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Abstract—Monitoring the Covid19 pandemic is critical to design san-
itary policies. Recently, reliable estimates of the pandemic reproduction
number were obtained from a nonsmooth convex optimization procedure
designed to fit epidemiology requirements and to be robust to the
low quality of the data (outliers, pseudo-seasonalities, . . . ). Applied to
daily new infection counts made public by National Health Agencies
and centralized by Johns Hopkins University, robust estimates of the
reproduction number for 200+ countries are updated and published every
day. To further improve estimation procedures and also, and mostly,
increase their usability by epidemiologists, the present work exploits
the Bayesian paradigm and derives a new Monte Carlo method to
sample from a nonsmooth convex a posteriori distribution. This new
sampler stems from an original combination of the Langevin Monte Carlo
algorithm with Proximal operators. Its relevance and practical efficiency
to produce meaningful credibility intervals for the Covid19 reproduction
number are assessed from several indices quantifying the statistics of the
Monte Carlo chains, and making use of real daily new infection counts.

I. INTRODUCTION

Context. Monitoring the time evolution of the Covid19 pandemic
constitutes a critical stake to design counter measures. Pandemic
intensity is often assessed by the reproduction number, R, that
quantifies the number of second infections stemming from one same
primary infection (cf., e.g., [1]–[5]). The online and daily estimate of
R turned however extremely difficult during the Covid19 pandemic,
mostly because of issues most countries faced in collecting reliable
daily new infection counts yielding low-quality data (missing counts,
outliers, seasonalities, . . . ). Therefore, assessing the confidence that
can be granted to point estimates is a critical and difficult challenge,
motivating the present work.
Related works. While refined pandemic assessment can efficiently
be achieved when the pandemic has passed from elaborated compart-
mental models and Bayesian estimates (cf., e.g., [6], [7]), recently it
has been shown that within pandemic, reliable epidemic intensity
estimates can be obtained from nonsmooth convex optimization
procedures [8], [9]. The functional to minimize is built from the
epidemic propagation model proposed in [5], whose quality is to
focus on a unique parameter, the reproduction number R, while
preserving the key epidemic propagation feature, the so-called serial
interval function Φ, that quantifies the probability that symptoms
today are caused by infection in the past few days. With additional
temporal regularity and positivity contraints in the functional, the
procedure in [8], [9] delivers epidemiologically realistic estimates
that are robust to the low quality of the data. It does not however
provide assessment of credibility intervals (CI), an issue what we
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intend to address here.
Goals, contributions and outline. The goal of the present work is to
explore the potential of Langevin-type stochastic sampling schemes
to produce CI for the evolution of the Covid19 reproduction number
R. To that end, the pandemic model in [5] and the one in [8], [9]
are first recast into a Bayesian framework, with careful analysis and
writing of the corresponding a posteriori distribution (cf. Section II).
The core methodological contribution is detailed in Section III: The
Proximal-Gradient dual stochastic sampling scheme, refining the
classical Metropolis Adjusted Langevin Algorithm, is devised to
sample a generic class of a posteriori distributions, including the one
introduced in Section II. The originality of the proposed sampler is
to account for the difficulties stemming from the specificities of the
a posteriori distributions considered here.

To assess the relevance of the proposed sampler in producing CI
for R, and compare it against simpler Random Walk-type samplers,
indices quantifying the statistics of the sampled chains are defined
in Section IV. They are measured on real Covid19 data, consisting
of daily infection counts reported by the National Health Authorities
of countries around the world, collected and made available by the
Johns Hopkins University (cf. Section IV). The practical usability
of the sampling strategies and of the achieved CI is discussed both
from a technical and epidemiology surveillance perspectives, using
Covid19 data from several countries and different time periods.

II. REPRODUCTION NUMBER BAYESIAN MODEL

The pandemic model below elaborates on the one proposed in [5]
in order to account for the low quality of the data as detailed and
motivated in [9]. In this work, this model is recast into a Bayesian
framework. The statistical model associated with the T observations
Z = (Z1, . . . ,ZT )> ∈ NT , consisting of new daily infection counts,
is indexed by the unknown

θ := (R,O) = (R1, . . . ,RT ,O1, . . . ,OT ) ∈ (R+)T × RT

with Rt the reproduction number at time t and Ot the outliers
modeling the low quality of the data at time t . For any θ, the
distribution of Zt given the past Z1, . . . ,Zt−1 and initial values
(Z−τφ+1, · · · ,Z0) is a Poisson distribution with intensity

pt(θ) := Rt

τφ∑
u=1

ΦuZt−u + Ot , (1)

where the serial interval function (Φu)1≤u≤τφ accounts for epidemi-
ological mechanisms: It quantifies the random delays between the
onset of symptoms in a primary case and in secondary cases [5],



[6], [10]. (Φu)1≤u≤τφ is assumed known and following [11], [12],
it is classically modeled by a Gamma distribution truncated over
τφ = 26 days with mean and standard deviation of 6.6 and 3.5 days.
By convention, a Poisson distribution with null intensity is the Dirac
mass at zero. This implies that the negative log-likelihood of the
observations Z is given by (0 ln 0 = 0 by convention)

f(θ) :=

{
−
∑T
t=1 (Zt ln pt(θ)− pt(θ)) if θ ∈ D,

+∞ otherwise,
(2)

finite on the measurable set

D := {θ ∈ (R+)T × RT : pt(θ) > 0 for t s.t. Zt > 0}
∪ {θ ∈ (R+)T × RT : pt(θ) ≥ 0 for t s.t. Zt = 0} . (3)

Interpreting the regularity constraints in [9], the negative logarithm
of the a priori distribution of θ defined on (R+)T×RT is 1

g(θ) := λR‖D2R‖1 + λO‖O‖1 ; (4)

‖ · ‖1 denotes the L1-norm. D2 is the discrete-time second order
derivative (T − 2)× T matrix:

D2 :=
1√
6


1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
. . . . . .
0 . . . 1 −2 1

 , (5)

with normalized rows, and λR, λO are (fixed) positive regularization
hyperparameters, balancing the strengths of the different constraints
one against the others and against the likelihood. Under the a priori
distribution, R and O are independent and distributed resp. as a (non
stationary) Laplace AR(2) process and a Laplace distribution. Even
if the optima of the a priori distribution satisfy D2R = 0 and O = 0,
for samples (R,O) from the a priori distribution, neither D2R not
O are sparse.

Combining the likelihood (2) and the prior (4) leads to the a
posteriori density with respect to the Lebesgue measure:

π(θ) := exp (−f(θ)− g(θ))1D(θ) , (6)

where 1D is the {0, 1}-valued indicator function of D. Up to an
additive constant, the negative log-likelihood of a Poisson variable
Zt at θ is the Kullback-Leibler distance dKL(Zt|pt(θ)) between Zt
and pt(θ). The negative log-density − lnπ is the criterion minimized
in [9] for the reconstruction of θ. It is proved in [9], [13] that when∑τφ
u=1 ΦuZt−u is positive for at least two values t?, t??, a minimizer

of − lnπ exists and the set of the minimizers is included in a level
set {θ : f(θ) = f∗} of f (and thus, of g). The a priori distribution
implies that the R part of the optima of lnπ cannot vary too much
across successive days – so that epidemiologists can extract local
trends indicating whether the pandemic is increasing or decreasing.

III. NONSMOOTH LANGEVIN MONTE CARLO SAMPLERS

When the posterior distribution is known up to a normalizing
constant (as in Section II), estimation through the Bayesian paradigm
entails the use of numerical tools such as Markov Chain Monte
Carlo (MCMC) samplers designed to define an empirical distribution
approximating the posterior distribution. The computation of α-
credibility regions (see, e.g., [14, chapter 5]) or of Bayesian esti-
mators such as the posterior mean, the median or the Maximum A
Posteriori (MAP), follows from a Monte Carlo (MC) approximation.

1In the Bayesian setting, the distributions are often defined up to a
multiplicative constant. We adopt this convention here.

In this work, we propose original MCMC samplers targeting a
generic density π of the form (6) and satisfying A1-A2.
Assumptions on the target density π.

A1. f and g are finite on a measurable set D and f is continuously
differentiable on the interior of D ⊆ Rd.

A2. g is blockwise: for j ∈ {1, . . . , J}, there exist matrices Aj ∈
Rcj×dj , with cj ≤ dj , and proper, convex, lower semi-continuous
functions gj : Rcj → ]−∞,+∞] such that

∑J
j=1 dj = d and

∀θ := (θ1, . . . , θJ) ∈ Rd1 × · · · × RdJ , g(θ) =

J∑
j=1

gj(Ajθj) ,

where, for each j ∈ {1, . . . , J}, (i) the proximal operator2 of gj
possesses a closed-form expression3, (ii) Aj is full rank, so that it can
be augmented into an invertible matrix Aj ∈ Rdj×dj , (iii) gj extends
into ḡj : Rdj → ]−∞,+∞] such that ∀θj , gj(Ajθj) = ḡj(Ajθj).

A1 requires the differentiability of f but not the Lipschitz property
for its gradient; A2 does not assume that the proximal operator of g
has a closed-form expression.
Example. For the target density π defined in Section II, both A1
and A2 are valid. We have d = 2T , J = 2, θ1 = R, θ2 = O,
g1 = λR‖·‖1, g2 = λO‖·‖1, A1 = D2 (see (5)), and A2 = I, the
identity matrix. A1 can be augmented in many different ways, among
which:

D2 :=

 1 0 0 · · · 0

−2/
√

5 1/
√

5 0 · · · 0
D2

 . (7)

Another possibility is Do, obtained from D2 by making its first two
rows orthogonal, and orthogonal to the rows of D2. Then, ḡ1 =
λR‖(·)3:T ‖1, computed only on components 3 to T , and ḡ2 = g2.
Metropolis Adjusted Langevin Algorithm (MALA) sampler and
its limitations. If − lnπ = f (i.e., g = 0) is a smooth function
on D, a popular MCMC sampler which takes benefit of a first
order knowledge of π, relies on Langevin dynamics, stemming from
tempered Langevin diffusion [16]. Given a d × d matrix Γ and a
positive step size γ chosen by the user, at each iteration #(n + 1)
starting from the current point θn, a jump is proposed to the point

θn+ 1
2 := θn − γΓΓ>∇f(θn) +

√
2γΓ ξn+1 , (8)

where ξn+1 ∼ Nd(0, I) is a standard Rd-valued Gaussian distri-
bution. A> denotes the transpose of the matrix A. This proposal
is accepted (θn+1 = θn+ 1

2 ) or rejected (θn+1 = θn) through
a Metropolis mechanism, and this yields the Metropolis Adjusted
Langevin Algorithm (MALA, [17]). The idea of MALA methods is
to drift the proposed moves towards areas of high probability under
π, by using the information provided by ∇ lnπ.
Proximal-Gradient dual sampler (PGdual). In the present work,
− lnπ is not smooth (see A2): this calls for the use of Proximal
Langevin-based MC methods. The literature provides examples of
MC samplers combining a Langevin approach and a Proximal ap-
proach (see, e.g., [18]–[25]) but none of these algorithms directly
apply to the framework A 1-A 2. Indeed, the density π may be
positive for non-sparse (D2R,O). Further, A2 assumes that gj has

2proxg(y) := argminx∈R` (g(x) + ‖x− y‖2/2) is well-defined for any
proper, convex, lower semi-continuous function g : R` →]−∞,+∞]. ‖ · ‖
denotes the Euclidean norm in R`.

3See [15] to have an exhaustive list of known proximal operators.



an explicit proximal operator for any j ∈ {1, . . . , J} which does not
imply that this holds true for g, notably when g involves a linear
operator, e.g., in (4). Finally, we want to promote a method which
takes benefit of both the blockwise separable expression of g and
the full rank property of matrices Aj by computing the proximal
operator separately on each range space of Āj . These limitations led
us to propose the following original and general Proximal-Gradient
dual (PGdual) Algorithm (sketched in Algorithm 1), which is among
the Metropolis-Hastings samplers with Gaussian proposal; the main
originality is the definition of the drift term. At iteration #(n+ 1),
a candidate is proposed, whose block #j is

θ
n+ 1

2
j := µj(θ

n) +
√

2γjΓj ξ
n+1
j , ∀ j ∈ {1, . . . , J} , (9)

where ξn+1
j ∼ Ndj (0, I) and

µj(θ) := A
−1
j proxγj ḡj

(
Ajθj − γjA

−>
j ∇jf(θ)

)
; (10)

∇j denotes the gradient with respect to the block #j and A−> is
the inverse of A>. µj(θn) performs a proximal-gradient iteration
associated to a part of the original composite function in the dual
space, consisting in the range of the matrix Aj ; then sends each block
#j back in the direct space through the mapping Ā−1

j . Formally,
− lnπ transferred in the dual space reads

(θ̃1, . . . , θ̃J) 7→ f(Ā−1
1 θ̃1, . . . , Ā

−1
J θ̃J) +

J∑
j=1

ḡj(θ̃j).

Introducing qj(θ, θ′j) the Gaussian kernel on Rdj centered at µj(θ),
with covariance matrix 2γjΓjΓ

>
j and evaluated at θ′j , the acceptance-

rejection (AR) step defined Line 5 makes Algorithm 1 to have π as
unique invariant distribution.

There is a parallel between the preconditioned gradient appearing
in the drift term (10) of the proposed point (9), and the scaled
Langevin dynamics (8). For this reason, we advocate Γj = Ā−1

j

for any j, whatever the proximal operator is.
Our recent work [13] shows how to apply PGdual in a more

general setting than A 2, when there are many penalty terms for
each block #j. It also discusses how PGdual is related to other
proximal-gradient based extensions of the MALA sampler.
Example (to follow). For π defined in Section II, the µj’s are

µ1(θ) := D
−1

proxλR‖(·)3:T ‖1

(
DR− γ1D

−>∇1f(θ)
)
, (11)

µ2(θ) := proxλO‖·‖1 (O− γ2∇2f(θ)) , (12)

where D is a (T×T ) invertible augmentation of D2, see, e.g., Eq (7).

IV. CREDIBILITY INTERVALS FROM COVID19 DATA

Covid19 data. The data used here are part of a large data set available
from the Johns Hopkins University4, consisting of daily new infection
counts for around 200 countries, by National Health Authorities. The
focus is here on the evolution of Rt on a realistic time period of
T = 35 days (5 weeks) of pandemic. To account for the time support
of the serial function Φ, we use τφ = 26 additional observations for
the initialization Z−τφ+1, · · · ,Z0. Counts from January, 1st 2022 to
February, 4th 2022 for Italy are used for the performance assessments
(see Figure 1, Figure 2). However, tools and methods proposed here
have been applied to numerous countries for various time periods of
interest (see, e.g., Figure 3).
MCMC samplers. The proposal mechanisms of PGdual are

Rn+ 1
2 = µ1(θn)+

√
2γ1 D

−1
ξn+1
1 ,On+ 1

2 = µ2(θn)+
√

2γ2 ξ
n+1
2

4 https://coronavirus.jhu.edu/

Algorithm 1: Proximal-Gradient dual (PGdual)

Data: dj × dj matrices Γj , γj > 0, Nmax ∈ N?, θ0 ∈ D
Result: A D-valued sequence {θn, n ∈ 0, . . . , Nmax}

1 for n = 0, . . . , Nmax − 1 do
2 for j = 1, . . . , J do
3 Sample ξn+1

j ∼ Ndj (0, I);

4 Set θ
n+ 1

2
j = µj(θ

n) +
√

2γjΓj ξ
n+1
j ;

5 Set θn+1 = θn+ 1
2 with probability

1 ∧ π(θn+ 1
2 )

π(θn)

J∏
j=1

qj(θ
n+ 1

2 , θnj )

qj(θn, θ
n+ 1

2
j )

and θn+1 = θn otherwise.

where µ1, µ2 are defined by (11), (12). Two versions of PGdual are
compared: PGdual Invert when D = D2, and PGdual Ortho
when D = Do (see Section III for the definition of D2 and Do).
Further, PGdual is compared to the Random Walk (RW) sampler,
whose proposal mechanism is

Rn+ 1
2 = Rn +

√
2γ1 ξ

n+1
1 , On+ 1

2 = On +
√

2γ2 ξ
n+1
2 .

We also explore the benefit of covariance matrices for the R-part of
the Random Walk chains: RW Invert and RW Ortho correspond
to Rn+ 1

2 = Rn +
√

2γ1 D
−1
ξn+1
1 resp. in the case D = D2 and

D = Do; the proposal mechanism for the O-part is as in RW. These
comparisons will outline the role of the drift terms µj , and of the
covariance matrix of the Gaussian proposition.
Settings. All chains are run for Nmax = 107 iterations. Except in
Figure 1[left], displayed quantities are computed from the Markov
path after discarding its first 30% points corresponding to a burn in
period. All the curves displayed on Figure 1 and Figure 2 are mean
values over 15 independent runs: they start from different points θ0

obtained by Gaussian perturbations of the intuitive but poor (in terms
of value of π) value Rinit := (1, . . . , 1)> and Oinit := (0, . . . , 0)>.
The step size γ1 is adapted during the burn in period in order to
target a mean AR ratio equal to 0.25, and then it is frozen. For fair
comparisons among methods, we use here the same target AR ratio
which is known to be optimal for Random Walk algorithms (see, e.g.,
[26]; similar results for nonsmooth Langevin samplers do not exist).
We set (λR, λO) = (3.5σZ

√
6/4, 0.05) as in [9], where σZ is the

standard deviation of the data set Z. In addition, γ2 = γ1 for RW and
for the other algorithms, γ2 = γ1(λR/λO)2.
MCMC performance. Figure 1[top] displays the evolution of the
normalized distance to the MAP R̂ along iterations: n 7→ ‖Rn −
R̂‖/‖R̂‖ for the five MCMC samplers. Figure 1[bottom] displays
the evolution of the normalized log-density along iterations n 7→
(lnπ(θn) − max lnπ)/(lnπ(θ0) − max lnπ) for the five MCMC
samplers. R̂ is computed by the method in [9]. Figure 2 compares
the samplers through two criteria related to the convergence: the lag-
k auto-correlation function (ACF) of a Markov chain with initial
distribution π - it is related to the effective sample size of a Markov
chain (see [27]); and the Gelman-Rubin statistic (GR, [28]). The
ACF plots are obtained as mean absolute values of the 2T real
valued ACF of (Rt,Ot)1≤t≤T . GR can be read as a ANOVA-type
criterion, reaching an optimal value of one when the different paths
are homogeneous.
These plots show that: (i) RW has a poor behavior compared to
the other samplers, thus illustrating the role of the drift and the

https://coronavirus.jhu.edu/
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Fig. 1. MCMC sampler performance. RW in light blue, RW Invert in
blue and RW Ortho in dark blue; PGdual Invert in pink and PGdual
Ortho in red. During the burn in period [left] and after [right], evolution of
the distance to the MAP along iterations [top] and to max lnπ along iterations
[bottom].
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Fig. 2. MCMC sampler performance. RW in light blue, RW Invert in
blue and RW Ortho in dark blue; PGdual Invert in pink and PGdual
Ortho in red. [left] Mean absolute value of the ACF vs the first 105 lags.
[right] The GR statistic vs iterations.

covariance matrix D
−1

D
−>

in the efficiency of the samplers: RW fails
to converge before Nmax iterations contrary to PGdual Ortho.
Indeed, from the results on Figure 1 and Figure 2: the distance to
R̂ and the evolution of lnπ along the path show that RW moves
slowly to high density regions thus being not efficient at all in the
exploration of the target distribution π; in addition, its ACF decreases
to 0 very slowly and there is a strong heterogeneity between the
15 runs of this method (see the GR statistic). (ii) The behavior of
the Random Walk based methods is improved thanks to a genuine
choice of the covariance matrix: RW Invert and - with a stronger
evidence - RW Ortho take benefit of correlated Gaussian noises
for the R-part of the chain. (iii) For the drift part of the proposal
mechanism, there is a gain in using first order information on lnπ:
if RW Invert and PGdual Invert have a similar behavior on
Figure 1 and Figure 2[left] with a slight advantage for PGdual
Invert, PGdual Ortho is definitely better than RW Ortho and
than all the other methods. When the adapted step size is small
enough, it has the highest speed of convergence to the optimum
of lnπ; at the end of the burn in period, it reached high density
regions; it provides the faster decaying rate of the ACF; its GR
statistic converges rapidly to the optimal value.
Credibility intervals. Let us further illustrate the relevance of CI-
based estimations for R and O. For practical purposes, the CIs for O
are translated into CIs for the denoised counts Z(D) by subtraction
to the original counts Z: intuitively, Z(D) = Z−O. CIs are reported
for PGdual Ortho only - since shown above to yield the best
performance - for several countries and various time periods of
interest. The 95% CIs are obtained from the empirical quantiles 0.025
and 0.975 of the Markov paths. In Figure 3, for each country, the
top plot shows the daily counts Z (black) with the CI estimates of

Fig. 3. Credibility intervals for different countries and different time
periods. For each country, observed counts Z (black solid lines) and 95%
credibility interval denoised counts Z(D) (red pipe) [top] ; 95% credibility
interval estimates for R [Bottom].

the denoised counts Z(D) (red), while the bottom plot represents the
CI estimates for R.

For France, the selected time period was chosen when the 4th
pandemic wave started to severely strike the country (mid-june 2021)
until reaching R ' 2 early July. Figure 3 shows that CIs excluded
“R < 1” before the end of June. Early July, the French Health
Authorities made the announcement of a mandatory “sanitary pass”
for any social activities after Aug. 9th. An immediate and massive
vaccination phase started in the French population, which yields the
plateau of the 4th wave, clearly observed in Figure 3 to be reached
in the 3rd week of July. CIs further validate a clear decay of R after
July 20th, that is, two weeks before the counts of infections actually
started to decrease, thus showing the relevance and interest of the CI
estimates for R. For the Philippines and South Africa, the periods of
late April 2021 and late August 2021 correspond to massive strikes of
the pandemic. For both countries, Figure 3 confirms that the changes
of slopes in R announce a few weeks in advance the maximum of
the wave and the start of the decay in new infections. For Greece, the
CIs enable to detect with high confidence that “R > 1” since January
27th 2022, which was far from being obvious by directly observing
the infection counts.

Estimates and credibility intervals are updated on a regular ba-
sis and made available for the current period and for France, at
perso.math.univ-toulouse.fr/gfort/project/opsimore-2/.

V. CONCLUSIONS AND FUTURE WORKS

The present work constitutes a significant step toward the actual
use of the tools envisaged in [8], [9] to monitor the reproduction
number. Introducing a Bayesian formalism permits to produce reliable
credibility intervals for the reproduction number, as well as Bayesian
estimators. It relies on an original Proximal-based Langevin MCMC
algorithm designed to handle a convex but nonsmooth a posteriori
potential − lnπ, whose nonsmooth part consists of the sum of several
terms and which is able to account for the epidemiological model.
Satisfactory agreements between credibility intervals and point esti-
mates (MAP, posterior mean, . . . ), obtained using real Covid19 data,
emphasize the reliability of this novel MCMC sampler. Comparisons
against other MCMC strategies have further been explored in [29],
[30]. Future investigations include the automated data-driven tuning
of the design parameters (e.g., step sizes γi), and the theoretical
derivation of PGdual convergence rates which are, to the best of

https://perso.math.univ-toulouse.fr/gfort/project/opsimore-2/


our knowledge, an open question for many MALA-based samplers
designed for nonsmooth target distributions. Performance assessment
on realistic synthetic Covid data are under investigation.
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