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(3) CNRS, Institut de Mathématiques de Toulouse, France (gersende.fort@math.univ-toulouse.fr)
(4) Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France.

(firstname.lastname@ens-lyon.fr)

ABSTRACT

Monitoring the Covid19 pandemic is critical to design sanitary poli-
cies. Recently, reliable estimates of the pandemic reproduction num-
ber were obtained from a nonsmooth convex optimization procedure
designed to fit epidemiology requirements and to be robust to the
low quality of the data (outliers, pseudoseasonalities, . . . ). Applied
to daily new infection counts made public by National Health Agen-
cies and centralized at Johns Hopkins University, robust estimates
of the reproduction number for 200+ countries are updated and pub-
lished every day. To further improve estimation procedures and also,
and mostly, increase their usability by epidemiologists, the present
work exploits the Bayesian paradigm and derives new Monte Carlo
methods to sample from a nonsmooth convex a posteriori distribu-
tion. These new samplers stem from an original combination of the
Langevin Monte Carlo algorithm with Proximal operators. Their
relevance and practical efficiency to produce meaningful credibility
intervals for the Covid19 reproduction number are assessed, from
several indices quantifying the statistics of the Monte Carlo chains,
and making use of real daily new infection counts.

Index Terms— Nonsmooth Langevin Monte Carlo sampler,
Bayesian credibility interval, reproduction number, Covid19.

1. INTRODUCTION

Context. Monitoring the time evolution of the Covid19 pandemic
constitutes a critical stake to design counter measures. Pandemic
intensity is often assessed by the reproduction number, R, that quan-
tifies the number of second infections stemming from one same pri-
mary infection (cf. , e.g., [1, 2, 3, 4, 5]). The online and daily esti-
mate of R turned however extremely difficult during the Covid19
pandemic, mostly because of issues most countries faced in col-
lecting reliable daily new infection counts yielding low-quality data
(missing counts, outliers, seasonalities. . . ). Therefore, assessing the
confidence that can be granted to point estimates is a critical and dif-
ficult challenge, motivating the present work.
Related works. While refined pandemic assessment can efficiently
be achieved when the pandemic has passed from elaborated com-
partmental models and Bayesian estimates (cf., e.g., [6, 7]), recently
it has been shown that within pandemic, reliable epidemic intensity
estimates can be obtained from nonsmooth convex optimization pro-
cedures [8, 9]. The functional to minimize is built from the epidemic
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propagation model proposed in [5], whose quality is to focus on a
unique parameter, the reproduction number R, while preserving the
key epidemic propagation feature, the so-called serial interval func-
tion Φ(t), that quantifies the probability that symptoms today are
caused by infection in the past few days. With additional temporal
regularity and positivity constrained in the functional, the nonsmooth
convex optimization procedure in [8, 9] delivers epidemiologically
realistic estimates that are robust to the low quality of the data. It
does not however provide assessment of credibility intervals, an is-
sue what we intend to address here.
Goals, contributions and outline. The goal of the present work is to
explore the potential of Langevin-type stochastic sampling schemes
to produce credibility intervals for the evolution of the Covid19 re-
production number R. To that end, the pandemic model in [5] and
the nonsmooth convex optimization procedures in [8, 9] are first re-
cast into a Bayesian framework, with careful analysis and writing
of the corresponding a posteriori distribution (cf. Section 2). The
core methodological contribution is detailed in Section 3: Proximal-
Gradient Decomposition stochastic sampling schemes, refining the
classical Metropolis Adjusted Langevin Algorithms, are devised to
sample a generic class of a posteriori distributions, including the one
introduced in Section 2. The originality of the proposed samplers is
to account for the difficulties stemming from the specificity of the a
posteriori distributions considered here.

To assess the relevance of the proposed stochastic sampling
schemes in producing credibility intervals for R, and to compare
them against simpler Random Walk-type samplers, indices quanti-
fying the statistics of the sampled chains are defined in Section 4.
They are measured on real Covid19 data, consisting of daily infec-
tion counts reported by the National Health Authorities of countries
around the world and collected and made available by the Johns
Hopkins University (cf. Section 4 for a description). The practical
usability of the sampling strategies and of the achieved credibil-
ity intervals is discussed both from a technical and epidemiology
surveillance perspectives. The period of June-July 2021 in France
is used as a pandemic-interesting case study, but the proposed tools
are ready for applications to any country or period of time.

2. REPRODUCTION NUMBER BAYESIAN MODEL

The pandemic model used in this paper elaborates on the one pro-
posed in [5] in order to account for the low quality of the data as
fully detailed and motivated in [9]. In this work, the model in [9]
is recast into a Bayesian framework. The statistical model associ-
ated with the vector of T observations Z = (Z1, . . . ,ZT )> ∈ NT ,



consisting of new daily infection counts, is indexed by the unknown

θ := (R>,O>)> = (R1, . . . ,RT ,O1, . . . ,OT )> ∈ (R+)T × RT

with Rt the reproduction number at time t and Ot the outliers mod-
eling the low quality of the data at time t (irrelevant/missing counts,
mis-reported counts, pseudo-seasonal effects, . . . ). For any θ, the
conditional distribution of Zt given the past Zt−1, . . . ,Z1 and initial
values (Z0, · · · ,Z1−τφ) is a Poisson distribution with intensity

pt(θ) := Rt

τφ∑
u=1

ΦuZt−u + Ot , (1)

where the serial function (Φu)1≤u≤τφ accounts for epidemiology
mechanisms: It quantifies the random delays between the onset
of symptoms in a primary case and in secondary cases [5, 10, 6].
(Φu)1≤u≤τφ is assumed known and following [11, 12], it is clas-
sically modeled by a Gamma distribution truncated over τφ = 26
days with mean and standard deviation of 6.6 and 3.5 days. By con-
vention, a Poisson distribution with null intensity is the Dirac mass
at zero. This implies that the normalized negative log-likelihood of
the observations Z is given by 1

f(θ) :=

{
− 1
T

∑T
t=1 (Zt ln pt(θ)− pt(θ)) if θ ∈ D,

+∞ otherwise,
(2)

defined on the measurable set

D := {θ ∈ (R+)T × RT : pt(θ) > 0 for t s.t. Zt > 0}

∪ {θ ∈ (R+)T × RT : pt(θ) ≥ 0 for t s.t. Zt = 0} . (3)

Interpreting the regularity constraints in [9], the logarithm of the a
priori distribution of θ is defined on (R+)T × RT by

g(θ) := − λT

4T
‖D2R‖1 −

λO

T
‖O‖1 ; (4)

D2 is the discrete-time second order derivative (T − 2)× T matrix:

D2 :=

 1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
. . . . . .
0 . . . 1 −2 1

 , (5)

and λT, λO are (fixed) positive regularization hyperparameters, bal-
ancing the strengths of the different constraints one against the oth-
ers and against the likelihood. Under the a priori distribution, R
and O are independent and distributed resp. as a (non stationary)
Laplace AR(2) process and a Laplace distribution. Even if the op-
tima (R?,O?) satisfy D2R = 0 and O = 0, samples from the a
priori distribution are not necessarily sparse.

Combining the likelihood (2) and the prior (4) leads to the a
posteriori density with respect to the Lebesgue measure:

π(θ) := exp (−f(θ)− g(θ))1D(θ) . (6)

Upon noting that, up to an additive constant, the negative log-
likelihood of a Poisson variable Zt at θ, is the Kullback-Leibler dis-
tance dKL(Zt|pt(θ)) between Zt and pt(θ), the negative log-density
− lnπ is the criterion minimized in [9] for the reconstruction of θ. It
is proved in [9] that when

∑τφ
u=1 ΦuZt−u > 0 for any 1 ≤ t ≤ T ,

a minimum of − lnπ exists and the set of the minima is included in
a level set {θ : f(θ) = f∗} of f . The a priori distribution implies
that the optima of lnπ cannot vary too much across successive days
– so that epidemiologists can extract local trends indicating whether
the pandemic is increasing or decreasing.

1In the Bayesian setting, the distributions are often defined up to a multi-
plicative constant. We adopt this convention here.

3. NONSMOOTH LANGEVIN MONTE CARLO SAMPLERS

When the posterior distribution does not have a closed form (as in
Section 2), estimation through the Bayesian paradigm entails the
use of numerical tools such as Markov Chain Monte Carlo (MCMC)
samplers designed to define an empirical distribution approximating
the posterior distribution. The computation of α-credible regions
(see, e.g. [13, chapter 5]) or of Bayesian estimators such as the
posterior mean, the median or the Maximum A Posteriori (MAP),
follows from a Monte Carlo (MC) approximation.

In this work, we propose original MCMC samplers targeting a
generic density π of the form (6) and satisfying A1-A2.

Assumptions on the target π.
A1. f and g are finite onD and f is convex and continuously differ-
entiable on the interior of D ⊆ Rd,

A2. g is block-wise: for j ∈ {1, . . . , J}, i ∈ {1, . . . , Ij}, there exist
matrices Ai,j ∈ Rci×dj , and proper, convex, lower semi-continuous
functions gi,j : Rci → ]−∞,+∞] such that

∑J
j=1 dj = d and

∀θ := (θ>1 , . . . , θ
>
J )>, g(θ) :=

J∑
j=1

Ij∑
i=1

gi,j(Ai,jθj) ,

and where each function gi,j(Ai,j ·) possesses a proximal operator2

having a closed form.

A 1 requires the differentiability of f but not the Lipschitz-
gradient property, and A2 does not assume that the proximal operator
of g exists or has a closed-form expression. A2 is verified when, e.g.,
(i) gi,j is limited to a certain class of functions such as the square
`2-norm and if (A>i,jAi,j + Id) is efficiently invertible [14], or (ii)
for a general function gi,j having an explicit proximal operator (see
[15] to have an exhaustive list) when Ai,jA

>
i,j = νi,j Id for some

νi,j > 0 whose expression reads (see [16]) for every θj ∈ Rdj ,

proxγgi,j(Ai,j ·)(θj) = θj+ν
−1
i,j A

>
i,j

(
proxγνi,jgi,j (Ai,jθj)−Ai,jθj

)
.

A generalization when Ai,jA
>
i,j is a diagonal matrix is provided in

[17] at the price of separability of gi,j . The reader could refer to
[17, 18] for typical examples in signal and image processing where
condition A2 is satisfied, e.g., Total Variation penalization.

For the target density π defined in Section 2, both A1 and A2
are valid. For ease of notations, proof is given here for (T − 2)/3 a
positive integer. We have d = 2T , J = 2, I1 = 3, I2 = 1, θ1 = R
and θ2 = O. For i ∈ {1, 2, 3}, Ai,1 ∈ R(T−2)/3×T collects the
rows i, i+3, i+6, · · · of the matrix D2 and satisfies Ai,1A>i,1 = 6Id;
A1,2 = Id; gi,1 := λT‖ · ‖1/(4T ); and g1,2(·) := λO‖ · ‖1/T .
Metropolis Adjusted Langevin Algorithm (MALA) sampler and
its limitations. If − lnπ = f (i.e., g = 0) is a smooth convex
function on D, a popular MCMC sampler which takes benefit of a
first order knowledge of π, relies on Langevin dynamics. Given a
positive step size γ > 0 chosen by the user, at each iteration #n
starting from the current point θn, a jump is proposed to the point

θn+
1
2 := θn − γ∇f(θn) +

√
2γ ξn+1 , (7)

where ξn+1 ∼ Nd(0, Id) is a standard Rd-valued Gaussian distribu-
tion. This proposal is accepted (θn+1 = θn+

1
2 ) or rejected (θn+1 =

2proxg(y) := argminx∈R` (g(x) + ‖x − y‖2/2) is well-defined for
any proper, convex, lower semi-continuous function g : R` →]−∞,+∞].



θn) through a Metropolis mechanism, and this yields the Metropolis
Adjusted Langevin Algorithm (MALA, [19]). The Metropolis step
makes the chain {θn, n ≥ 0} to be Markovian with unique invariant
distribution π. The idea of MALA methods is to drift the proposed
moves towards areas of high probability under π, by using the infor-
mation provided by∇ lnπ.
Proximal-Gradient Decomposition (PGD) sampler. In the present
work,− lnπ is not smooth (see A1-A2): this calls for the use of Prox-
imal Langevin-based MC methods. The literature provides examples
of MC samplers combining a Langevin approach and a Proximal ap-
proach (see, e.g., [20, 21, 22, 23, 24, 25, 26, 27]) but none of these
algorithms directly apply to the framework A1-A2. Indeed, the den-
sity π may be positive for non-sparse vectors. Further, A2 assumes
that gi,j(Ai,j ·) has a proximal operator with a closed form for any
j ∈ {1, . . . , J} and i ∈ {1, . . . , Ij} which does not imply that this
holds true for g. Finally, we want to promote a method which takes
benefit of the block-wise separable expression of g by using at each
iteration the proximal operator associated to a partial sum.

These limitations led us to propose the following original
and general Proximal-Gradient Decomposition (PGD) Algorithm
(sketched in Algorithm 1). At iteration #n, part of the terms in g
are chosen at random by selecting an index ij for each block j (see
Line 3). Then, a jump is proposed to θn+

1
2 whose block #j is

θ
n+ 1

2
j := µij ,j(θ

n) +
√

2γjΓjξ
n+1
j , ∀ j ∈ {1, . . . , J} , (8)

where ξn+1
j ∼ Ndj (0, Id) and

µi,j(θ) := proxγjgi,j(Ai,j ·) (θj − γj∇jf(θ)) . (9)

The drift term µij ,j(θ
n) performs a proximal-gradient iteration as-

sociated to a part of the original composite function, combining a
gradient step w.r.t. the variable θj , and a proximal step relative to
the function gij ,j(Aij ,j ·), started from θnj and with step size γj . The
candidate θn+1/2

j is sampled from a Gaussian distribution with drift
µij ,j(θ

n) (see (8)). Introducing qi,j(θ, θ′j) the Gaussian kernel on
Rdj centered at µi,j(θ), with covariance matrix 2γjΓjΓ

>
j and eval-

uated at θ′j , the acceptance-rejection (AR) step defined Line 6 makes
the algorithm to have π as unique invariant distribution.

Algorithm 1: Proximal-Gradient Decomposition (PGD)
Data: dj × dj positive definite matrices Γj , γj > 0,

Nmax ∈ N?, θ0 ∈ D
Result: A D-valued sequence {θn, n ∈ [Nmax]}

1 for n = 0, . . . , Nmax − 1 do
2 for j = 1, . . . , J do
3 Sample ij ∈ {1, . . . , Ij} with probability 1/Ij ;
4 Sample ξn+1

j ∼ Ndj (0, Id);

5 Set θ
n+ 1

2
j = µij ,j(θ

n) +
√

2γj Γj ξ
n+1
j ;

6 Set θn+1 = θn+
1
2 with probability

1 ∧ π(θn+
1
2 )

π(θn)

J∏
j=1

qij ,j(θ
n+ 1

2 , θnj )

qij ,j(θ
n, θ

n+ 1
2

j )

and θn+1 = θn otherwise.

Let us detail µi,j when f , g, and D are respectively defined by
(2), (4), and (3). The proximal operator in (10) being tractable since

Ai,1A
>
i,1 = 6Id, we choose

µi,1 = prox γ1λT
4T
‖Ai,1·‖1

(Rn − γ1∇1f(θn)) , (10)

µ1,2 = prox
γ2
λO
T
‖·‖1

(On − γ2∇2f(θn)) . (11)

4. CREDIBILITY INTERVALS FROM COVID19 DATA

Covid19 data. The data used here are part of a large data set avail-
able from the Johns Hopkins University3, consisting of daily new in-
fection counts measured for the entire population of more than 200
countries, by National Health Authorities. The focus is here on the
evolution of Rt on a realistic time period of T = 56 days (8 weeks)
of pandemic. To account for the time support of the serial func-
tion Φ, we use τφ = 26 additional observations for the initialization
Z0, · · · ,Z−τφ+1. Counts from June, 8 2021 to August, 2nd 2021 for
France (see Figure 2[top]) are used here as the period is of pandemic
evolution interest. However, tools and methods proposed here can
be applied to any country and any time period of interest.
MCMC samplers. Two versions of PGD are compared, correspond-
ing to (Γ1,Γ2) := (Id, Id) and (Γ1,Γ2) := (D

−1
2 , Id); they are

named resp. naive-PGD and PGD. D2 is a genuine invertible ex-
tension of D2 (see (5)) chosen as:

D2 :=

 1/
√

6 0 0 · · · 0

−2/
√

2 1/
√

2 0 · · · 0
D2

 . (12)

The ability of PGD (see Section 3) to construct relevant credibility
intervals for the reproduction number Rt of the Covid19 pandemic is
compared to the Random Walk (RW) sampler and to another strategy
referred to as PGdual - available for π defined in Section 2 but not
for any distribution described by A1-A2. These comparisons will
outline the role of the covariance structure Γ1 and of the drift term
in the Gaussian proposal mechanisms: all the samplers repeat (a) the
proposition of a move of the form (8) with a specific drift term, and
(b) a Metropolis AR step.

In RW, the proposal mechanism is

Rn+ 1
2 = Rn +

√
2γ1 Γ1ξ

n+1
1 , On+ 1

2 = On +
√

2γ2 ξ
n+1
2 ;

in naive-RW, Γ1 := Id while in RW, Γ1 := D
−1
2 .

Finally, PGdual corresponds to the proposal mechanism

Rn+ 1
2 = µ̃1(θn)+

√
2γ1 D

−1
2 ξn+1

1 ,On+ 1
2 = µ̃2(θn)+

√
2γ2 ξ

n+1
2

where µ̃2 = µ1,2 given by (11) and

µ̃1(θ) := D
−1
2 prox γ1λT

4T
‖(·)3:T ‖1

(
D2 R− γ1D

−>
2 ∇1f(θ)

)
;

for τ ∈ RT , τ3:T collects the components 3 to T of τ . We have
(R,O) ∼ π if and only if (D2R,O) ∼ π̄ where π̄(τ, o) ∝
exp(−f(D

−1
2 τ, o) − λT‖τ3:T ‖1/(4T ) − λO‖o‖1/T ) on the set

{(τ, o) ∈ R2T : (D
−1
2 τ, o) ∈ D}. The proposal mechanism

of PGdual combines: (a) in the (τ, o)-space, sample a Gaussian
distribution centered at a Proximal-Gradient step associated to the
composite function − ln π̄ and started at (τn, on) := (D2R

n,On),
then (b) move this point back to the θ-space by applying D

−1
2 .

Settings. All chains start from an intuitive (but poor, in terms
of value of π) initialization R0 := (1, . . . , 1)> and O0 :=

3 https://coronavirus.jhu.edu/

https://coronavirus.jhu.edu/


Fig. 1. MCMC sampler performance. PGD (red solid line),
naive-PGD (red dashed line), PGdual (magenta solid line), RW
(black solid line) and naive-RW (black dashed line). [left] Evo-
lution of the log-density lnπ along the first 3e5 iterations. [middle]
Mean absolute value of the ACf vs the first 1e5 lags. [right] Gelman-
Rubin statistics vs iterations, after the burn-in period.

(0, . . . , 0)> and are run for Nmax = 1e7 iterations. Except in
Figure 1[left], displayed quantities are computed from the Markov
path after discarding its first Nmax/3 points corresponding to a
burn-in phase. The step size γ1 is adapted until iteration #Nmax/3
in order to target a mean AR ratio equal to 0.25, and then it is
frozen. For fair comparisons among methods, we use here the op-
timal AR ratio for Random Walk algorithms (see, e.g., [28]), since
similar results for nonsmooth Langevin samplers do not exist. We
set γ2 = std(Z) γ1 where std(Z) denotes the standard deviation of
the data set Z; and (λT, λO) = (3.5× std(Z), 0.05) as in [9].
MCMC performance. Figure 1[left] displays the evolution (mean
value over ten independent runs) of the log-density n 7→ lnπ(θn)
along the first 3e5 iterations, and for five MCMC samplers. Fig-
ure 1[middle, right] compare the samplers through two criteria re-
lated to the convergence: the lag-k auto-correlation function (ACf)
of a Markov chain with initial distribution π - it is related to the effec-
tive sample size of a Markov chain (see [29]); and the Gelman-Rubin
statistics (GRs, [30]). The ACf plots are obtained as mean absolute
values of the 2T real valued ACf of (Rt,Ot)1≤t≤T . GRs, com-
puted for the full vector (R,O) ∈ R2T and from 15 independent
runs, can be read as anova-type criteria that quantify inter vs. intra
path homogeneities. These plots show that: (i) Both naive-RW and
naive-PGD have poor behaviors compared to the other samplers,
thus illustrating the role of Γ1 in the efficiency of the samplers: Com-
pared to the other samplers, they move slowly to high density regions
thus being less efficient in the exploration of the target distribution
π, their ACf decrease to 0 more slowly, and their GRs converge far
more slowly to the optimal value (equal to one). We also observed
that naive-RW and naive-PGD fail to converge before Nmax it-
erations contrary to the other methods, a poor asymptotic behavior
which explains the results on Figure 1[right]: when each algorithm
is run 15 times, there is a strong heterogeneity between the 15 out-
puts of naive-RW and similarly for the ones of naive-PGD. (ii)
For the drift part of the proposal mechanism, there is a gain in using
first order information on lnπ: PGD reaches high density regions
more rapidly than RW when it starts from low density regions (see
Figure 1[left]), and both PGD and PGdual improve on RW in the
asymptotic regime of the Markov chain (see Figure 1[middle,right]).
(iii) Nevertheless, PGdual is sensitive to the definition of γ1 and
it is not able to escape from a low density region as rapidly as PGD
(see Figure 1[left]). To emphasize the role of γ1, PGdual is also run
with a constant step size γ1 equal to the limiting value obtained after
adaption: the sampler is not able to accept a move (see the magenta
dotted line on Figure 1[left]). The same experiment - not shown here
- is run for PGD: It does not suffer from this drawback.
Credibility intervals. The performance analyses reported above,
and repeated for several countries and different time periods, led

Fig. 2. Credibility intervals. [Top] Observed counts Z (black solid
line with circles) and denoised counts (Zt − Ôt) (red solid line)
with Ôt estimated by the posterior mean. [Bottom] 95% credibility
interval (shadowed area) and two different point estimations: MAP
(green dashed line), posterior mean (red solid line).

to conclude that PGD is so far the most efficient sampling strategy
to explore the a posteriori distribution (6). Therefore, we report
only credibility intervals and posterior means obtained from PGD.
Figure 2[top] shows the observations (Zt)1≤t≤T as well as the de-
noised counts Zt − Ôt; Ôt is the posterior mean point estimate of
Ot. The sequence (Zt − Ôt)1≤t≤T exhibits clearer trends than the
counts (Zt)1≤t≤T themselves. Figure 2[bottom] displays the 95%
credibility region for R ∈ RT , obtained from the empirical quan-
tiles 0.025 and 0.975 of a Markov path. It also shows the MAP
computed as in [9] and the posterior mean estimators for Rt. The
selected time period was chosen as the 4th pandemic wave started
to severely strike France (after mid-june) until reaching R ' 2 early
July. Figure 2 shows that credibility intervals excluded “R < 1” be-
fore the end of June. Early July, the French Health Authorities made
the announcement of a mandatory “sanitary pass” for any social ac-
tivities after Aug. 9th. An immediate and massive vaccination phase
started in the French population, which yields the plateau of the 4th
wave, clearly observed in Figure 2 to be reached in the 3rd week of
July. Credibility intervals further validates a clear decay of R after
July 20th, that is, two weeks before the counts of infections actually
started to decrease, thus showing the relevance and interest of the
on-the-fly estimation credibility intervals for R.

Estimates and credibility intervals are updated on a regular ba-
sis and made available for the current period at perso.math.univ-
toulouse.fr/gfort/project/opsimore/.

5. CONCLUSIONS AND FUTURE WORKS

The present work constitutes a significant step toward the actual use
of the tools envisaged in [8, 9] to monitor the reproduction number.
Recasting the model in [8, 9] into a Bayesian formalism permits to
produce reliable credibility intervals for the reproduction number, as
well as Bayesian estimators. It is based on an original Proximal-
based Langevin MCMC algorithm designed to handle both a drift-
term that accounts for the epidemiological model and a convex but
nonsmooth a posteriori potential − lnπ, whose nonsmooth part ad-
ditionally consists of the sum of several terms. Satisfactory agree-
ments between credibility intervals and point estimates (MAP, poste-
rior mean, . . . ), obtained using real Covid19 data, emphasizes the re-
liability of this novel MCMC sampler. Future investigations include
the automated data-driven tuning of the design parameters (e.g., step
sizes γi), and the theoretical derivation of PGD convergence rates
which are, to the best of our knowledge, an open question for many
MALA-based samplers designed for nonsmooth target distributions.

https://perso.math.univ-toulouse.fr/gfort/project/opsimore/
https://perso.math.univ-toulouse.fr/gfort/project/opsimore/
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