polarizability as needed to describe metallic
nanoparticles in the infrared. Furthermore, using pro-
late (Incardone et al., 2014; Nikbakht, 2014, 2015) or
oblate (Choubdar and Nikbakht, 2016) spheroidal nano-
particles it has been demonstrated that by changing the
relative orientation of the nano-particles and in partic-
ular an intermediate nanoparticle the heat flux can be
switched and enhanced efficiently (see also Fig. 31. Fur-
thermore, the coupling of two nanoparticles via the sur-
face modes of an interface or intermediate medium has
been studied as discussed in detail in Sec. III.C.3. Finally,
the non-additivity of the heat exchange has consequences
for the transport properties in nano-particle chains and
complex nanoparticle networks as discussed in detail in
Sec. III.C.2.

4. T-DDA (as example of application)

The expressions for the heat exchange in systems
with N dipolar objects in (58) without the contribution
of the background as derived by (Ben-Abdallah et al.,
2011) have been employed first by (Edalatpour and Fran-
coeur, 2014) to determine the heat exchange between
macroscopic objects with isotropic and later by (Ekeroth
et al., 2017) for macroscopic objects with anisotropic and
magneto-optical material properties. The idea is to re-
place the macroscopic objects by a great number N of
small cubes of volume Vi (i = 1, . . . , N) which can be

approximated as dipoles with the corresponding polariz-
abilities. In Ref. (Ekeroth et al., 2017) the polarizability
including the radiative corrections, as rederived by (Al-
baladejo et al., 2010) and originally also used by (Draine,
1988), writes

α
i

=

(
1− i k

3
0

6π
α

0i

)−1

α
0i

(67)

in terms of the quasistatic polarizability

α
0i

= 3Vi(ε− 1)(ε+ 21)−1. (68)

Note that in Ref. (Edalatpour and Francoeur, 2014) an-
other expression for the dressed polarizability has been
used known as the strong form of the coupled dipole
method. A detailed discussion on the different expres-
sions of the dressed polarizabilities in the context of clas-
sical coupled dipole method (Purcell and Pennypacker,
1973) has been given by (Lakhtakia, 1992).

This method known as discrete dipole approximation
(DDA) for describing thermal radiation phenomena be-
tween macroscopic objects has been coined (Edalatpour
and Francoeur, 2014) thermal discrete dipole approxi-
mation (T-DDA). It has been succesfully employed to
determine the heat flux between macroscopic reciprocal
and non-reciprocal cubes and spheres (Edalatpour and
Francoeur, 2014; Edalatpour et al., 2015; Ekeroth et al.,
2018, 2017), and also for the heat flux between a sharp
conical tip and a planar substrate (Edalatpour and Fran-
coeur, 2016). In principle this method can also be used
to determine the heat flux between two macroscopic ob-
jects in arbitrary many-body systems. As discussed in
(Edalatpour et al., 2015) in detail, the large number of
dipolar subvolumes needed to describe macroscopic ob-
jects or have a convergent numerical result sets a certain
limit to this numerical method. See also the discussion
in Sec. II.F.

Finally, the TDDA method also allows for determining
the thermal emission of macroscopic objects by calcula-
tion of the mean Poynting vector from Eq. (59) in the
far-field regime (Ekeroth et al., 2017). This can also be
done with a standard DDA by determing the absorptiv-
ity as discussed in Sec. III.A.1 of the macroscopic object
modelled by an assembly of dipoles and then using the
Kirchhoff law to determine the emissivity. Now, the main
advantage of the TDDA is that it allows to attribute to
each volume element a given temperature. Hence, TDDA
opens up the possibility to calculate thermal emission of
macroscopic objects with a given temperature distribu-
tion, whereas the standard DDA can only handle emis-
sion of isothermal objects or dipolar assemblies. Note,
that the assumption of local thermal equilibrium sets
strict bounds to the spatial variation of temperature dis-
tributions (Eckhardt, 1984).
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FIG. 14 (a) Spectral conductance as a function of the energy
for InSb cubes with a cube side of 1 micron separated by a 500
nm gap, at T = 300 K, and for various values of the magnetic
field H applied along the z direction. The inset shows the
discretization geometry: the number of dipoles per cube is
4913 (each one has an edge length of 59 nm). From (Ekeroth
et al., 2017). (b) Spectral heat flux between a silica probe
and silica surface. From (Edalatpour and Francoeur, 2016).

B. Heat flux in macroscopic many-body systems

In the last section we have described a formalism allow-
ing to account for the heat exchange in an arbitrary set
of dipolar particles. As clarified above, although formally
and computationally simpler, this framework is limited in
terms of distance between the particles. For this reason,
in the last decade several theoretical schemes have been
developed to account for the heat transfer in configura-
tions of two or more macroscopic bodies. The purpose
of these techniques is to address bodies with in principle
arbitrary geometry and optical properties. As we have
seen in Secs. II.E and II.F, several techniques have been
introduced to successfully treat this problem. We are go-
ing to focus here on scattering-matrix techniques, where
each macroscopic body is described in terms of its scatter-
ing operators, accounting for its response to an incoming
electromagnetic field.

1. Scattering-matrix formalism

Two closely-related formalisms based on this ap-
proach have been introduced between 2009 and 2011
by Bimonte (Bimonte, 2009), Krüger and collabora-
tors (Krüger et al., 2012, 2011) and Messina and An-
tezza (Messina and Antezza, 2011a,b). The main differ-
ence between the these works is that Krüger et al. de-
rive expressions which are suitable to any choice of basis
for the electromagnetic field, while Messina and Antezza
explicitly use a plane-wave basis, thus providing more
explicit (albeit less general) expressions in terms of the
individual scattering operators. In order to define these
operators, the electric field in any region of the system is
decomposed in plane waves as

Eφ(r, t) = 2Re

[∑
p

∫ +∞

0

dω

2π

∫
d2κ

(2π)2
exp[ikφ · r]

× exp[−iωt]ε̂φp (κ, ω)Eφp (κ, ω)

]
,

(69)

where ω is the frequency, κ = (kx, ky) the projection
of the wavevector on the x-y plane, p the polarization
index, taking values 1 (transverse electric) and 2 (trans-
verse magnetic), φ the propagation direction along the
z axis. Moreover, kφ = (κ, φkz) is the full wavevector,
while the unit polarization vectors are defined as follows:

ε̂φTE(κ, ω) = ẑ× κ̂ =
1

κ
(−kyx̂ + kxŷ)

ε̂φTM(κ, ω) =
c

ω
(−κẑ + φkzκ̂).

(70)

Each body is described in terms of four scattering oper-
ators Rφ(ω) and T φ(ω) (φ = +,−), connecting the am-
plitudes Eφp (κ, ω) of the incoming and scattered fields, as
(suppressing the frequency arguments)

E(re)φ
p (κ) =

∑
p′

∫
d2κ′

(2π)2
〈p,κ|Rφ|p′,κ′〉E(in)−φ

p′ (κ′),

E(tr)φ
p (κ) =

∑
p′

∫
d2κ′

(2π)2
〈p,κ|T φ|p′,κ′〉E(in)φ

p′ (κ′),

(71)

where each mode (ω,κ, p) of the scattered field has in
general components from each mode (ω,κ′, p′) of the in-
coming field, the frequency ω being conserved since we
are addressing only stationary processes. The action of
these operators is schematically represented in Fig. 15.

At this stage, it is interesting to sketch the main steps
and assumptions leading to the expression of the radia-
tive heat flux on each body, which can be summarized as
follows:

1. The fields generated by the fluctuating charges in-
side each body are identified as the source fields,
along with the environmental field in which the sys-
tem is embedded.
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FIG. 15 Definition of reflection and transmission operators
associated with an individual body. From (Messina and An-
tezza, 2011b).

2. The correlation functions of the individual source
fields are deduced from the assumption of local
thermal equilibrium.

3. The total field in each region is explicitly written,
in terms of the source fields, as a result of the scat-
tering (reflection and transmission) processes oc-
curring due to the presence of the bodies.

4. The correlation functions of the total field in each
region can be deduced.

5. These are used for the calculation of the average
value of the Poynting vector.

We stress that in point 2 the assumption of local thermal
equilibrium is equivalent to stating that the statistical
properties of the field emitted by each body are the same
we would have if the body was at thermal equilibrium at
its own temperature. The details about the derivation of
such correlation functions can be found in Ref. (Messina
and Antezza, 2011b). This step leads to a source cor-
relation function equivalent to Eq. (52) already seen in
the case of dipoles, with the difference that in this case
the scattering operator, accounting for the geometric and
optical properties of the body, will explicitly appear.

The steps described above allow to explicitly write the
power absorbed by each body i under the form

Pi = Tr

[
~ω
(∑
j 6=i

(nj − ni)Tij + (ni − nb)Tib
)]

, (72)

analogous to Eq. (56) already encountered in the dipolar
case, where the trace operator is defined as

TrA =
∑
p

∫
d2κ

(2π)2

∫ +∞

0

dω

2π
〈p,κ|A|p,κ〉. (73)

We focus here on the contribution to the heat flux on
body 1 associated with the presence of body 2. The cor-
responding transmission coefficient T12 reads

T12 = U (2,1)χ2U
(2,1)†χ̃1, (74)

where U (2,1) = (1 − R(2)−R(1)+)−1 is the operator de-
cribing the infinite series of reflections inside the cavity
formed by bodies 1 ans 2 and the generalized susceptibil-
ities are defined as

χ2 = f−1(R(2)−)− T (2)−P
(pw)
−1 T (2)−† (75)

χ̃1 = f1(R(1)+)− T (1)−†P(pw)
1 T (1)− (76)

by means of the auxiliary functions

fα(R) =


P(pw)
−1 −RP(pw)

−1 R† +RP(ew)
−1 − P

(ew)
−1 R†

α = −1

P(pw)
1 −R†P(pw)

1 R+R†P(ew)
1 s− P(ew)

1 R
α = 1

.

(77)

The operators P(pw)
n and P(ew)

n defined (for any integer
n) as

〈p,κ|P(pw/ew)
n |p′,κ′〉 = knz 〈p,κ|Π(pw/ew)|p′,κ′〉, (78)

where Π(pw) = Θ(ω− ck) and Π(ew) = Θ(ck− ω) are the
projectors on the propagative and evanescent sector, re-
spectively. The transmission coefficient T12 has the same
form as in Eq. (64) for two dipolar objects. By choosing
the T-operator for dipolar objects or using the plane wave
expansion of the T-operators both forms of transmission
coefficients can be obtained from the general T-operator
expression in (Herz and Biehs, 2019; Krüger et al., 2012).

This approach was later generalized to the case of
three arbitrary bodies (Messina and Antezza, 2014). The
Landauer-like expression (72) of the power absorbed by
each body remains valid, meaning that e.g. the flux on
body 1 has contributions coming from bodies 2 and 3, as
well as from the environment. It is interesting to inves-
tigate here the expression of the transmission coefficient
T12 between bodies 1 and 2 in this three-body configura-
tion. It reads

T12 = U (23,1)
(
f−1(R(23)−)− T (2)−U (3,2)f−1(R(3)−)

× U (3,2)†T (2)−†
)
U (23,1)†χ̃1,

(79)

in which a two-body reflection operator (and the asso-
ciated multi-reflection operator U (23,1)) appears, defined
as

R(23)− = R(2)− + T (2)−U (3,2)R(3)−T (2)+. (80)

We immediately see that Eqs. (74) and (79) are different.
The important message behind this comparison is that as
for the dipolar case discussed in Sec. III.A.3 not only does
the presence of body 3 introduce an additional source for
the energy transfer on body 1, but it modifies the trans-
mission coefficient T12, and consequently the way bodies
1 and 2 exchange heat. In other words, the third body
in the system acts both as a source/sink of radiation and
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as a scatterer (independently of its temperature), modi-
fying the transmission amplitudes of other channels. We
conclude that Eq. (79) is by itself a proof and a quanti-
tative evaluation of the non-additive nature of RHT, in
the simplest possible many-body system made of three
bodies.

The same approach described in Sec. III.B and applied
both to two- and three-body systems has been general-
ized to some years later to the case of N bodies (Latella
et al., 2017). In this case, for the sake of simplicity, only
planar bodies, i.e. parallel slabs of finite thickness sep-
arated by vacuum gaps, have been considered. This as-
sumptions has two main advantages: first, the plane-wave
development is particularly convenient for this configu-
ration, since it fully suits its symmetry; moreover the
translational invariance along the transverse coordinates
makes all the scattering operators diagonal with respect
to both p and κ, significantly simplifying all the expres-
sions. We stress that, since we are dealing here with
infinite systems, the power on each body has to be re-
placed with the heat flux Φ it receives (power per unit
surface).

2. Non-additivity in many-body systems

In the last Section, we have analytically shown the non-
additivity of RHT. In the simplest case of three bodies,
the appearance of the third one modifies the transmission
amplitude T12, namely the way in which bodies 1 and 2
exchange energy. This is shown by the comparison of
Eqs. (74) and (79). Apart from this formal comparison,
it is interesting to address quantitatively the modifica-
tion to the energy flux between bodies 1 and 2 due to the
introduction of a third body in the system. This anal-
ysis has been performed analogous to the configuration
discussed in III.A.3 by (Müller et al., 2017), where the
authors generalize the formalism developed in (Krüger
et al., 2012), already valid in the scenario of N bodies,
to the case of the presence of a nonabsorbing background
medium. In this work, the authors apply their formalism
to the calculation of RHT between two SiC planar slabs
(bodies 1 and 2) separated by a vacuum gap of thickness
d, when a particle of polarizability α (assumed to be non-
dispersive and real) is placed between them, at distance
d1 from body 1. The system is depicted in Fig. 16.

The heat flux is evaluated after linearizing the general
expressions with respect to the particle polarizability, as-
suming that the scattering contribution is weak. As a
result, the heat flux Φ (power P per unit area) is conve-
niently expresses as

Φ = Φvac + ∆Φ, (81)

where Φvac is the well-known heat flux between two slabs
separated by a vacuum gap, and the correction term ∆Φ
(proportional to α in the linearized approximation) is a
direct description of the non-additivity of radiative heat
flux.

FIG. 16 Two planar slabs (bodies 1 and 2) are placed at dis-
tance d and separated by vacuum. A particle of polarizability
α is placed at distance d1 from slab 1. From (Müller et al.,
2017).

FIG. 17 Non-additive correction to the two-body heat flux
∆H1→2 = ∆Φ [see Eq. (81)] in the presence of a particle
of polarizability α. The upper curve corresponds to the near-
field configuration d = 10 nm, while the lower one corresponds
to the far field (d = 10µm). From (Müller et al., 2017).

The non-additive correction is numerically evaluated
for slab temperatures of 301 K and 300 K in two differ-
ence configurations: for a slab-slab distance d = 10 nm
(near field) and for d = 10µm (far field), as a function
of the particle position d1 (see Fig. 16). The results are
shown in Fig. 17. In both configurations we clearly ob-
serve the expected symmetry with respect to the central
particle position d1 = d

2 . In the near field, we observe
that the effect is maximized when the atom is close to



28

FIG. 18 Heat-flux amplification Φ3s(d, δ)/Φ2s(d) in a three-
body configuration compared to a two-body configuration
shown in inset as a function of distance d and thickness of
the intermediate slab δ. The black dashed line corresponds
to the constant value Φ3s(d, δ)/Φ2s(d) = 1. From (Messina
et al., 2012).

one of the two slabs. This reflects, apart from the sym-
metry of the system, the typical exponentially decreasing
behavior of heat flux in the near field, which is in turn
a consequence of the dominating contribution of evanes-
cent waves. The situation is clearly different in the far
field. First, not surprisingly, the effect is several orders
of magnitude smaller that in the near field, Moreover,
the external positions d = 0, d1 are now minima of the
effect, which oscillates with respect to d1. These oscil-
lations are due to the interferences between propagating
waves (dominating in this scenario), reflected between
the two plates and scattered by the particle inside the
cavity which change the local density of states (Doro-
feyev et al., 2002; Francoeur et al., 2010b) at the par-
ticle’s position which is also known from the context of
spontaneous emission of atoms and molecules within a
such a configuration (Danz et al., 2002).

Another interesting consequence of three-body effects
in NFRHT was shown in Ref. (Messina et al., 2012; Zheng
and Xuan, 2011). In these works, the authors consid-
ered a system made of three parallel slabs as shown in
the inset of Fig. 18. The intermediate slab, of thick-
ness δ, is placed at distance d from the external slabs,
assumed to have infinite thickness. This configuration
is compared to the standard two-body scenario, shown
in the inset of Fig. 18, where the intermediate slab is
removed and d is now the distance between the exter-
nal slabs. We stress that in both systems the minimum
distance between adjacent slabs, very relevant parame-
ter in a near-field configuration, is the same. Moreover,
for a chosen couple of temperatures (more specifically,
400 and 300 K), the temperature of the intermediate slab

is taken as the equilibrium one, i.e. the one at which
the net flux on it vanishes. Based on this assumption,
adding the third intermediate slab has no impact on the
energy balance of the system, and thus the third body
is only acting as a passive relay added to the two-body
system. The heat flux amplification, defined as the ratio
Φ3s(d, δ)/Φ2s(d) between the three- and two-body fluxes,
is shown in Fig. 18. The figure clearly shows that the
flux can be amplified for reasonable values (hundreds of
nanometers) of both d and δ, and that this amplification
factor goes up to a maximum value around 70% for small
distances. This amplification for d ≈ δ reminiscent of the
superlens effect (Biehs et al., 2016; Pendry, 2000) which
leads to an optimal energy transfer between two atoms
which are separated by a superlens if the distance d to
the interface of the superlens coincides with the thickness
of the superlens δ. Here, it is a purely three-body effect,
which is confirmed by the spectral and mode analysis
performed in Ref. (Messina et al., 2012). More recently
patterned intermediate media (Kan et al., 2019), two-
dimensional atomic systems (Simchi, 2017) and hyper-
bolic media (Song et al., 2018) have also been considered
to enhance furthermore the transfers. The use of such
kind of three-body control of heat flux was proposed to
design many-body heat engines (Latella et al., 2015) with
thermodynamic performances better than their two body
counterpart and the thermal analog of transistor (Ben-
Abdallah and Biehs, 2014) driven by photons. In the pro-
posed scheme, the combination of many-body effects and
the presence of a phase-change material playing the role
of the gate/basis of the transistor, allows to switch, am-
plify and modulate the heat flux between source/emitter
and drain/collector (see also Fig. 32).

It is interesting to remark that the role of a third ther-
mally interacting body can also be played by a thermal
bath, described as a body far from the rest of the system
and emitting as a black-body surface at a given temper-
ature. This was recently shown in (Latella et al., 2020),
where the heat flux between two planar slabs or between
a slab and a particle was considered in the presence of
a thermal bath. It was shown that, in virtue of many-
body interactions taking place in these three-body sys-
tems, the flux exchanged between the two slabs (or the
slab and the particle) saturates to a constant value when
the distance goes to zero even at relatively large sep-
aration distance where the non-local optical effects are
negligible, as shown e.g. in Fig. 19 in the case of two SiC
slabs.

3. Steady-state temperatures and multistable states

In arbitrary many-body systems consisting of N ob-
jects at temperatures T1, . . . , TN the time evolution reads
(i = 1, . . . , N)

Ii
dTi
dt

= Pi(T1, .., TN ; t), (82)
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FIG. 19 Heat flux exchanged between two slabs immersed
in a thermal bath with respect to their separation distance
d. Slab 1 has a fixed temperature of T1 = 400 K, while the
thermal bath is at T3 = 300K. The second slab, of thickness
δ, thermalizes to the equilibrium temperature at which the
net flux it receives vanishes. From (Latella et al., 2020).

where I1 = ρiCiVi is the termal inertia defined by the
heat capacity Ci, volume Vi, and the mass densite ρi of
the ith object while Pi is the net power received by this
object. Following expressions in Eq. (72) and (56) the
latter can be broken up into

Pi(T1, .., TN ; t) =
∑
j 6=i

Pij(T1, .., TN ; t) + Pib(t) (83)

where Pij is the power exchanged between the jth and
ith object and Pib is the power exchanged between ob-
ject i and the background which can also be an exter-
nal heat bath or thermostat connected to object i. If
all Pi are linear functions of the temperatures which is
generally the case close to the global equilibrium or non-
equilibrium steady state (in the following, for the sake
of notation simplicity, we use the abreviation T eq for the
steady-state temperatures), i.e. for small temperature
differences | Ti − Tj |� min(T1, . . . , TN )), the system of
equations can be linearized by introducing the conduc-
tances

Gij =
∂Pij
∂Tj

(84)

as done in Eq. (93). For multilayer systems with in-
finitely large interfaces the above equations can be used
as well by simply replacing the quantities by the corre-
sponding quantities normalized to a surface area A so
that the thermal inertia becomes the thermal inertial per
area Ii → Ii/A, the dissipated power becomes the heat
flux Pi → Pi/A ≡ Φi, and the conductance becomes the
heat transfer coefficient Gij → Gij/A ≡ Hij .

When assuming that no energy is added or removed
from outside of the system, the thermal steady state is a
solution of the system of equations (i = 1, . . . , N)

Pi(T1, .., TN ) = 0, . (85)

FIG. 20 (a) Phase portrait (i.e. trajectories of temperatures)
in a bistable system consisting of two membranes of SiO2

and VO2 in interaction with two thermal baths for different
initial conditions. The green (red) points denote the stable
(unstable) global steady-state temperatures. From (Kubyt-
skyi et al., 2014). (b) Self-oscillation of the temperature of a
VO2 membrane in vicinity of a SiO2 substrate when adding
a specific external constant power Fext. From (Dyakov et al.,
2015a)

.

The local thermal equilibrium of the ith object is reached
when Pi(T1, .., TN ) = 0. This equation defines a hyper-
surface in temperature space. The intersection of the hy-
persurfaces associated to all local equilibria defines the
global steady state of the system. In the specific case
where the system is composed of two objects the local
equilibrium state of each object corresponds to a curve
in the two dimensional space of temperatures (T1, T2) and
the intersection of the two local equilibrium lines defines
the global steady-state temperatures.

If all Pi are linear functions of the temperatures which
is generally the case close to the global equilibrium or
steady state and when the conductances Gij can be con-
sidered as independent of the temperatures, i.e. when in
particular the material properties can be considered as
temperature independent, the system has a unique so-
lution (T eq

1 , ..., T eq
N )t. On the contrary, when the optical

properties of materials are temperature dependent Pi be-
come nonlinear with respect to the temperatures. In this
case, the system of equations (85) might admit more than
one steady-state solution. Among these temperature so-
lutions one finds in general stable and unstable solutions.
The stability of these temperatures can be assessed by fol-
lowing a perturbative approach. Starting from a steady
state α with temperature (T eq

1,α, ..., T
eq
N,α)t and adding a

small perturbation then the dynamics is described by the
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FIG. 21 (left) AND gate made with two SiO2 membranes
(gates) suspended between a thermal SiO2 source and a VO2

drain. The color map represents the output temperature TD

of the drain with respect to the two input temperatures TG1

and TG2 of the two gates. In the bottom is the thruth table for
the AND gate. From (Ben-Abdallah and Biehs, 2016). (right)
NOR gate designed by coupling of SiC and V02 nanoparticles.
From (Kathmann et al., 2020)

.

following linearized system

d

dt

 δT1,α(t)
...

δTN,α(t)

 = J

 δT1,α(t)
...

δTN,α(t)

 , (86)

where δTi,α(t) = Ti − T eq
i,α (i = 1, . . . , N) is the pertur-

bation from the steady state α and

J =


∂P1

∂T1
... ∂P1

∂TN
...

...
∂PN
∂T1

... ∂PN
∂TN

 (87)

is the Jacobian matrix associated to the dynamical sys-
tem (82). As in any linear dynamical system the sign of
the eigenvalues of J allows us to conclude on the stability
of thermal state.

The demonstration of multistable thermal behaviors in
many-body systems as shown in Fig. 20 has opened the
possibility to design thermal analogs of volatile electronic
memories (Ben-Abdallah and Biehs, 2015, 2017; Dyakov
et al., 2015b; Khandekar and Rodriguez, 2017; Kubytskyi
et al., 2014), logic gates (Ben-Abdallah and Biehs, 2016;
Kathmann et al., 2020) (see Fig. 21) and self-oscillating
systems (Dyakov et al., 2015a) that allow to switch from
one global equilibrium to another and which can be po-
tentially interesting for practical realization of heat en-
gines (Latella et al., 2015, 2014).

C. Radiative heat transfer in reciprocal many-body systems

In the 2000s the first attempts of treating heat trans-
fer in N -body systemss were made in order to quan-
tify the contribution of plasmonic modes to the thermal
conductance in one dimensional arrays of nanoparticles
in nanofluids (Ben-Abdallah, 2006; Ben-Abdallah et al.,
2008). Inside these simple networks all inner nanoparti-
cles are assumed to be at zero temperature while the two
particles at both ends of the chain are connected to two
thermostats. In these systems heat carried by photons
is simply scattered between the two thermostats. But in
contrast to Polder and Van HoveâĂŹs theoretical frame-
work, which is based on the FE theory, in these works a
kinetic approach has been followed. The main features
and limitations of this approach will be discussed in the
next section.

1. Kinetic approach vs exact calculations

This approximate theory is based on the solution of a
Boltzmann transport equation

∂f

∂t
+ vg(k)

∂f

∂z
=

[
∂f

∂t

]
coll

. (88)

for the distribution function f of thermal photons inside
a given system. Here vg(k) is the group velocity of the
mode k and the rhs of this equation stands for the collis-
sion term which can be simplified within the relaxation
time approximation. When assuming that one thermo-
stat is at temperature T and the other one at zero tem-
perature, then the power P flowing through this system
results from the calculation of first-order moment associ-
ated with the photonic equilibrium distribution function
f = n(ω, T ) (Ben-Abdallah et al., 2008)

P =

∞∑
`=1

∫ ∞
0

dk

2π
~ω`(k)vg,`(k)n(ω`(k), T ), (89)

where ω`(k) is the dispersion relation of resonant mul-
tipole modes ` supported by the structure. The con-
ductance is then defined as G = ∂P/∂T . It is impor-
tant to note that only the eigenstates of the system are
assumed to play a role in the heat transport process.
Since these preliminary studies, more complex systems
like chains of ellipsoidal polaritonic particles (Ordonez-
Miranda et al., 2015), nanoparticle crystals (Ordonez-
Miranda et al., 2016; Tervo et al., 2016), nanoresonators
inclusions (Tervo et al., 2019b) or chains of graphene
disks (Ramirez and McGaughey, 2017) have been inves-
tigated (see Fig. 23) as well as multilayer photonic crys-
tals (Lau et al., 2009, 2008) using this kinetic approach.
But as shown recently within a full FE calculation based
on the N -body theory introduced in Sec. III.A.2, the ki-
netic approach fails in describing heat exchanges in sys-
tems where heat is also carried by non-resonant modes
over a broad spectral band (Kathmann et al., 2018).
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FIG. 22 (a) Dispersion curves (real part) of collective plas-
monic modes along a chain of copper nanoparticles dispersed
in vacuum in the case of dipolar moments (` = 1) and for
the multipolar moments of order ` = 5. (b) Thermal conduc-
tance G of linear chains of copper particles calculated from
the kinetic theory for different multipole orders ` versus the
separation distance d normalized to the particle diameter 2a.
The inset is a zoom on the near-contact region. From (Ben-
Abdallah et al., 2008).

This result has been confirmed recently ((Tervo et al.,
2020)). Further studies of conductance within two and
three dimensional dipolar systems based on the flucta-
tional electrodynamic calculations have been published
recently (Tervo et al., 2019a) which opens also to test
the validity of the kinetic approach in such systems as
studied in (Ordonez-Miranda et al., 2016; Tervo et al.,
2016). A discussion of the conductance within multi-
layer photonic crystals within the FE approach discussing
the role of surface phonon polaritons can be found in

FIG. 23 (a) Thermal conductance of the colloidal crystals
made up of spheroidal SiC nanoparticles, as a function of their
horizontal radius. (b) Thermal conductivity of coplanar disk
arrays for different diameters and separations at temperature
T = 300 K. From (Ordonez-Miranda et al., 2016; Ramirez
and McGaughey, 2017).

(Narayanaswamy and Chen, 2005; Tschikin et al., 2012a).

2. Heat transfer in complex networks

Based on the rigorous FE approach we will now address
the heat flux in arbitrary systems. The thermal behav-
ior of fractal structures and the heat exchanges between
fractal clusters of nanoparticles has also been theoreti-
cally investigated. These studies have revealed (Dong
et al., 2017b; Nikbakht, 2017) that the (self)conductance
increases as RDf where R is the gyration radius of the
structure and Df its fractal dimension (see Fig. 24(a)).
When two of these structures interact in near-field the
thermal conductance of heat exchange between metal-
lic clusters increases with the fractal dimension as can
be seen in Fig. 24(b). Moreover, in contrast to ordered
media, the localization of plasmons or phonon-polaritons
in fractal structures could be responsible of a significant
reduction of the self-conductance in fractal structures al-
though no clear evidence about this claim has been pre-
sented so far. However, a recent study (Luo et al., 2019)
has revealed that the heat transfer between fractal struc-
tures does not depend on their fractality at separation
distance larger than the localization lengths, which tends
to confirm this statement.

Beside their original thermal properties several phys-
ical effect inherent to many-body systems have been
highlighted in complex plasmonic structures. Among
these effects, a thermal analog of Coulomb drag effect in
nanoparticle networks has been recently predicted the-
oretically (Ben-Abdallah, 2019a). The configuration is
sketched in Fig.25. As in its electric counterpart where
interactions at close separation distances (compared to
the range of Coulombic interactions) of free charge car-
riers between two electric conductors gives rise to a drag
current in a passive conductor when a bias voltage is
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FIG. 24 (a) Thermal conductance of Vicsek fractal structures
as a function of normalized gyration radius. From (Nikbakht,
2017) (b) Thermal conductance between two Ag nanoparticles
clusters at various fractal dimensions. From (Luo et al., 2019)

FIG. 25 (a) Illustration of the classical Coulomb drag effect.
A drag electric current Id in a passive conducting wire is in-
duced by a primary current I flowing in a driving conductor
placed close to it. (b) Radiative drag effect in a many-nody
system: a drag heat flux Jd carried by thermal photons be-
tween two particles is induced by a heat flux J exchanged
between two thermostated objects in a many-body system.
From (Ben-Abdallah, 2019a).

applied along the so called drive conductor, a radiative
heat flux in a many-body systems can be induced in a
given region by a primary flux generated by a temper-
ature gradient in another region of the system. In the
case of two parallel chains of nanoparticles as sketched
in Fig.25(b), where the extremities of the first chain are
held at fixed temperature with two external thermostats
while all other particles can relax to their own local equi-
librium temperature, the magnitude and the direction of
drag flux can be calculated using the following procedure.

In the steady state the net power received by each
particle vanishes which allows to determine unknown
temperatures (T2, .., TN−1, TN+1, ..., T2N ) (T1 and TN are

fixed by the thermostats) and the power P1 and PN com-
ing from the external thermostats in order to keep the
temperatures of particle 1 and N fixed. Then the heat
current in the upper chain in Fig. 25(b)

J = PN − P1. (90)

as well as the induced heat current in the lower chain in
Fig. 25(b)

JD = P2N − PN+1 (91)

can be determined. Finally, the thermal drag resistance

RD =
TN+1 − T2N

J
. (92)

quantifies the frictional effect induced by the electromag-
netic interactions between the different regions inside the
system. In hybrid polar-metal systems this friction can
be negative (Ben-Abdallah, 2019a) proving the existence
of regions within these systems where heat can locally
flow in an opposite direction to the applied temperature
gradient.

Beside this generation of heat flux by frictional effect
in many-body systems the temperature of the particles
in particle networks can be individually addressed with
a subwavelength accuracy (Yannopapas and Vitanov,
2013) using external excitations such as chirped pulses
and can be controlled by adaptive optimization tech-
niques at the time scale of thermal relaxation processes.
The interplay between nano-objects can also be used to
focus and even pump heat (Ben-Abdallah, 2019b) out-
side of the system itself. The heat flux radiated through
an oriented surface by a collection of emitters held at
different temperature Ti (i = 1, . . . , N) can be calculated
from Eq. (59). By tuning the temperature of three ther-
mal emitters in vicinity of a substrate as shown in Fig.26,
for instance, the heat flux can be locally focused and even
amplified in tiny regions which are much smaller than the
diffraction limit and even smaller than the regions heated
with a single emitter (Ben-Abdallah, 2019b). This con-
trol of flux lines by a collection of nano-sources can be
used to tailor the heat flux at the nanoscale or to an-
alyze and change at this scale the local temperature of
solid surfaces.

3. Long range heat transport and amplification of heat flux

Instead of enhancing the heat flux between two
nanoparticles or two slabs by introducing an interme-
diate nanoparticle or slab as discussed in Sec. III.A.3
and III.B.2 it is also possible to guide the radiative heat
flux over a long distance by exploiting the properties of
specific modes such as surface or hyperbolic modes sup-
ported by some structures. This guiding can for example
be done by bringing two nanoparticles close to a planar
interface as sketched in Fig 27(a) which supports a sur-
face polariton in the infrared. Then the hot nanoparticle
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FIG. 26 (a) Schematic of a multi-tip SThM platform with
three tips. Nano-spheres (thermal emitters) are grafted on
single scanning probe tips and held close to a substrate.
Their temperatures and positions are individually controlled.
(b) Normal component 〈Sz〉 of the Poynting vector radiated
through the substrate surface at z = 0 by a three-tip SThM
setup with glass nano-emitters at T = 300 K. (c) As in (b)
but with T2 = T3 = 350K (red) and T1 = 300 K (blue). The
inset shows the flux at z = 0 for a single particle at T = 300K.
(d)-(e) Magnitude of Poynting vector field in the (x, z) plane
radiated by a multi-tip setup in the case (d) for an angular
opening of θ = 20o and in the case (e) for an angular opening
θ = 80o. From (Ben-Abdallah, 2019b).

can directly couple to this surface mode and subsequently
transfer its heat to the second (cold) particle over rela-
tively long distances.

Such a transport has been first investigated in
Ref. (Sääskilahti et al., 2014) between polar nanoparti-
cles above single polaritonic surfaces and inside cavities
formed of two mirrors or made with slabs supporting sur-
face modes. This study and more recent studies (Ashe-
ichyk and Krüger, 2018; Dong et al., 2018; Messina et al.,
2018) have shown that the heat current between dipoles
placed in a cavity can be enhanced by several orders of
magnitude as compared to the free-space heat current
with a similar interparticle distance. In particular, in
Ref. (Messina et al., 2018) it has been shown that a sim-
ilar enhancement and long range heat transport can be
also observed between metallic particles when a graphene
sheet cover a SiC interface. In this case the heat-flux can
be enhanced by several orders of magnitude at interpar-
ticle distance of about 1-10µm as shown in Fig. 27(b)

FIG. 27 (a) Heat flux between two nanoparticles at inter-
particle distance d by coupling via the surfacce modes of an
inferface. From Ref. (Dong et al., 2018). (b) conductance ra-

tio G/G(0,0) (G conductance with interface and G(0,0) with-
out interface) as a function of d between two Au nanoparticles
placed at distance z = 150 nm from a SiC substrate. The four
lines correspond to the absence of graphene (black solid line),
and to configurations with graphene having µ = 0.1 eV (red
dashed line), 0.3 eV (blue dot-dashed line) and 0.5 eV (orange
dotted line). The inset shows the spectral conductance asso-
ciated with the four same configurations. From Ref. (Messina
et al., 2018).

suggesting that the near-field enhanced thermal radia-
tion can be brought to distances which are comparable
to the thermal wavelength. Similar enhancement effects
were reported for the heat flux along chains of nanoparti-
cles close to a phonon-polaritonic interface (Dong et al.,
2018), between two nanoparticles mediated by an inter-
mediate macroscopic phonon polaritonic sphere (Ashe-
ichyk et al., 2017), by an anisotropic meta-surface made
of graphene stripes (Zhang et al., 2019a) or a stack of
graphene sheets (He et al., 2019b). As shown in (Ott
and Biehs, 2020) the distance at which the maximum
heat flux enhancement occurs is connected to the prop-
agation length of surface modes (Ott and Biehs, 2020).
Hence, the enhancement mechanism for the heat flux is
reminiscent of the enhancement of Förster resonance en-
ergy transfer between atoms, molecules, or quantum dots
which are brought in close vicinity to a plasmonic in-
terface where also a maximal enhancement is found at
distances coinciding with the propagation length of the
surface modes involved in the energy transport (Biehs
and Agarwal, 2013b; Bouchet et al., 2016; Poudel et al.,
2016; Velizhanin and Shahbazyan, 2012) allowing for a
long-range energy transfer.

Motivated by the very promising properties of hyper-
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bolic metamaterials for long-range Förster energy trans-
fer (Biehs et al., 2016; Deshmukh et al., 2018; Newman
et al., 2018) another strategy has been explored to trans-
port the near-field heat flux over long distances using
such hyperbolic guides. Hence it has been shown that
the large wavevector surface waves supported by polari-
tonic materials can be converted into propagating hyper-
bolic modes inside these media so that the usual ultra-
small penetration depth of near-field heat flux (Basu and
Zhang, 2009) can become very large (Biehs and Ben-
Abdallah, 2017; Lang et al., 2015; Tschikin et al., 2015) in
these guides as well as the amount of heat they can trans-
port (Biehs et al., 2015; Liu and Narimanov, 2015). Since
the hyperbolic media can support hyperbolic modes over
a broad spectral band the flux they can transport can
be very high. It seems even possible to achieve with hy-
perbolic metamaterials a radiative thermal conductivity
which can in principle be comparable to the phononic
conductivity (Biehs et al., 2015; Liu and Narimanov,
2015). Recently, first experimental steps have been made
to verify this claim (Salihoglu et al., 2019), but the ex-
perimental results are not yet convincing. In a more de-
tailed study it could be demonstrated that the near-field
heat flux between two slabs can be guided through a hy-
perbolic waveguide over distances larger than the ther-
mal wavelength so that larger heat fluxes than the black-
body value are achievable for far-field distances (Messina
et al., 2016a). On the other hand, it could also be shown
that the guiding performance highly depends on the dis-
sipative properties of the waveguide material and that
for long-distance guiding also low-loss infrared materials
like Ge, for instance, would already have very good long-
range guiding properties (Messina et al., 2016a). The
long-range guiding effect has also been verified for the
heat flux between two nano-particles through a hyper-
bolic multilayer structures (Zhang et al., 2019b) as shown
in Fig. 28.

Even though the enhancement of the heat flux due to
coupling to the surface modes of the phonon-polaritonic
or plasmonic structures can be several orders of magni-
tude it has to be kept in mind that the mentioned studies
consider the steady-state heat flux between the nanopar-
ticles and that the enhancement is relativ to the case
where the interface is removed. Hence, even by increasing
the heat flux by several orders of magnitude at a distance
of 1 micron the absolute value of the heat flux is still
small, because the heat flux between the nanoparticles
follows the 1/d6 law in the near-field regime (Volokitin
and Persson, 2001). Furthermore, it should be kept in
mind that by bringing the nanoparticles in close vicinity
of an interface not only the heat flux between the particles
increases, but also the thermal emission of the hot parti-
cle into the substrate so that the hot particle will rather
tend to cool by thermal emission into the substrate then
by heating the cooler nanoparticle. However, a first ther-
mal relaxation study shows (Ott and Biehs, 2020) that
by choosing wisely the distances between the nanoparti-
cles and between the nanoparticles and the interface, a

FIG. 28 (a) Sketch of heat flux between two nanoparti-
cles through a hyperbolic multilayer meta-material. (b) Ex-
changed power Φ as function of interparticle distance L nor-
malized to the exchanged power Φ0 where the hyperbolic mul-
tilayer meta-material has been replaced by vacuum. From
Ref. (Zhang et al., 2019b).

substantial heating of the cold nanoparticle can be ob-
served. Similar considerations also hold for the heat flux
though a structure. Hence, it is very useful to focus in
future studies on heat fluxes and the thermal relaxation
or actual heating/cooling performance as well.

4. Relaxation dynamics

The temporal dynamics of any many-body system in
interaction with an external environment or with local
thermostats is simply driven by the competition between
its thermal inertia and the strength of the thermal link
with the external environment and these thermostats.
Close to the thermal equilibrium, the time evolution of
temperatures T = (T1, ..., TN ) in Eq. (83) is driven by
the linear dynamical system

I
dT

dt
= −CT(t) + CbTb. (93)

where I = diag(I1, ..., IN ) is the diagonal inertia matrix
which depends on the mass density, heat capacity and
size of each element, Tb = (Tb1, ..., TbN ) is the temper-
ature of external bath and reservoirs with which each
elements interact, Cb = diag(G1b, ..., GNb), Gib being the
thermal conductance between the ith element and the
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FIG. 29 Time evolution of thermal state in a single (red),
two-body (black) and a three-body system (blue) in a bath
at temperature T = 300 K. The distance between particles
1 and 2 is 400 nm, while the distances (solid line for dipole
1, dashed line for dipole 2, and dot-dashed line for dipole 3).
From (Messina et al., 2013b).

bath or a thermostat while C is the general conductance
matrix with components

Cij =

(∑
k 6=i

Gik +Gib

)
δij − (1− δij)Gij . (94)

withGij the conductance between the ith and jth element
defined as follows

Gij = 3

∫ ∞
0

dω

2π
~ω

∂n

∂T

∣∣∣∣
T=Tj

Tij(ω). (95)

A corresponding definition can also be used for slabs.
Note that this definition is only valid in the absence of
temperature dependence of optical properties of the ma-
terials involved. When the conductance matrix is inde-
pendent of time the thermal state of the system reads

T(t) = exp[−I−1C t]T(0)

+

∫ t

0

exp[−I−1C(t− τ)]I−1CbTb(τ)dτ
(96)

T(0) being the initial state. Hence, it is clear that the
relaxation dynamic is driven by the set {Γi} of eigenval-
ues of the matrix I−1C, the dominant relaxation time is
given by τ = 1/min(Γi) (C being a strictly diagonally
dominant matrix with positive diagonal elements).

Generally speaking the relaxation process takes place
at different scales (Messina et al., 2013b). When the
separation distance between the different elements is sub-
wavelength they are first thermalized in near-field regime
at the same temperature. This generally happens in few
millisecond (Wang and Wu, 2016) for objects of nano-
metric size (Fig.29) and even in hundreds microseconds
for two dimensional nanosystems (Zundel and Manjava-
cas, 2020). In a second step each element and therefore
the whole system thermalizes in far-field toward the bath
temperature.

This difference in the time scales for the relaxation
dynamics can also be studied in a simpler system when

considering a single nanoparticle at temperature T1 close
to a sample with a fixed background temperature Tb then
the dynamical equation in (93) reduces to

dT1

dt
=
G1b

I1
(Tb − T1) (97)

or equivalently

d∆T

dt
= −Γ∆T (98)

where I1 = ρCpV is the thermal inertia of the nanopar-
ticle and ∆T = T1 − Tb and the relaxation rate Γ =
G1b/I1. The solution to this differential equation is
simply ∆T (t) = ∆T (0) exp(−Γt) or T1(t) =

(
T1(0) −

Tb
)

exp(−Γt) + Tb. Hence, the relaxation time in this

case is the inverse of the relaxation rate τ = Γ−1 which
is itself determined by the thermal inertia and the heat
conductance between the nanoparticle and the sample.

The heat conductance for this configuration has been
studied for spherical dielectric and metallic nanopar-
ticles close to a sample with a flat surface (Chapuis
et al., 2008b; Dedkov and Kyasov, 2007; Dorofeyev, 1998;
Mulet et al., 2001; Volokitin and Persson, 2002), between
a spherical dielectric nanoparticle and a structured or
rough surface (Biehs and Greffet, 2010c; Biehs et al.,
2008; Kittel et al., 2008; Rüting et al., 2012) and be-
tween dielectric and metallic ellipsoidal particles and a
flat or structured surfaces (Biehs et al., 2010; Huth et al.,
2010). Here we focus on a spherical nanoparticle with
radius R in a distance d over a planar interface. For
d � R it can be shown (Chapuis et al., 2008b; Dedkov
and Kyasov, 2007; Dorofeyev, 1998; Mulet et al., 2001;
Volokitin and Persson, 2002) that G1b is proportional to
the electric (magnetic) photonic local density of states
DE(ω, d) (DH) as defined in (Agarwal, 1975b; Eckhardt,
1982) for dielectric (magnetic) nanoparticles above a di-
electric (magnetic) substrate. Hence, when disregarding
mixed cases as considered in (Dong et al., 2017a; Man-
javacas and de Abajo, 2012) the relaxation rate can be
written as (Tschikin et al., 2012b)

Γ =
1

I1

∑
i=E,H

∞∫
0

dω 2~ω2Im(αi)Di(ω, d)
dn

dT

∣∣∣∣
Tb

(99)

where αE is its electric and αH its magnetic polariz-
ability. The latter takes the magnetic moments due to
eddy currents into account which play an important role
for thermal emission of metallic nanoparticles (Chapuis
et al., 2008b; Dedkov and Kyasov, 2007; Martynenko and
Ognev, 2005; Tomchuk and Grigorchuk, 2006). Hence, we
find that in comparison to the spontaneous emission of an
atom or molecule above a substrate (Novotny and Hecht,
2006) where the emission rate is proportional to the local
density of states for the transition frequency, the thermal
emission rate is given by a spectral average of the local
density of states with respect to ~ωdn/dT . Hence, the



36

FIG. 30 Distance dependence of the relaxation time τ = Γ−1

of a nanoparticle above a substrate with temperature Tb =
300 K (a) for a gold nanoparticle above a gold surface, (b)
a SiC nanoparticle above a SiC surface. We use ρAuCAu

p =

2.404 · 106 Jm−3K−1 and ρSiCCSiC
p = 2.212 · 106 Jm−3K−1.

From (Tschikin et al., 2012b).

thermal relaxation rate ressembles the spontaneous emis-
sion rate if the nanoparticles have a narrowband emission
spectrum.

In Fig. 30 it can be nicely seen that the thermal re-
laxation time changes by orders of magnitude when go-
ing from the far-field into the near-field regime which is
due to the strong increase in G1b, i.e. the local density
of states, in the near-field regime (Dorofeyev and Vino-
gradov, 2011; Joulain et al., 2003). There is also a large
difference for metallic and dielectric nanoparticles due
to the fact that thermal radiation is more efficient for di-
electric than for metals. Furthermore, it can be seen that
for SiC oscillations in the transition region between near-
field and far-field regime which can be interpreted as the
photonic counterpart of the Friedel oscillations (Joulain
et al., 2003). These oscillations are due to the oscilla-
tions in the local density of states which average out for
the gold nanoparticle (broad band thermal emission spec-
trum) but remain for the SiC nanoparticle (narrow band
thermal emission spectrum). A detailed discussion can
be found in (Tschikin et al., 2012b).

5. Dynamical control

A control of the magnitude of heat flux has been high-
lighted in layered many-body systems (He et al., 2019a)
coated by graphene sheets simply by tuning the doping
level of graphene. Beyond this control several principles
have been introduced during the last decade to dynam-
ically control both the magnitude and the direction of
heat flux at nanoscale with many-body systems. For
example, by changing the shape and orientation of el-
ements (Nikbakht, 2014) the heat flux can be modulated
by several orders of magnitude with anisotropic particles
as shown in Fig. 31(a). Another example for a dynam-
ical modulation which can by realized by electrical gat-
ing is the heat flux splitter as sketched in Fig. 31(b).
It enables to control the direction of the heat flux in
the near-field regime. The design is based on a network
of tunable graphene palets (Ben-Abdallah et al., 2015)
which allow us to control spatially the near-field interac-
tions and therewith the direction of heat flux by dynam-
ically tuning the graphene plasmons. A similar control
also has been performed with polar particles covered by
graphene (Song et al., 2019).

Recently it could be demonstrated that the flux
exchanged between two solids can even be amplified
through a transistor effect (Ben-Abdallah and Biehs,
2014) by using a phase-change material like VO2 for
an intermediate relay also called gate between two SiO2

slabs functioning as source and drain at temperatures
TS = 360 K and TD = 300 as illustrated in Fig. 32. Since
this configuration corresponds to two oppositly connected
heat radiation diodes (Ben-Abdallah and Biehs, 2013;
Fiorino et al., 2018a; Gu et al., 2015; Ito et al., 2014;
Yang et al., 2013) this transistor corresponds to a bipo-
lar transistor so that the terminology emitter, base, and
collector would be more appropriate but this has no im-
pact on the physics involved. In the region of the phase-
transition around its critical temperature Tc ≈ 340 K
even though the temperature difference between the gate
and the drain is increased a drastic reduction of flux ΦD
received by the drain takes place due to the strong change
in the optical properties of the VO2 gate from a dielectric
to a metallic response shielding the heat flux from the
source towards the drain as can be seen in Fig. 32(b).
This variation corresponds to the presence of a negative
differential thermal conductance or resistance (Li et al.,

2006) RD = (∂ΦD
∂TG

)−1 induced by the phase transition.
In the transition region, the amplification factor

a =

∣∣∣∣∂ΦD
∂ΦG

∣∣∣∣ (100)

of the flux received by the drain ΦD compared to the heat
flux ΦG removed or added to the gate can be defined. It
can also be recast in terms of the thermal resistances of
the source and the drain as

a =

∣∣∣∣ RS
RS +RD

∣∣∣∣ (101)
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FIG. 31 (a) Normalized heat flux between two spheroidal
nanoparticles with respect to the orientation of a third parti-
cle placed in between. From (Nikbakht, 2014). (b) Graphene-
based heat flux splitter. Three graphene disks with different
Fermi levels controlled by external gating exchange thermal
energy in the near-field through many-body interactions. The
magnitude of heat flow from 1 to 2 and 1 to 3 can be controlled
by an appropriate tuning of the Fermi level of the graphene
disks 2 and 3. The thermal power exchanged in the near-field
between graphene disks of 100 nm radius versus the separa-
tion distance in a three body system. From (Ben-Abdallah
et al., 2015).

with the postive resistance RS = −(∂ΦS
∂TG

)−1. This ex-
pression clearly shows that the amplification factor can
only become larger than one if RD is negative so that
a negative thermal resistance is a necessary condition
for obtaining an amplification. For the thermal tran-
sistor the amplification factor is clearly larger than one
in the phase-change temperature region as can be seen
Fig. 32(c). Note that the peaks at the edges of the
phase transition are an artefact of the effective medium
model used to model the transition of the optical prop-
erties of VO2 in this region. Investigations of the same
effect in the far-field regime, the impact of the hysteresis
of the transistor can be found in (Joulain et al., 2015;

ProdâĂŹhomme et al., 2016, 2018) while the dynamical
response of transistors can be found in (Latella et al.,
2019).

The principle of negative thermal resistance plays fur-
ther an important role for the so-called radiative heat
shuttling which has been proposed (Latella et al., 2018b),
recently. In a system consisting of only two parallel slabs,
it has been shown that the periodic modulation of the

FIG. 32 (a) Radiative thermal transistor made of a three-
terminal system composed of a SiO2 source, a VO2 gate and a
SiO2 drain. The gate is a layer based on a phase-change mate-
rial and its temperature can be actively controlled around its
local equilibrium value T eq

G by an external thermostat while
the temperature TS = 360 K and TD = 300 of source and
drain are fixed so that TS > TD. (b) Radiative fluxes ΦS ,ΦD,
and ΦG exchanged between the different parts inside the tran-
sistor. (c) Amplification factor with respect to the gate tem-
perature. From (Ben-Abdallah and Biehs, 2014).

temperature and/or chemical potential of the two bodies
can be exploited to control the heat flux between them.
More specifically, it has been proven that in order to ther-
mally insulate them a negative thermal differential resis-
tance is required. A further step in this direction has
been done in (Messina and Ben-Abdallah, 2020), where
the heat flux between two particles is tailored by periodi-
cally modulating the temperature T3 and the position x3

of a third particle in a three-particle system as sketched in
the inset of Fig. 33. This many-body configuration allows
for controlling the direction and amplitude of the heat
exchanged between the two particles 1 and 2, even when
they are kept at the same temperature and (differently
from the shuttling effect mentioned above) in the absence
of a negative thermal differential resistance (Messina and
Ben-Abdallah, 2020). This possibility can be anticipated
already by performing a Taylor expansion up to second
order, around the middle position x3 = 0 and the equi-
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FIG. 33 Inset: geometrical configuration of a three-particle
system, where the position of particle 3 is periodically mod-
ulated. Main part of the figure: radiative heat pumping by
modulation of control parameters in a three-particles system
sketched in the inset. The three particles are made of SiC.
In this specific case, particles 1 and 2 are thermostated at
temperature T1 = T2 while the temperature T3 and the x3
coordinate of particle 3 can be modulated with respect to
time. Powers P1 and P2 absorbed by particles 1 (solid red
line) and 2 (dashed black line) as a function of time for the a
periodic variation of the coordinate and temperature of par-
ticle 3 of frequency ω = 2π s−1 and amplitudes ∆x = 100 nm
and ∆T = 5 K around x3 = 0 and T3 = 300 K. We have
d = 600 nm and y3 = 300 nm, and the radius of the particle
is R = 50 nm. From (Messina and Ben-Abdallah, 2020).

librium temperature T3 = T3,eq of particle 3. This gives

P1 ' P1(0, T3,eq) +
∂P1

∂x3
x3 +

∂P1

∂T3
(T3 − T3,eq)

+
1

2

∂2P1

∂x2
3

x2
3 +

1

2

∂2P1

∂T 2
3

(T3 − T3,eq)2

+
∂2P1

∂x3∂T3
x3(T3 − T3,eq).

(102)

For a time variation of the form T3(t) = T3,eq +
∆T sin(ωt) and x3(t) = ∆x sin(ωt + φ), and in the spe-
cific case T1 = T2 = T3,eq, the time average over a period
reads

〈P1〉t '
∆T

2

(
∆x

∂2P1

∂x3∂T3
cosφ+

∆T

2

∂2P1

∂T 2
3

)
, (103)

This equality clearly shows that magnitude of the first
term can be easily modulated simply by changing the
dephasing φ between x3 and T3, paving the way to an
active heat pumping mechanism. More intringuing , the
sign can be changed as well so that the heat can flow
from cooler to warmer regions. A numerical example of
this modulation for a vanishing dephasing φ = 0 is shown
in Fig. 33, where the average over a period of the powers
P1 and P2 absorbed by particles 1 and 2 (having tem-
peratures T1 = T2 = 300 K) are positive and negative,
respectively.

FIG. 34 Types of heat transport regimes in a N -body sys-
tem. When an element (red) is heated up its heat spread
out through the system either by (a) a classical (Gaussian)
diffusion process or (b) an anomalous process. The trajec-
tories correspond to random walks with a Gaussian and a
non-Gaussian probability distribution function, respectively.
Here, the non-Gaussian process is a Levy flight with an alge-
braic jpg.

6. Heat transport regimes

It is commonly admitted that heat conduction in-
side a bulk solid is governed by a normal diffusion pro-
cess. Heat carriers that are electrons or phonons move
through the atomic lattice following a usual random walk
which is driven by a Gaussian distribution function as in
Fig. 34(a). In this section we discuss how heat carried by
thermal photons is transported in many-body systems.
We demonstrate the existence of anomalous regimes of
transport as in Fig. 34(b). In dilute systems we show
that heat can spread out following a superdiffusive pro-
cess (Lévy, 1937; Shlesinger et al., 1995) while in dense
systems it can be ballistically transported.

To start this analysis, let us consider a network of small
objects at temperature Ti which are distributed inside an
background or environment at temperature Tb. When the
separation distance between two arbitrary objects in this
network is much larger than their characteristic size and
that their size is small enough compared with the ther-
mal wavelengths λTi = c~/(kBTi) then this network can
be modelled as a set of simple dipoles located at positions
ri in mutual interaction and in interaction with the sur-
rounding bath. In near-field regime the power exchanged
with the bath is negligible as discussed in Sec. III.C.4
compared to the internal exchanges. Then the time evo-
lution of objects temperature is governed by Eq. (93)
neglecting the heat exchange with the background yield-
ing

Ii
dTi
dt

=
∑
j 6=i

Gij(Tj − Ti), (104)

where Ii represents the thermal inertia of object i while
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FIG. 35 (a)Thermal conductance G in log-log scale along a
chain of SiC spherical particles 100 nm radius with different
inter-particle distances h and different particle numbers N as
a function of the separation distance ∆x = |r − r′| at tem-
perature T = 300 K. From (Ben-Abdallah et al., 2013). (b)
Heat-transfer coefficients h`,j with respect to the normalized
separation z`,j/zN in a dilute multilayer system made with
SiC layers 200 nm thick separated by a distance d=40 nm at
T = 300 K. From (Latella et al., 2018a).

Gij stands for the thermal conductance between the jth

and the ith dipole as defined in Eq. (95) which depends
only on the distance between the dipoles

Gij ≡ G(| ri − rj |).. (105)

In the continuous limit the energy balance equation
(104) can be recast as (Ben-Abdallah et al., 2013)

∂Ti
∂t

=

∫
Rd

dr p(ri, r)
T (r, t)

τ(r)
− T (ri, t)

τ(ri)
, (106)

where the integration is done over the whole space
of dimension d. This equation is formally analog to
a Chapman-Kolmogorov master equation which drives
a generalized Markov process. The temperature field
T (r, t) is a passive scalar which evolves by following a
generalized random walk of probability distribution func-
tion (jpg)

p(r, r′) =
G(|r− r′|)∫

Rd
dr′G(|r− r′|)

(107)

and the rate of jumps between two collission events

τ(r) =

(∫
Rd

dr′G(|r− r′|)
)−1

. (108)

Hence, by analyzing the spatial variation of the jpg and
therefore of the conductance as well between two points
inside the system we can identify the regime of heat
transport. If the asymptotic behavior of the jpg p(x)

(where we have set x =| r − r
′ |) is Gaussian, all

its moments M (n) =
∫
xnp(x)dx are finite so that the

regime of transport is diffusive. On the other hand if
it decays algebraically, i.e. p(x) = O(1/xγ) and hence

G(x) = O(1/xγ), then there is a given order
∼
n beyond

which M (n) diverges for any n >
∼
n. In this case, the heat

transport regime becomes superdiffusive (see right tra-
jectory on Fig.34). In this specific case the (continuous)
energy balance equation takes the form (Ben-Abdallah
et al., 2013).

I
∂T

∂t
= −κ(−∆)(γ−d)/2T (r), (109)

where κ is a parameter which depend on the dimension d
and (−∆)α/2 denotes the fractional Laplacian (Shlesinger
et al., 1995)

(−∆)α/2T (r) = cd;α PV

∫
Rd

dr′
T (r)− T (r′)

|r− r′|d+α
(110)

with cd;α = 2−απ1+d/2

Γ(1+α/2)Γ( d+α2 ) sin(απ/2)
. It is worthwhile to

note that Eq.(109) is general and can be applied for de-
scribing the energy balance in arbitrary dipolar or macro-
scopic systems. When γ → d+2 the fractional Laplacian
degenerates into its classical form, i.e. (−∆)α/2) = (−∆),
and the transport regime is diffusive. On the other hand
when γ → d the fractional Laplacian approaches the iden-
tity operator and the transport becomes ballistic. Finally
when d < γ < d+ 2 the regime is superdiffusive.

In Figs.35 and 36 we show the existence of those
regimes in two simple many body systems: (1) linear
chains of nanoparticles periodically dispersed in vacuum
and (2) multilayer periodic systems. In the first sys-
tem (see Fig. 35(a)), the thermal conductance G(∆x)
between a central particle and another particle at a dis-
tance ∆x, is calculated for different filling factors (2R/h).
For any filling factor, we see that G decays asymptoti-
cally at long separation distance as 1/∆x2, i.e. γ = 2,
showing according to our previous discussion that the
regime of heat transport is superdiffusive. In the ex-
ample plotted in Fig. 35(a) the long range interactions
which give rise to this anomalous regime comes from the
presence of collective electromagnetic modes supported
by the whole structure. In the case of a chain made
with silicon carbide (SiC) particles these modes result
from the coupling of surface phonon-polaritons localized
on each particle (Ben-Abdallah et al., 2013; Kathmann
et al., 2018; Ordonez-Miranda et al., 2015; Tervo et al.,
2020).
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FIG. 36 Heat transfer coefficient h`,j with respect to the nor-
malized separation zl,j/zN in a dense multilayer system made
with SiC layers 200 nm thick separated by a distance d=5
nm at T = 300 K The inset decomposes h`,j into TE and TM
polarization contributions. From (Latella et al., 2018a).

FIG. 37 Temperature profile as a function of the normal-
ized position zj/zN along a multilayer made with N = 60
SiC layers 200 nm thick for different separation distances d
and at fixed distance D = 500 nm from the thermostats.
From (Latella et al., 2018a).

A similar superdiffusive regime is observed in dilute
multilayer systems (see Fig. 35(b)) where the heat trans-
fer coefficient hl,j between layers l and j decays alge-
braically and scales as 1/z2.5

l,j where zl,j is the distance be-
tween layers l and j so that γ = 2.5. On the other hand,
in a dense multilayer system as considered in Fig. 35(b) a
transition occurs between this superdiffusive regime and
a ballistic regime (He et al., 2019c; Latella et al., 2018a).
In this case we see that hl,j scales as 1/zl,j meaning that
the transport becomes clearly ballistic and the tempera-
ture profile inside the structure submitted to a tempera-
ture gradient is constant as can be seen in Fig. 37 having
a value T ∗ which is close to the Casimir temperature
TC = T1+TN

2 . This regime of heat transport seems to
be inconsistent with the previous arguments about the
collective modes supported by the structure, but it oc-
curs due to the fact that the coupling of the inner dense
multilayers is much stronger than the coupling to the

two outer baths when d � D. For D = d on the other
hand the temperature profile in Fig. 37 is reminiscent of
a quasi-ballistic temperature distribution. Although the
transition mechanism remains today partially elusive it
has been shown in (Latella et al., 2018a) that it is related
to a change of channel for heat exchanges in dense sys-
tems from TM dominated to TE dominated heat transfer
(see inset of Fig. 36). For this TE polarization state the
slabs do not support anymore surface waves.

D. Non-reciprocal systems

In electromagnetics, a nonreciprocal system is defined
as a system that exhibits different received-transmitted
field ratios when a source and a detector are inter-
changed. This concept is also closely related to a time
reversal symmetry breaking of MaxwellâĂŹs equation.
In this case the classical LorentzâĂŹs reciprocity is vio-
lated (Caloz et al., 2018). Here below we discuss first the
general formulation of radiative power exchange between
non-reciprocal objects and then show how RHT is taking
place in non-reciprocal many-body systems made for sets
of simple non-reciprocal nano-particles.

1. General discussion

As a first step, let us consider only two objects 1 and
2 having temperatures T1 and T2, respectively, which are
immersed into a background or environment having an-
other temperature Tb. Under the assumption that the
objects and the environment can be considered to be in
local thermal equilibrium, the power absorbed by object
1 can be determined with the conventional FE approach
analogous to Eq. (54) as (Herz and Biehs, 2019; Latella
and Ben-Abdallah, 2017)

P1 = 3

∫ ∞
0

dω

2π
~ω
[
(n1 − nb)T11 + (n2 − nb)T12

]
, (111)

where n1/2 = n(T1/2) and nb = n(Tb). The transmis-
sion coefficients Tα/β are, for example, explicitly given
in terms of the T operators of the objects in (Herz and
Biehs, 2019) where they were derived within the scatter-
ing approach (Krüger et al., 2012). Here we only give
explicitly the expression for T21 which is given by (Herz
and Biehs, 2019)

T12 =
4

3
Tr
[
D−1Gχ2(D−1G)†χ̃1

]
, (112)

where the trace is the operator trace, G is the operator
for the Green’s function, D = (1−GT2GT1) written in
terms of the T-operators T1/2 of both objects and the
generalized suszeptibilities are defined as

χ2 =
T2 −T†2

2i
−T2

G−G†

2i
T
†
2, (113)

χ̃1 =
T1 −T†1

2i
−T†1

G−G†

2i
T1. (114)
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Note that this expression is formally equivalent to the
expressions in Eqs. (64) and (74). Analogous expres-
sions can also be found in the work (Zhu et al., 2018)
and more explicitly for spherical nanoparticles in (Ott
and Biehs, 2020). The corresponding expression for the
absorbed power P2 in object 2 can be obtained by ex-
changing 1 ↔ 2 in the above expression. First of all, it
can now easily be seen in Eq. (111) that in global thermal
equilibrium the overall absorbed power is zero. Secondly,
when setting T1 = Tb then the expression in Eq. (111) can
only describe the absorbed power in object 1 due to the
heat flow coming from or going towards object 2. Thus,
T12 can be identified as the transmission coefficient de-
scribing the heat flow from object 2 to 1. Thirdly, when
assuming that T2 = Tb then Eq. (111) describes the heat
flow from object 1 to the environment and to object 2 or
vice versa. Therefore we can identify T11 as the transmis-
sion coefficient standing for the so called “self emission”
of object 1 (Krüger et al., 2012). Finally, when taking
T1 = T2 then Eq. (111) describes merely the power flow-
ing from the environment towards object 1 either directly
or via object 2. Therefore T11 + T12 equals the transmis-
sion coefficient T1b as discussed also for N dipolar objects
when deriving Eq. (56). These observations allows us to
rewrite Eq. (111) as

P1 = 3

∫ ∞
0

dω

2π
~ω
[
n1T11 + n2T12 − nbT1b

]
≡ P1→1(T1) + P2→1(T2) + Pb→1(Tb)

(115)

introducing

P1→1(T1) = +3

∫ ∞
0

dω

2π
~ωn1T11, (116)

P2→1(T2) = +3

∫ ∞
0

dω

2π
~ωn2T12, (117)

Pb→1(Tb) = −3

∫ ∞
0

dω

2π
~ωnbT1b. (118)

where the first term stands for the self-emission of body
1, the second is the emission toward body 2 and the last
term is the power coming from the bath. Notice that
when the two bodies are set at the same temperature we
can make a connection between the transmission coeffi-
cient Tb→1 and the thermal emissivity ε = σabs/S (Biehs
and Ben-Abdallah, 2016). More specifically, Tb→1 can
be expressed as a function of its absorption-cross section
(30), its geometrical cross section S and the absorbed
power as follows

Tb→1(ω) =
A

2π
ε(ω)

ω2

c2
=

A

2π

σabs(ω)

S

ω2

c2
, (119)

where A is the surface of the object (assumed convex).
The self-emission term P1→1 appearing in Eq. (116)

must balance the energy flow from the other object 2
and the environment described by P2→1 and Pb→1 to
establish global equilibrium so that this term describes
the power needed to keep the temperature of object 1

constant in thermal equilibrium. Hence, when taking
T1 = T2 = Tb we have P1 = 0 and therefore

P1→1(Tb) = −P2→1(Tb)− Pb→1(Tb). (120)

This equation relates P1→1 to P2→1 and Pb→1 and
therefore allows us to eliminate the background term
Pb→1(Tb) from the expression for the overall absorbed
power giving (Krüger et al., 2012)

P1 = P1→1(T1)− P1→1(Tb)

+ P2→1(T2)− P2→1(Tb).
(121)

This elimination of the background term is of course
clear from the above definitions showing that T1→b can
also be expressed by T1→1 and T2→1 and obviously the
implementation of the equilibrium condition brought us
back to Eq. (111). As described in (Krüger et al., 2012)
this expression for P1 can now be generalized to the
case of N objects in a given environment. In this case
(i = 1, . . . , N)

Pi =

N∑
j=1

[
Pj→i(Tj)− Pj→i(Tb)

]
. (122)

This is the general N -body formula for the power ab-
sorbed by object i of which Eq. (54) can be considered
as a special case for dipolar objects. For an explicit cal-
culation of the absorbed power it is, of course, necessary
to determine the transmission coefficients for the studied
configuration. Before focusing on the heat flow in some
specific cases, we want to discuss in the next section the
impact of the non-reciprocity in a similarly general way.

2. General impact of non-reciprocity

For Lorentz-reciprocal objects and their environment
the coresponding response functions, i.e. the permittiv-
ity tensor, the polarizability tensor, T-operator, Green’s
function etc. are symmetric (Caloz et al., 2018). Con-
sequently, in this case we have symmetric transmission
coefficients T12 = T21 or more generally for N objects
Tij = Tji (i 6= j). This means that we have detailed bal-
ance for the heat flux between any two objects (Krüger
et al., 2012). In contrast, for configurations where the
objects or the environment do not fulfill the conditions
for Lorentz reciprocity it has been explicitly proven in
(Herz and Biehs, 2019) that in general T12 6= T21. More
precisely, T12 = T21 if and only if the objects and their en-
vironment are both reciprocal. Therefore non-reciprocity
introduces in general a directionality for the heat flow.

One of the astonishing consequences is that in non-
reciprocal systems one has P12 6= P21 in general so that
the heat flux related expressions for the reciprocal case
fulfilling detailed balance need to be generalized to the
non-reciprocal case where detailed balance is broken (Zhu
and Fan, 2014) like, for instance, the Green-Kubo re-
lation for heat radiation (Golyk et al., 2013; Herz and
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Biehs, 2019). More surprisingly, this asymmetry in the
heat flow from object 1 to object 2 and from 2 to 1 even
exists in global thermal equilibrium suggesting that there
might be a net heat flow even though there is no temper-
ature difference. However, by looking at Eq. (111) it is
clear that although the heat flux from object 1 towards
object 2 is different from the heat flux from object 2 to
1 there is no net heat flow in global equilibrium because
P1 = P2 = 0 in that case. The same is also true for N
objects where due to non-reciprocity one has in general
Pi→j 6= Pj→i (i 6= j). As we discuss below in more detail,
this can result in a so-called persistent heat current in a
N -body configuration in global thermal equilibrium (Ott
et al., 2019a; Zhu and Fan, 2016; Zhu et al., 2018).

In many works on the radiative heat exchange between
two objects the contribution of the environmental field is
neglected. In that case, as pointed out in (Latella and
Ben-Abdallah, 2017), the global equilibrium can only be
achieved if the transmission coefficients fulfill the condi-
tion ∑

j 6=i

[
Tij − Tji

]
= 0. (123)

In particular, this implies that when having only two ob-
jects T12 = T21. Hence, for two isolated objects the non-
reciprocity has no impact and therefore at least three
objects are necessary to observe for example a broken de-
tailed balance. From this very general findings it can be
understood that in (Zhu and Fan, 2014) it was necessary
to consider three non-reciprocal thermal emitters to show
that detailed balance can be broken for thermal radiation
and in (Zhu and Fan, 2016) it was necessary to consider
three non-reciprocal nanoparticles to observe the persis-
tent heat current. On the other hand, it is also clear
that the heat exchange between two non-reciprocal half-
spaces will not show any rectification effect (Fan et al.,
2020; Moncada-Villa et al., 2015). On the other hand,
when considering two objects with an environment, then
the environment can be regarded as a third object. This
explains why in general for only two objects in a given
environment the transmission coefficients can be asymet-
ric (T1→2 6= T2→1) so that we have here no contradiction
to the discussion at the beginning of this paragraph.

3. Magneto-optical nano-particles

In the following we will review the results obtained for
the RHT in many-body systems consisting of subwave-
length nano-particles. Most of the works are neglecting
the coupling to the background which can be justified
in steady-state situations when the distance between the
objects is much smaller than the thermal wavelength so
that the near-field coupling dominates over the coupling
to the environment (Messina et al., 2013b). Therefore,
we will work with expression (58) together with the trans-
mission coefficients Tij as defined in Eq. (55). Neglecting

the radiation correction it can also be written as

Tij(ω) =
4

3
Tr

[
α−1T−1

ij

α− α†

2i
(α−1T−1

ij )†
α− α†

2i

]
.

(124)
assuming that all particles have the same polarizabil-
ity α defined for spherical nano-particles by means of
the permittivity in Eq. (68) with the volume V =
4πR3/3 (Lakhtakia et al., 1991)

α = 4πR3(ε− 1)(ε+ 21)−1. (125)

The transmission coefficients in Eq. (124) are equal to the
expressions given in (Ben-Abdallah et al., 2011; Ekeroth
et al., 2017) for spherical nano-particles within the so
called weak-coupled dipole limit (Lakhtakia, 1992) where
the radiation correction can be neglected (Albaladejo
et al., 2010). They can also be derived from the gen-
eral T -operator expressions obtained within the scatter-
ing approach for the reciprocal (Krüger et al., 2012) and
for the non-reciprocal case (Herz and Biehs, 2019; Zhu
et al., 2018).

As already done in Sec. II.C we consider again InSb as
magneto-optical material for which the permittivity ten-
sor becomes asymmetric εt 6= ε, i.e. the material proper-

ties are non-reciprocal, when a magnetic field is applied.
As a consequence, the polarizability tensor then has the
same asymmetry α 6= αt. Furthermore, due to the ap-
plied field the three-fold degeneracy of the dipolar local-
ized plasmon resonances, solution of the transcendental
equation det(ε + 21) = 0, with magnetic quantum num-
ber m = 0,±1 is lifted (Pineider et al., 2013; Weick and
Weinmann, 2011). In particular, there is a red-shift of the
resonance with m = +1 and a blue-shift of the resonance
with m = −1. The size of the splitting is proportional
to the cyclotron frequency ωc = eB/m∗, m∗ being the
effective mass of electrons (Pineider et al., 2013; Weick
and Weinmann, 2011). To be more precise, in the regime
where the dissipation can be neglected we find the reso-
nances (Ott et al., 2018)

ωm=∓1 =

√(
ε∞ω2

p

ε∞ + 2
+
ω2

c

4

)
± ωc

2
,

ωm=0 =

√
ε∞ω2

p

ε∞ + 2
,

(126)

which are deterimined by the poles of the polarizability
tensor. Therefore, for small magnetic fields the two cir-
cular resonances with m = ±1 are shifted by ∓ωc/2 with
respect to the unaffected resonance for m = 0.

4. Giant magneto-resistance

Due to the strong dependence of dipolar resonances of
particles on the magnetic field the heat flux emitted by a
magneto-optical particle can drastically change by tuning
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FIG. 38 (a) Giant thermal magneto-resistance along linear
chains of InSb and InSb/Ag nanoparticles at T = 300 K
as a function of the strength of an external magnetic field
B applied in the direction orthogonal to the chain axis.
From (Latella and Ben-Abdallah, 2017). (b) Anisotropic
magneto-resitance between two InSb nanoparticles with re-
spect to the orientation of magnetic field. From (Ekeroth
et al., 2018).

this field (Ekeroth et al., 2018; Latella and Ben-Abdallah,
2017). It turns out that the thermal magneto-resistance

Rij(B) =

(
3

∫ ∞
0

dω

2π
~ω

∂n

∂T
Tij(ω,B)

)−1

(127)

between two particles in a many-body system is strongly
dependent on the magnitude of applied magnetic field
as it can be seen in Fig. 38(a). Variations of about
50% along nanoparticle chains has been highlighted with
magnetic fields of magnitude of about 500 mT (Latella
and Ben-Abdallah, 2017). This sensitivity to the mag-
netic field is of the same order of magnitude than the
giant electric magneto-resistance reported in ferromag-
netic/normal metal multilayers (Baibich et al., 1988).
This resistance can also be tuned by changing the direc-
tion of applied magnetic field (Ekeroth et al., 2018). In
this case we speak of an anisotropic magneto-resistance.
As shown in Fig. 38(b), for certain orientations of the
magnetic field the heat flux can drop by more than
90%. These effects open up the opportunity to control or
modulate the amplitude of the heat flux between nano-
particles by external means. A more detailed discussion
can be found in (Ekeroth et al., 2018; Latella and Ben-
Abdallah, 2017; Ott et al., 2019a).

5. Persistent heat flux, angular momentum, spin and heat
current

As shown in (Ott et al., 2018) the circular plasmonic
resonances for m = ±1 of a single particle responsible

for magnetic circular dichroism (Pineider et al., 2013)
and “inverse Faraday effect” (Gu and Kornev, 2010) are
connected with a circular mean heat flux

〈S〉 = 〈E×H〉 (128)

emitted by the nano-particle in planes perpendicular to
the applied magnetic field. This results in a certain spec-
tral angular momentum density 〈Jω〉 = 〈L〉ω + 〈Sd〉ω
which can be divided in an orbital 〈L〉ω and spin angular
momentum density 〈Sd〉ω defined as (Bliokh and Nori,
2015)

〈L〉ω = r× 〈P〉ω, (129)

〈Sd〉ω =
g

2
Im

(
〈E∗ ×E〉+

µ0

ε0
〈H∗ ×H〉

)
, (130)

with g = ε0/ω and the canonical spectral momentum
density is given by

〈P〉ω =
g

2
Im[〈E∗(∇)E〉+

µ0

ε0
〈H∗(∇)H〉], (131)

adopting the notations from (Bliokh and Nori, 2015) that
~X(~Y )~Z =

∑
iXi

~Y Zi. Using these definitions together
with FE the persistent angular momentum close to the
walls of a cavity was first evaluated and discussed in (Sil-
veirinha, 2017) and the angular momentum and spin for
a thermally emitting nanoparticle by (Ott et al., 2018).
A more detailed study of the angular momentum and
spin close to a planar interface has been published re-
cently (Khandekar and Jacob, 2019a).

That there is a finite angular momentum and spin of
the thermally emitted radiation is not surprising, be-
cause the Lorentz force constrains the electrons in the
nanoparticles on a circular orbit so that the dipolar reso-
nance is rotating in the plane perpendicular to the mag-
netic field which is the microscopic origin of the circular
heat flux and the total angular momentum. The right-
hand rule determines the direction of the circular heat
flux in the near-field regime (Ott et al., 2018). It is
interesting to note that the angular momentum of the
m = +1 (m = −1) resonance is oriented in the (oppo-
site) direction of the magnetic field as one would expect,
whereas the spin of the m = −1 (m = +1) is oriented
in the (opposite) direction of the magnetic field in the
near-field regime. From this perspective the splitting
of the m = ±1 resonances can also be understood as
a Zeeman splitting, where m = −1 (m = +1) is blue-
shifted (red-shifted) because the near-field direction of
the spin is in direction (opposite) to the magnetic field,
but of course the correct quantity determining the Zee-
man splitting is the magnetic momentum of the dipolar
resonance itself (Gu and Kornev, 2010). The presence
of a finite spin means that the thermal emission of the
non-reciprocal nanoparticle will be circularly polarized in
general as is well known for solid matter within a mag-
netic field like semi-conductors (Kollyukh et al., 2005)
but also white dwarfs (Kemp, 1970; Kemp et al., 1970),
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FIG. 39 Normalized mean Poynting vector 〈S〉 of thermal
radiation emitted by an InSb nanoparticle at the origin of the
coordinate system with radius of 300nm at a temperature of
300 K into a cold environment (vacuum) at Tb = 0 K when
a magnetic field is applied in z direction. This circular heat
flux persists in global thermal equilibrium. From (Ott et al.,
2018)

for instance. More recently, circularly polarized thermal
emitters based on chiral meta-surfaces (Dyakov et al.,
2018) and nano-antennas (Khandekar and Jacob, 2019b)
have been proposed.

Interestingly, it turns out that these three quantities,
mean heat flux, orbital angular momentum, and spin per-
sist in global equilibrium if α 6= αt and therefore is a di-

rect consequence of the non-reciprocity of the permittiv-
ity or polarizability. Even though it might seem strange
to have a non-zero mean heat flux in global equilibrium
circulating around the nanoparticle, this does not pose
any problem from the thermodynamical point of view,
since it can be shown that ∇ · 〈Spers〉 = 0, which means
that there is no heat flux through any closed surface
including the nanoparticle (Ott et al., 2018). In other
words, no heat is finally emitted. Similar conclusions
have been made for the thermal radiation field of the non-
reciprocal surface modes on planar interfaces (Khandekar
and Jacob, 2019a; Silveirinha, 2017).

Instead of a persistent heat flux, i.e. a non-zero heat
flux in global thermal equilibrium, as observed from the
mean Poynting vector around a non-reciprocal nanopar-
ticle or in the vicinity of a planar interface of a non-
reciprocal sample, there can also be a persistent heat cur-
rent as first discussed in (Zhu and Fan, 2016) for the ther-
mal radiation exchanged by three nanoparticles, but it of
course exists also for more than three particles (Zhu et al.,
2018). As clear from the above discussion, when neglect-
ing the contribution of the environment of the nanoparti-
cles, then it follows from the constraint in Eq. (123) that
for only two nanoparticles T12 = T21 and consequently
P1→2 = P2→1 if T1 = T2. Therefore it is necessary to
have at least three nanoparticles to have T12 6= T21. For
three particles as in Fig. 40 the constraint in Eq. (123)
demands T12 = T23 = T31 and T13 = T32 = T21 due to
the C3 symmetry. If the three nanoparticles are now non-
reciprocal then it can be shown from the definition of the

FIG. 40 Normalized mean Poynting vector 〈S〉 and its mag-
nitude (Wm−2 in color scale) of thermal radiation emitted by
three InSb nanoparticles with a radius of 300 nm having the
same temperatures T1 = T2 = T3 = 300 K when a magnetic
field is applied in z direction. From (Ott et al., 2019b).

transmission coefficient in Eq. (124) that T12 6= T21 and
hence

P1→2 = P2→3 = P3→1 6= P1→3 = P3→2 = P2→1. (132)

This means there is a clockwise heat flow exchanged by
the nanoparticles which is different from the heat flow
in counter-clockwise direction even if T1 = T2 = T3 and
therefore there is a persistent heat current in clockwise
or counterclockwise direction depending on which of the
two heat flows is larger. This persistent heat flow or bet-
ter heat current (Zhu and Fan, 2016) is the many-body
analogue of the persistent heat flux, which of course also
exists in the three-body configuration. It is worthwhile
to note from relation (123) that, in a non-reciprocal sys-
tem at temperature T , the body i and j still exchange a
power (Latella and Ben-Abdallah, 2017)

Peqi↔j = Peqj→i − P
eq
i→j

=

∫ ∞
0

dω

2π
~ω n(ω, T )[Tij − Tji],

(133)

although the net power Peqj =
∑
i 6=j P

eq
i↔j vanishes so

that the persistent heat flux does not lead to any heating
or cooling. Hence the magnitude of asymmetry of trans-
mission coefficients spectra (Fig. 41) and the value of the
equilibrium temperature are directly responsible for the
value of persistent current. Today, the measurement of
this current is still a challenging problem. Recently, a
setup has been proposed in Ref. (Khandekar and Jacob,
2019a) which might be able to access it in the vicinity of
a magneto-optical planar sample.

6. Hall effect for thermal radiation

The asymmetry in the exchanged heat flux in many-
body configurations observed in global equilibrium, i.e.
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FIG. 41 Heat transfer spectra in a many-body system con-
sisting of six InSb nanospheres placed at the vertices of a
regular hexagon on x-y plane without (reciprocal) and with
(non-reciprocal) an externally applied magnetic field in the
z-direction. From (Zhu and Fan, 2016; Zhu et al., 2018)

the persistent heat current, has directly measurable con-
sequences when driving the system out of global equilib-
rium. An astonishing consequence is the Righi-Leduc or
Hall-effect for thermal radiation (Ben-Abdallah, 2016).
Classically, the Righi-Leduc effect (Leduc, 1887; Righi,
1887) is just the thermal analogue of the Hall-effect (Hall,
1879). When applying a temperature difference in a
metallic sample together with a magnetic field the heat
current by the electrons will be deflected due to the
Lorentz-force acting on the electrons such that a tem-
perature difference perpendicular to the initially applied
temperature difference will build up in steady state. Such
an effect has also been highlighted for other heat carriers
in solids like magnons and spinons (Fujimoto, 2009; Kat-
sura et al., 2010; Onose et al., 2010) or even phonons (In-
yushkin and Taldenkov, 2007; Strohm et al., 2005).

Now, when considering heat radiation exchanged be-
tween four nanoparticles in a C4 symmetric configura-
tion as in Fig. 42, and applying a temperature difference
∆T = TL − TR between particle L (left) and R (right),
then in the steady state of the system a temperature dif-

ference T
(st)
B − T (st)

T between particle B (bottom) and U
(up) can build up when using non-reciprocal InSb nano-
particles and applying a magnetic field perpendicular to
the particle plane. Hence, one observes a Righi-Leduc or
Hall effect for thermal radiation (Ben-Abdallah, 2016).
Again, the effect can be understood by the Lorentz force

FIG. 42 Photon thermal Hall effect: a four terminal junc-
tion with magneto-optical particles forming a square with C4

symmetry is submitted to an external magnetic field B in the
direction orthogonal particle plane. When a temperature gra-
dient ∆T = TL − TR is applied between the particles L and
R, a Hall flux transfers heat transversally between particles
B and T , thus bending the overall flux (red arrow) towards
the top or the bottom. In this case the heat Pi→j and Pj→i

exchanged between two particles i and j is not symmetric.

acting on the electrons in the nanoparticles. However,
here the electrons do not serve as the heat carriers but in-
troduce a circular heat flux leading to an asymmetric heat
flow and finally to the Righi-Leduc effect. Its magnitude
and directionality can be measured by the relative Hall
temperature difference or Righi-Leduc-like coefficient

RT =
T

(st)
B − T (st)

T

TL − TR
, (134)

which is shown in Fig. 43. Written in terms of thermal
conductances, this coefficient reads (Ben-Abdallah, 2016)

RT =
G31G42 −G41G32∑

j 6=3

G3j

∑
j 6=4

G4j −G34G43
. (135)

It can be seen that depending on the magnitude of the
magnetic field the effect will change its directionality and
there is a maximum for a magnetic field amplitude of
about 0.5 T for the considered configuration.The effect
is not very strong and high field amplitudes are needed
to have a maximum effect. However it highly depends
on the configuration and material parameters (Ott et al.,
2019b) and therefore its magnitude can certainly be opti-
mized by changing the spatial distribution of particles or
their physical properties. To date an experimental proof
of photon thermal Hall effect remains a challenging prob-
lem. However a direct measurement of the Hall tempera-
ture difference with measurements of electrical resistance
variations with a very high accuracy (St-Gelais et al.,
2014) in magneto-optical nanowires networks seems fea-
sible.

Beside the “normal” thermal Hall effect, anomalous ef-
fects also called anomalous thermal Hall effects (Ferreiros
et al., 2017; Huang et al., 2020) thermal analog of anoma-
lous Hall effect (Karplus and Luttinger, 1954; Nagaosa
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FIG. 43 Magnetic field strength dependence of the Righi-
Leduc-like coefficient defined in Eq. (134) for four spher-
ical InSb nanoparticles with a radius of 100nm in a C4-
symmetric configuration as depicted in Fig. 42 choosing an
interparticle distance of opposite particles of da = 500 nm
and da = 700 nm. From (Ott et al., 2019b).

et al., 2010) have also been described for the heat trans-
port with electron or phonons in ferromagnetic materials
and in semimetals. Very recently a similar effect in Weyl
semi-metal nanoparticles networks for thermal photons
has been predicted (Ott et al., 2020). Since the Weyl
semi-metals can exhibit a strong nonreciprocal response
in the infrared, this effect allows for a directional control
of heat flux by simply locally tuning the magnitude of
temperature field without changing the direction of tem-
perature gradient.

7. Heat flux rectification with non-reciprocal surface waves

For most of the non-reciprocal effects discussed so far
the environment does not play a decisive role. Now, in-
stead of using only the intrinsical non-reciprocal prop-
erties of the nanoparticles to achieve a directional heat
flux, also the non-reciprocity of the environment can be
exploited as first shown in (Ott et al., 2019a). As we
have seen in Sec. III.C.3 before, the heat flux between
two nanoparticles or more generally between two objects
brought in close vicinity to an interface of a sample can be
enhanced by transporting the heat via the surface modes
of the interface (Asheichyk et al., 2017; Dong et al., 2018;
He et al., 2019b; Messina et al., 2018; Sääskilahti et al.,
2014; Zhang et al., 2019a). If the material properties of
the planar sample are non-reciprocal then the presence of
a magnetic field will affect the surface modes (Chiu and
Quinn, 1972).

To be more specific, within the Voigt configuration
as in Fig. 44(a) and (b) the dispersion relation for the
surface modes at the interface of the substrate travel-
ing to the right and left will be different (Chiu and
Quinn, 1972). Similar to the localized mode inside an
InSb nanoparticle the degeneracy of the surface modes
for kx > 0 and kx < 0 is lifted and there is a split-
ting of the surface mode resonance frequency (Chiu and
Quinn, 1972). Since the spin associated with the surface

FIG. 44 (a) Sketch of the diode in forward direction. Two
InSb nanoparticles above an InSb substrate. The left particle
is heated with respect to the other particle and the environ-
ment. (b) Sketch of the diode in backward direction. (c)
Normalized mean spectral in-plane Poynting vector and its
amplitude (Jm−2, colorbar) for the m = +1 particle reso-
nance for the diode in forward direction. (d) as in (c) but for
the backward case and for the m = −1 particle resonance.
See also (Ott and Biehs, 2020).

modes (Bliokh and Nori, 2012) shows a spin momentum
locking (Mechelen and Jacob, 2016), meaning that the
waves with kx > 0 and kx < 0 have a different spin
direction, the splitting can again be understood as a Zee-
man splitting (Khandekar and Jacob, 2019a; Mechelen
and Jacob, 2016).

Now, considering the situation in Fig. 44(a) and (b) the
thermally excited localized modes of the hot nanoparti-
cle can directly couple to the localized modes of the cold
nanoparticle leading to a direct heat transfer between
the particles. The thermally-excited localized modes of
the hot particle can couple to the surface modes of the
substrate, travel along the interface of the substrate and
then couple to the localized modes of the cold nanopar-
ticle so that in this case the heat is transferred between
the two nanoparticles via the surface modes. Due to the
non-reciprocity of the substrate the heat flow P2 in the
forward direction in Fig. 44(a) and the heat flow P1 in
the backward direction in Fig. 44(b) will be different,
leading to a rectification effect (Ott et al., 2019a). A de-
tailed analysis shows (Ott and Biehs, 2020) that there
is a spin-selective coupling so that the localized modes
couple preferably to the surface modes with the spin in
the same direction. For example, the m = −1 (m = +1)
resonance couples preferably to the surface modes with
kx > 0 (kx < 0) providing the main heat flux channel
in forward (backward) direction as shown in Fig. 44(c)
(Fig. 44(d)). This can be also understood by a match-
ing of the circularity of the particle resonances and the
directionality of the interface resonances. The resulting
rectification coefficient

η =
P1 − P2

P1
(136)

shown in Fig. 45 can be rather high even for relatively
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FIG. 45 Rectification coefficient from Eq. (136) for two InSb
nanoparticles with 100 nm radius in 500 nm distance above
an InSb substrate as sketched in Fig. 44 as a function of the
interparticle distance d for different magnetic field amplitudes.
See also (Ott and Biehs, 2020; Ott et al., 2019a).

small magnetic fields. It should be kept in mind that
when bringing the nanoparticles close to a substrate most
of the heat will go to the substrate rather than to the
other nanoparticle. Nonetheless, the rectification effect
can result in a measurable heating of the cold nanopar-
ticle (Ott and Biehs, 2020).

IV. OUTLOOK AND OPEN QUESTIONS

While the heat transport mechanisms mediated by
thermal photons in 1D and 3D systems have been inten-
sively studied during the last decade they remain today
unknown in 2D systems. Can we observe a diverging ra-
diative conductivity with respect to system size as has
already been predicted for the phononic conductivity in
2D anharmonic lattices? To answer this question and
also identify different heat transport regimes in these sys-
tems, the scaling laws of radiative thermal conductance
must be analyzed. Another fundamental problem is the
crossover from 1D to 2D and from 3D to 2D systems.
The spatial confinement of evanescent photons in these
systems should play a key role in those transitions.

So far, dense many-body systems and effects like weak
and strong localization for thermal radiation remain
largely unexplored. In these strongly correlated systems,
heat is typically carried through multiple connected chan-
nels associated with different heat carriers like electrons,
phonons, and photons, which raises the question: under
which conditions can one or more of these heat carries
dominate heat transport? As hilighted in the introduc-
tion of this review, progress in unifying various transport
mechanisms is beginning to be made, yet a complete the-
ory capable of describing multichannel heat exchange in
large many-body systems remains a challenge for under-
standing possible transport effects associated with cou-
pling across such different channels.

As the number of bodies in interaction becomes large,

the general formalism described in this review becomes
numerically prohibitive. This is a serious issue to investi-
gate heat transport in many-body systems in presence of
long range interactions. A continuous description of heat
transport in these systems could make the study of these
systems feasible and it could in the same time be a pow-
erful tool to study the NFRHT in mesoscopic physics or
to make calculations of NFRHT between objects of arbi-
trary shape. Using the Chapman-Kolmogorov equation
for the local temperature field, a Fokker-Planck equation
can be derived and written in the hydrodynamic limit
as an advection-diffusion equation which depends on di-
rectly measurable macroscopic quantities like the effec-
tive diffusion coefficient and which could be easily solved
with standard numerical methods.

When it comes to recent exploration of the spin and
angular momentum of thermally fluctuating fields, nearly
all investigations have focused on single particles or semi-
infinite materials. However, a corresponding general N-
body theory should be straight forwardly derived using
the general framework presented in this review. This ex-
tension could pave the way to studies of thermal-field spin
and angular momentum transport in atomic and molec-
ular systems. Since magneto-optical effects based on the
use of magneto-optical materials or Weyl semi-metals re-
ported thus far have been relatively small, further studies
aimed at enhancing these effects should be considered in
the future, for instance by exploiting ferromagnetic or
more strongly magnetic materials.

Non-Hermitian physics has attracted tremendeous in-
terest during the last decade from a variety of fields
in classical physics due to their mathematical equiva-
lence with the Schrodinger equation, thus allowing one
to mimic non-Hermitian wave physics with classical sys-
tems. Bipartite plasmonic and phonon-polaritonic many-
body systems provide a natural platform to investigate
such physics. Among their many peculiarities, one might
point to the existence of original topological states that
give rise to Berry-like phases and which may lead to the
development of new materials such as topological insula-
tors. These states and their consequences for the thermal
management (active control of heat flux, heat pumping,
heat flux focusing) remain largely unexplored in many-
body systems.

Out-of equilibrium thermodynamics of many-body sys-
tems and its connections with information theory is also
a future field of investigation. In systems with long-range
interactions, the classical thermodynamic theory fails to
describe the evolution of state variables since they can-
not be sequenced in small independent parts. Normally,
to calculate thermodynamic properties it is necessary to
determine the microscopic states of a given system. How-
ever a phenomenological approach analogous to Landau’s
transition theory may be employed to study the thermo-
dynamic behavior of these systems by considering macro-
scopic quantities. Hence, mechanisms such as phase tran-
sitions in magneto-optical systems could be investigated
by analyzing the dependence of quantities like the ther-
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mal conductance or the entropy flux with order parame-
ters such as the magnitude or orientation of a magnetic
field.

The peculiarities of heat transfer in many-body sys-
tems has given rise to numerous development in the
emerging field of thermotronics to manipulate heat flux
in analogy with electric currents in electric circuits. This
radical change of paradigm opens the way to a new gener-
ation of devices for active thermal management, innova-
tive wireless sensors using heat as their primary source of
energy, and to âĂIJlow-electricityâĂİ technologies capa-
ble of information processing. In these devices, infrared
emission coming from various systems (people, machines,

electric devicesâĂ ↪e) may for instance be captured by ac-
tive thermal components to launch a sequence of logical
operations in order to either control the heat propaga-
tion (modulate, amplify, split), trigger specific actions
(opto-thermo-mechanical coupling with MEMS, thermal

energy storageâĂ ↪e) or even process information. Hence
the development of thermal logical circuits such as neu-
ral networks could open the door to a low-power and
even zero-power communication technology for the In-
ternet of Things, allowing machine-to-machine commu-
nication with heat. The design of thermal metamaterials
such as thermal insulators, topological insulators or su-
perdiffusive solids is also a promising challenge.

Finally, building experimental platforms based on
multi-tip SThM setups, suspended membranes or even
networks of electromechanical systems interacting at the
nanometre-scale is one of the most important challenges
for the next few years to measure the NFRHT in many-
body systems, prove all already predicted effects and de-
velop operational devices. In order to be able to have an
access to conductance variations of few nWK−1, high-
sensitive heat flux sensors must be developed. This
will require fabrication of thermometers working at the
nanoscale and able to measure temperatures with an ac-
curacy < 10 mK.
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A. Garćıa-Mart́ın, 2018, ACS Photonics 5, 705.
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Biehs, 2008, Appl. Phys. Lett. 93, 193109.

Klimchitskaya, G. L., and V. M. Mostepanenko, 2015, Phys.
Rev. B 91, 045412.

Kloppstech, K., N. Könne, S.-A. Biehs, A. W. Rodriguez,
L. Worbes, D. Hellmann, and A. Kittel, 2017, Nat. Com-
mun. 8, 14475.

Kollyukh, O. G., A. I. Liptuga, V. Morozhenko, and V. I.



51

Pipa, 2005, Phys. Rev. B 71, 073306.
Komiyama, S., 2019, Journal of Applied Physics 125, 010901.
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Latella, I., A. Pérez-Madrid, J. M. Rubi, S.-A. Biehs, and
P. Ben-Abdallah, 2015, Phys. Rev. Applied 4, 011001.

Latella, I., A. Prez-Madrid, L. Lapas, and J. Rubi, 2014, J.
Appl. Phys. 115, 124307.

Lau, W. T., J.-T. Shen, and S. Fan, 2009, Phys. Rev. B 80,
155135.

Lau, W. T., J.-T. Shen, G. . Veronis, S. Fan, and P. V. Braun,
2008, Appl. Phys. Lett. 92, 103106.

Leduc, M. A., 1887, J. Phys. 2e SÃl’rie 6, 378.
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