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ABSTRACT
Monitoring the Covid19 pandemic is critical to design sanitary poli-
cies. Recently, reliable estimates of the pandemic reproduction num-
ber were obtained from a nonsmooth convex optimization procedure
designed to fit epidemiology requirements and to be robust to the
low quality of the data (outliers, pseudo-seasonalities, . . . ). Applied
to daily new infection counts made public by National Health Agen-
cies and centralized by Johns Hopkins University, robust estimates
of the reproduction number for 200+ countries are updated and pub-
lished every day. To further improve estimation procedures and also,
and mostly, increase their usability by epidemiologists, the present
work exploits the Bayesian paradigm and derives a new Monte Carlo
method to sample from a nonsmooth convex a posteriori distribu-
tion. This new sampler stems from an original combination of the
Langevin Monte Carlo algorithm with Proximal operators. Its rele-
vance and practical efficiency to produce meaningful credibility in-
tervals for the Covid19 reproduction number are assessed from sev-
eral indices quantifying the statistics of the Monte Carlo chains, and
making use of real daily new infection counts.

Index Terms— Nonsmooth Langevin Monte Carlo sampler,
Bayesian credibility interval, reproduction number, Covid19.

1. INTRODUCTION

Context. Monitoring the time evolution of the Covid19 pandemic
constitutes a critical stake to design counter measures. Pandemic
intensity is often assessed by the reproduction number, R, that quan-
tifies the number of second infections stemming from one same pri-
mary infection (cf., e.g., [1, 2, 3, 4, 5]). The online and daily estimate
of R turned however extremely difficult during the Covid19 pan-
demic, mostly because of issues most countries faced in collecting
reliable daily new infection counts yielding low-quality data (miss-
ing counts, outliers, seasonalities, . . . ). Therefore, assessing the con-
fidence that can be granted to point estimates is a critical and difficult
challenge, motivating the present work.
Related works. While refined pandemic assessment can efficiently
be achieved when the pandemic has passed from elaborated com-
partmental models and Bayesian estimates (cf., e.g., [6, 7]), recently
it has been shown that within pandemic, reliable epidemic intensity
estimates can be obtained from nonsmooth convex optimization pro-
cedures [8, 9]. The functional to minimize is built from the epidemic
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propagation model proposed in [5], whose quality is to focus on a
unique parameter, the reproduction number R, while preserving the
key epidemic propagation feature, the so-called serial interval func-
tion Φ(t), that quantifies the probability that symptoms today are
caused by infection in the past few days. With additional temporal
regularity and positivity constrained in the functional, the procedure
in [8, 9] delivers epidemiologically realistic estimates that are robust
to the low quality of the data. It does not however provide assess-
ment of credibility intervals, an issue what we intend to address here.
Goals, contributions and outline. The goal of the present work is to
explore the potential of Langevin-type stochastic sampling schemes
to produce credibility intervals for the evolution of the Covid19 re-
production number R. To that end, the pandemic model in [5] and
the one in [8, 9] are first recast into a Bayesian framework, with
careful analysis and writing of the corresponding a posteriori dis-
tribution (cf. Section 2). The core methodological contribution is
detailed in Section 3: The Proximal-Gradient dual stochastic sam-
pling scheme, refining the classical Metropolis Adjusted Langevin
Algorithm, is devised to sample a generic class of a posteriori distri-
butions, including the one introduced in Section 2. The originality of
the proposed sampler is to account for the difficulties stemming from
the specificities of the a posteriori distributions considered here.

To assess the relevance of the proposed samplers in producing
credibility intervals for R, and to compare it against simpler Random
Walk-type samplers, indices quantifying the statistics of the sampled
chains are defined in Section 4. They are measured on real Covid19
data, consisting of daily infection counts reported by the National
Health Authorities of countries around the world and collected and
made available by the Johns Hopkins University (cf. Section 4 for
a description). The practical usability of the sampling strategies and
of the achieved credibility intervals is discussed both from a techni-
cal and epidemiology surveillance perspectives, using Covid19 data
from several countries and different time periods.

2. REPRODUCTION NUMBER BAYESIAN MODEL

The pandemic model used in this paper elaborates on the one pro-
posed in [5] in order to account for the low quality of the data as
fully detailed and motivated in [9]. In this work, this model is recast
into a Bayesian framework. The statistical model associated with the
vector of T observations Z = (Z1, . . . ,ZT )> ∈ NT , consisting of
new daily infection counts, is indexed by the unknown

θ := (R,O) = (R1, . . . ,RT ,O1, . . . ,OT ) ∈ (R+)T × RT



with Rt the reproduction number at time t and Ot the outliers mod-
eling the low quality of the data at time t (irrelevant/missing counts,
mis-reported counts, pseudo-seasonal effects, . . . ). For any θ, the
conditional distribution of Zt given the past Z1, . . . ,Zt−1 and initial
values (Z−τφ+1, · · · ,Z0) is a Poisson distribution with intensity

pt(θ) := Rt

τφ∑
u=1

ΦuZt−u + Ot , (1)

where the serial interval function (Φu)1≤u≤τφ accounts for epi-
demiological mechanisms: It quantifies the random delays between
the onset of symptoms in a primary case and in secondary cases
[5, 10, 6]. (Φu)1≤u≤τφ is assumed known and following [11, 12],
it is classically modeled by a Gamma distribution truncated over
τφ = 26 days with mean and standard deviation of 6.6 and 3.5 days.
By convention, a Poisson distribution with null intensity is the Dirac
mass at zero. This implies that the negative log-likelihood of the
observations Z is given by (0 ln 0 = 0 by convention)

f(θ) :=

{
−
∑T
t=1 (Zt ln pt(θ)− pt(θ)) if θ ∈ D,

+∞ otherwise,
(2)

defined on the measurable set

D := {θ ∈ (R+)T × RT : pt(θ) > 0 for t s.t. Zt > 0}

∪ {θ ∈ (R+)T × RT : pt(θ) ≥ 0 for t s.t. Zt = 0} . (3)

Interpreting the regularity constraints in [9], the negative logarithm
of the a priori distribution of θ is defined on (R+)T × RT by 1

g(θ) := λR‖D2R‖1 + λO‖O‖1 ; (4)

‖ · ‖1 denotes the L1-norm. D2 is the discrete-time second order
derivative (T − 2)× T matrix:

D2 :=
1√
6

 1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
. . . . . .
0 . . . 1 −2 1

 , (5)

with normalized rows, and λR, λO are (fixed) positive regularization
hyperparameters, balancing the strengths of the different constraints
one against the others and against the likelihood. Under the a priori
distribution, R and O are independent and distributed resp. as a
(non stationary) Laplace AR(2) process and a Laplace distribution.
Even if the optima of the a priori distribution satisfy D2R = 0 and
O = 0, for samples (R,O) from the a priori distribution, neither
D2R not O are sparse.

Combining the likelihood (2) and the prior (4) leads to the a
posteriori density with respect to the Lebesgue measure:

π(θ) := exp (−f(θ)− g(θ))1D(θ) , (6)

where 1D is the {0, 1}-valued indicator function of D. Up to an ad-
ditive constant, the negative log-likelihood of a Poisson variable Zt
at θ is the Kullback-Leibler distance dKL(Zt|pt(θ)) between Zt and
pt(θ). The negative log-density − lnπ is the criterion minimized
in [9] for the reconstruction of θ. It is proved in [9, 13] that when∑τφ
u=1 ΦuZt−u is positive for at least two values t?, t??, a minimizer

of − lnπ exists and the set of the minimizers is included in a level
set {θ : f(θ) = f∗} of f (and thus, of g). The a priori distribution
implies that the R part of the optima of lnπ cannot vary too much
across successive days – so that epidemiologists can extract local
trends indicating whether the pandemic is increasing or decreasing.

1In the Bayesian setting, the distributions are often defined up to a multi-
plicative constant. We adopt this convention here.

3. NONSMOOTH LANGEVIN MONTE CARLO SAMPLERS

When the posterior distribution is known up to a normalizing con-
stant (as in Section 2), estimation through the Bayesian paradigm
entails the use of numerical tools such as Markov Chain Monte
Carlo (MCMC) samplers designed to define an empirical distribu-
tion approximating the posterior distribution. The computation of
α-credibility regions (see, e.g., [14, chapter 5]) or of Bayesian esti-
mators such as the posterior mean, the median or the Maximum A
Posteriori (MAP), follows from a Monte Carlo (MC) approximation.

In this work, we propose original MCMC samplers targeting a
generic density π of the form (6) and satisfying A1-A2.
Assumptions on the target density π.
A1. f and g are finite on a measurable set D and f is continuously
differentiable on the interior of D ⊆ Rd.
A2. g is blockwise: for j ∈ {1, . . . , J}, there exist matrices Aj ∈
Rcj×dj , with cj ≤ dj , and proper, convex, lower semi-continuous
functions gj : Rcj → ]−∞,+∞] such that

∑J
j=1 dj = d and

∀θ := (θ1, . . . , θJ) ∈ Rd1 × · · · × RdJ , g(θ) =

J∑
j=1

gj(Ajθj) ,

where, for each j ∈ {1, . . . , J}, (i) the proximal operator2 of gj
possesses a closed-form expression3, (ii) Aj is full rank, so that it can
be augmented into an invertible matrix Aj ∈ Rdj×dj , (iii) gj extends
into ḡj : Rdj → ]−∞,+∞] such that ∀θj , gj(Ajθj) = ḡj(Ajθj).

A1 requires the differentiability of f but not the Lipschitz prop-
erty for its gradient; A2 does not assume that the proximal operator
of g has a closed-form expression.
Example. For the target density π defined in Section 2, both A1
and A2 are valid. We have d = 2T , J = 2, θ1 = R, θ2 = O,
g1 = λR‖·‖1, g2 = λO‖·‖1, A1 = D2 (see (5)), and A2 = I,
the identity matrix. A1 can be augmented in many different ways,
among which:

D2 :=

 1 0 0 · · · 0

−2/
√

5 1/
√

5 0 · · · 0
D2

 . (7)

Another possibility is Do, obtained from D2 by making its first two
rows orthogonal, and orthogonal to the rows of D2. Then, ḡ1 =
λR‖(·)3:T ‖1, computed only on components 3 to T , and ḡ2 = g2.
Metropolis Adjusted Langevin Algorithm (MALA) sampler and
its limitations. If − lnπ = f (i.e., g = 0) is a smooth function
on D, a popular MCMC sampler which takes benefit of a first order
knowledge of π, relies on Langevin dynamics, stemming from tem-
pered Langevin diffusion [16]. Given a d×dmatrix Γ and a positive
step size γ chosen by the user, at each iteration #(n + 1) starting
from the current point θn, a jump is proposed to the point

θn+ 1
2 := θn − γΓΓ>∇f(θn) +

√
2γΓ ξn+1 , (8)

where ξn+1 ∼ Nd(0, I) is a standard Rd-valued Gaussian distribu-
tion. A> denotes the transpose of the matrix A. This proposal is ac-
cepted (θn+1 = θn+ 1

2 ) or rejected (θn+1 = θn) through a Metropo-
lis mechanism, and this yields the Metropolis Adjusted Langevin Al-
gorithm (MALA, [17]). The idea of MALA methods is to drift the

2proxg(y) := argminx∈R` (g(x) + ‖x − y‖2/2) is well-defined for
any proper, convex, lower semi-continuous function g : R` →]−∞,+∞].
‖ · ‖ denotes the Euclidean norm in R`.

3See [15] to have an exhaustive list of known proximal operators.



proposed moves towards areas of high probability under π, by using
the information provided by∇ lnπ.
Proximal-Gradient dual sampler (PGdual). In the present work,
− lnπ is not smooth (see A2): this calls for the use of Proximal
Langevin-based MC methods. The literature provides examples of
MC samplers combining a Langevin approach and a Proximal ap-
proach (see, e.g., [18, 19, 20, 21, 22, 23, 24, 25]) but none of these al-
gorithms directly apply to the framework A1-A2. Indeed, the density
π may be positive for non-sparse (D2R,O). Further, A2 assumes
that gj has an explicit proximal operator for any j ∈ {1, . . . , J}
which does not imply that this holds true for g, notably when g in-
volves a linear operator, e.g., in (4). Finally, we want to promote
a method which takes benefit of both the blockwise separable ex-
pression of g and the full rank property of matrices Aj by com-
puting the proximal operator separately on each range space of Āj .
These limitations led us to propose the following original and gen-
eral Proximal-Gradient dual (PGdual) Algorithm (sketched in Al-
gorithm 1), which is among the Metropolis-Hastings samplers with
Gaussian proposal; the main originality is the definition of the drift
term. At iteration #(n + 1), a candidate is proposed, whose block
#j is

θ
n+ 1

2
j := µj(θ

n) +
√

2γjΓj ξ
n+1
j , ∀ j ∈ {1, . . . , J} , (9)

where ξn+1
j ∼ Ndj (0, I) and

µj(θ) := A
−1
j proxγj ḡj

(
Ajθj − γjA

−>
j ∇jf(θ)

)
; (10)

∇j denotes the gradient with respect to the block #j and A−> is
the inverse of A>. µj(θn) performs a proximal-gradient iteration
associated to a part of the original composite function in the dual
space, consisting in the range of the matrix Aj ; then sends each block
#j back in the direct space through the mapping Ā−1

j . Formally,
− lnπ transferred in the dual space reads

(θ̃1, . . . , θ̃J) 7→ f(Ā−1
1 θ̃1, . . . , Ā

−1
J θ̃J) +

J∑
j=1

ḡj(θ̃j).

Introducing qj(θ, θ
′
j) the Gaussian kernel on Rdj centered at

µj(θ), with covariance matrix 2γjΓjΓ
>
j and evaluated at θ′j , the

acceptance-rejection (AR) step defined Line 5 makes Algorithm 1
to have π as unique invariant distribution.

There is a parallel between the preconditioned gradient appear-
ing in the drift term (10) of the proposed point (9), and the scaled
Langevin dynamics (8). For this reason, we advocate Γj = Ā−1

j for
any j, whatever the proximal operator is.

Our recent work [13] shows how to apply PGdual in a more
general setting than A 2, when there are many penalty terms for
each block #j. It also discusses how PGdual is related to other
proximal-gradient based extensions of the MALA sampler.
Example (to follow). For π defined in Section 2, the µj’s are

µ1(θ) := D
−1

proxλR‖(·)3:T ‖1

(
DR− γ1D

−>∇1f(θ)
)
, (11)

µ2(θ) := proxλO‖·‖1 (O− γ2∇2f(θ)) , (12)

where D is a (T×T ) invertible augmentation of D2, see, e.g., Eq (7).

4. CREDIBILITY INTERVALS FROM COVID19 DATA

Covid19 data. The data used here are part of a large data set avail-
able from the Johns Hopkins University4, consisting of daily new

4 https://coronavirus.jhu.edu/

Algorithm 1: Proximal-Gradient dual (PGdual)

Data: dj × dj matrices Γj , γj > 0, Nmax ∈ N?, θ0 ∈ D
Result: A D-valued sequence {θn, n ∈ 0, . . . , Nmax}

1 for n = 0, . . . , Nmax − 1 do
2 for j = 1, . . . , J do
3 Sample ξn+1

j ∼ Ndj (0, I);

4 Set θ
n+ 1

2
j = µj(θ

n) +
√

2γjΓj ξ
n+1
j ;

5 Set θn+1 = θn+ 1
2 with probability

1 ∧ π(θn+ 1
2 )

π(θn)

J∏
j=1

qj(θ
n+ 1

2 , θnj )

qj(θn, θ
n+ 1

2
j )

and θn+1 = θn otherwise.

infection counts for around 200 countries, by National Health Au-
thorities. The focus is here on the evolution of Rt on a realistic time
period of T = 35 days (5 weeks) of pandemic. To account for the
time support of the serial function Φ, we use τφ = 26 additional ob-
servations for the initialization Z−τφ+1, · · · ,Z0. Counts from Jan-
uary, 1st 2022 to February, 4th 2022 for Italy are used for the per-
formance assessments (see Figure 1, Figure 2). However, tools and
methods proposed here have been applied to numerous countries for
various time periods of interest (see, e.g., Figure 3).
MCMC samplers. The proposal mechanisms of PGdual are

Rn+ 1
2 = µ1(θn)+

√
2γ1 D

−1
ξn+1
1 ,On+ 1

2 = µ2(θn)+
√

2γ2 ξ
n+1
2

where µ1, µ2 are defined by (11), (12). Two versions of PGdual
are compared: PGdual Invert when D = D2, and PGdual
Ortho when D = Do (see Section 3 for the definition of D2 and
Do). Further, PGdual is compared to the Random Walk (RW) sam-
pler, whose proposal mechanism is

Rn+ 1
2 = Rn +

√
2γ1 ξ

n+1
1 , On+ 1

2 = On +
√

2γ2 ξ
n+1
2 .

We also explore the benefit of covariance matrices for the R-part of
the Random-Walk chains: RW Invert and RW Ortho correspond
to Rn+ 1

2 = Rn +
√

2γ1 D
−1
ξn+1
1 resp. in the case D = D2 and

D = Do; the proposal mechanism for the O-part is as in RW. These
comparisons will outline the role of the drift terms µj , and of the
covariance matrix of the Gaussian proposition.
Settings. All chains are run for Nmax = 107 iterations. Except in
Figure 1[left], displayed quantities are computed from the Markov
path after discarding its first 30% points corresponding to a burn in
period. All the curves displayed on Figure 1 and Figure 2 are mean
values over 15 independent runs: they start from different points
θ0 obtained by Gaussian perturbations of the intuitive but poor (in
terms of value of π) value Rinit := (1, . . . , 1)> and Oinit :=
(0, . . . , 0)>. The step size γ1 is adapted during the burn in period in
order to target a mean AR ratio equal to 0.25, and then it is frozen.
For fair comparisons among methods, we use here the same target
AR ratio which is known to be optimal for Random Walk algorithms
(see, e.g., [26]; similar results for nonsmooth Langevin samplers do
not exist). We set γ2 = σ3

Z γ1/T where σZ is the standard deviation
of the data set Z; and (λR, λO) = (3.5σZ

√
6/4, 0.05) as in [9].

MCMC performance. Figure 1[top] displays the evolution of the
normalized distance to the MAP R̂ along iterations: n 7→ ‖Rn −
R̂‖/‖R̂‖ for the five MCMC samplers. Figure 1[bottom] displays

https://coronavirus.jhu.edu/


Fig. 1. MCMC sampler performance. RW in light blue, RW
Invert in blue and RW Ortho in dark blue; PGdual Invert
in pink and PGdual Ortho in red. During the burn in period [left]
and after [right], evolution of the distance to the MAP along itera-
tions [top] and to max lnπ along iterations [bottom].

Fig. 2. MCMC sampler performance. RW in light blue, RW
Invert in blue and RW Ortho in dark blue; PGdual Invert
in pink and PGdual Ortho in red. [left] Mean absolute value of
the ACF vs the first 105 lags. [right] The GR statistic vs iterations.

the evolution of the normalized log-density along iterations n 7→
(lnπ(θn) −max lnπ)/(lnπ(θ0) −max lnπ) for the five MCMC
samplers. R̂ is computed by the method in [9]. Figure 2 compares
the samplers through two criteria related to the convergence: the
lag-k auto-correlation function (ACF) of a Markov chain with initial
distribution π - it is related to the effective sample size of a Markov
chain (see [27]); and the Gelman-Rubin statistic (GR, [28]). The
ACF plots are obtained as mean absolute values of the 2T real val-
ued ACF of (Rt,Ot)1≤t≤T . GR can be read as a ANOVA-type cri-
terion, reaching an optimal value of one when the different paths are
homogeneous.
These plots show that: (i) RW has a poor behavior compared to the
other samplers, thus illustrating the role of the drift and the covari-
ance matrix D

−1
D
−>

in the efficiency of the samplers: RW fails
to converge before Nmax iterations contrary to PGdual Ortho.
Indeed, from the results on Figure 1 and Figure 2: the distance to
R̂ and the evolution of lnπ along the path show that RW moves
slowly to high density regions thus being not efficient at all in the
exploration of the target distribution π; in addition, its ACF de-
creases to 0 very slowly and there is a strong heterogeneity between
the 15 runs of this method (see the GR statistic). (ii) The behav-
ior of the Random-Walk based methods is improved thanks to a
genuine choice of the covariance matrix: RW Invert and - with
a stronger evidence - RW Ortho take benefit of correlated Gaus-
sian noises for the R-part of the chain. (iii) For the drift part of
the proposal mechanism, there is a gain in using first order informa-
tion on lnπ: if RW Invert and PGdual Invert have a similar
behavior on Figure 1 and Figure 2[left] with a slight advantage for
PGdual Invert, PGdual Ortho is definitely better than RW
Ortho and than all the other methods. When the adapted step size
is small enough, it has the highest speed of convergence to the opti-
mum of lnπ; at the end of the burn in period, it reached high density

Fig. 3. Credibility intervals for different countries and different
time periods. For each country, observed counts Z (black solid lines)
and 95% credibility interval denoised counts Z(D) (red pipe) [top] ;
95% credibility interval estimates for R [Bottom].

regions; it provides the faster decaying rate of the ACF; its GR statis-
tic converges rapidly to the optimal value.
Credibility intervals. Let us further illustrate the relevance of credi-
bility interval-based estimations for R and O. For practical purposes,
the credibility intervals for O are translated into credibility intervals
for the denoised counts Z(D) by subtraction to the original counts
Z: intuitively, Z(D) = Z − O. Credibility intervals are reported
for PGdual Ortho only - since shown above to yield the best per-
formance - for several countries and various time periods of interest.
The 95% credibility intervals are obtained from the empirical quan-
tiles 0.025 and 0.975 of the Markov paths. In Figure 3, for each
country, the top plot shows the daily counts Z (black) with the credi-
bility interval estimates of the denoised counts Z(D) (red), while the
bottom plot represents the credibility interval estimates for R.

For France, the selected time period was chosen when the 4th
pandemic wave started to severely strike the country (mid-june 2021)
until reaching R ' 2 early July. Figure 3 shows that credibility inter-
vals excluded “R < 1” before the end of June. Early July, the French
Health Authorities made the announcement of a mandatory “sani-
tary pass” for any social activities after Aug. 9th. An immediate and
massive vaccination phase started in the French population, which
yields the plateau of the 4th wave, clearly observed in Figure 3 to
be reached in the 3rd week of July. Credibility intervals further val-
idate a clear decay of R after July 20th, that is, two weeks before
the counts of infections actually started to decrease, thus showing
the relevance and interest of the credibility interval estimates for R.
For the Philippines and South Africa, the periods of late April 2021
and late August 2021 correspond to massive strikes of the pandemic.
For both countries, Figure 3 confirms that the changes of slopes in
R announce a few weeks in advance the maximum of the wave and
the start of the decay in new infections. For Greece, the credibility
intervals enable to detect with high confidence that “R > 1” since
January 27th 2022, which was far from being obvious by directly
observing the infection counts.

Estimates and credibility intervals are updated on a regular ba-
sis and made available for the current period and for France, at
perso.math.univ-toulouse.fr/gfort/project/opsimore/.

5. CONCLUSIONS AND FUTURE WORKS

The present work constitutes a significant step toward the actual use
of the tools envisaged in [8, 9] to monitor the reproduction number.
Introducing a Bayesian formalism permits to produce reliable credi-

https://perso.math.univ-toulouse.fr/gfort/project/opsimore/


bility intervals for the reproduction number, as well as Bayesian esti-
mators. It is based on an original Proximal-based Langevin MCMC
algorithm designed to handle a convex but nonsmooth a posteri-
ori potential − lnπ, whose nonsmooth part consists of the sum of
several terms and which is able to account for the epidemiolog-
ical model. Satisfactory agreements between credibility intervals
and point estimates (MAP, posterior mean, . . . ), obtained using real
Covid19 data, emphasize the reliability of this novel MCMC sam-
pler. Future investigations include the automated data-driven tun-
ing of the design parameters (e.g., step sizes γi), and the theoretical
derivation of PGdual convergence rates which are, to the best of
our knowledge, an open question for many MALA-based samplers
designed for nonsmooth target distributions.

6. REFERENCES

[1] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the
definition and the computation of the basic reproduction ratio
R0 in models for infectious diseases in heterogeneous popula-
tions,” J. Math. Biol., vol. 28, pp. 365–382, 1990.

[2] J. Wallinga and P. Teunis, “Different Epidemic Curves for Se-
vere Acute Respiratory Syndrome Reveal Similar Impacts of
Control Measures,” Am. J. Epidemiol., vol. 160, pp. 509–516,
2004.

[3] P. van den Driessche and J. Watmough, “Reproduction num-
bers and sub-threshold endemic equilibria for compartmental
models of disease transmission,” Math Biosci, vol. 180, pp.
29–48, 2002.

[4] T. Obadia, R. Haneef, and P.-Y. Boëlle, “The R0 package:
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