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On the formulation and implementation of extrinsic cohesive zone models with contact

An extrinsic cohesive zone model with a novel unload-reload behaviour is developed in the framework of non-smooth mechanics. e model is extended to include the e ects of dynamics with impact, and is discretised in such a way that it can be wri en as a Linear Complementarity Problem (LCP). is LCP is proved to be well-posed, and to respect the discrete energy balance of the system. Finally, the LCP system is validated numerically, in both statics and dynamics, by simple test cases, and more involved nite element simulations that correspond to standard test geometries in the literature. e results correspond well with those of other authors, while also demonstrating the simulations' ability to resolve with relatively large time steps while respecting the energetic balance. 1

Notation For vectors and tensors, we choose the following notation:

x 2 = x 2 = x i x i indicial notation = x • x tensor notation = x x vector notation
.

(1)

1 Introduction e modelling of crack propagation touches on a wide variety of areas of interest within mechanics, ranging from a geological scale such as earthquakes and avalanches (Bergfeld et al., 2021;Okubo et al., 2019), engineered materials such as composites (Ashouri Vajari et al., 2013), polymers (Laiarinandrasana et al., 2021) and elastomers (Corre et al., 2021), to the small grains in materials such as sandstone or concrete (Jiang et al., 2021). While linear elastic fracture mechanics (LEFM), pioneered by Gri th (1921), accurately describes signi cant aspects of crack behaviour, it su ers from the presence of a stress singularity at the crack tip, rendering the model non-physical in the "fracture process zone", the region surrounding the crack tip. In order to model situations where individual cracks have a large e ect on the overall structural behaviour of a system such as fragmentation or dynamic crack branching problems, researchers make use of cohesive zone models (see seminal articles such as Nguyen and Wu (2018), Xu andNeedleman (1994), andZhang et al. (2007)). Cohesive zone models (CZM) regularise the LEFM stress singularity at the crack tip by expressing a relationship between the displacement jump across a developing crack surface and the traction that the surface can support. e total area under the traction-displacement curve represents the classical fracture energy of LEFM (Gri th, 1921). In cohesive zone models the evolution of this interface is described in terms of a cohesion variable β ∈ [0, 1], where β = 1 indicates a perfectly intact interface, and β = 0 a completely broken interface.

Direct experimental observation of the fracture process zone is extremely di cult, due to their typically small size (depending on the material, as small as the order of 10nm (Azab et al., 2020)) and rapid motion. Very few direct observations have been made (Célarié et al., 2003;Guilloteau et al., 1996), although recent work studying the cohesive zones of "frictional cracks" (Berman et al., 2020) o ers a promising path towards further direct observations. Due to this di culty of direct observation, the properties of the cohesive zone are typically inferred via experimental observations at a larger scale, which may require sophisticated image analysis (Réthoré and Estevez, 2013) and the inversion of nite element models (Vargas et al., 2020). It should be noted that the particular values of the inferred parameters such as total fracture energy G c , critical traction σ c and critical length δ c depend on the exact form of the cohesive zone model chosen (Azab et al., 2020). Some inference as to the appropriate form of the model may be drawn by comparing back-analyses of experiments via cohesive zone models with those conducted using other crack analysis techniques such as the coupled criterion, which characterises the initiation of the crack depending on whether it is dominated by the stress across the incipient surface or the stored energy (Doitrand et al., 2019(Doitrand et al., , 2021a)).

While the particular forms of cohesive zone models are arbitrary and limited only by the modeller's imagination, in a broad sense they may all be categorised as one of two avours, intrinsic and extrinsic models. Intrinsic models include an initially elastic response, with an initial strengthening of the cohesive zone as a function of the displacement jump, before weakening due to the decohesion process (Falk et al., 2001). As a consequence, there is an additional length parameter, the hardening length δ h , where the cohesive traction obtains its maximum value (Kubair and Geubelle, 2003). Intrinsic cohesive elements are inserted between the mesh elements before simulation, leading to straightforward computational parallelisation (Nguyen, 2014). However, the elasticity present in the intrinsic model has the e ect of modifying the overall elasticity of the structure, with this e ect becoming more signi cant with a greater number of cohesive elements. us, intrinsic models introduce an unwanted mesh-dependency to the problem (Falk et al., 2001). e problem of induced arti cial compliance can be reduced by increasing the initial hardening slope of the cohesive law. However, in quasi-static analyses, this sti ness increase results in very unstable numerical methods, while in dynamic analyses, it results in severe restrictions on the stable time step size, rendering the method essentially unsuitable (Nguyen, 2014). e presence of interface elasticity also allows for the possibility of interpenetration and physically meaningless negative displacement jumps if the two sides of the interface are pushed together [START_REF] Acary | Nonsmooth fracture dynamics using a cohesive zone approach[END_REF]. Finally, we also note the conceptual impossibility of measuring interface sti ness across a crack face before the crack exists, meaning that any sti ness assigned in an intrinsic model must necessarily be arbitrary and not representative of a true physical property. As such, the sti ness of the intrinsic model is o en assumed to be that of the bulk when identifying parameters, and is then taken as a given during the CZM parameter identi cation procedure (see e.g. Vargas et al. ( 2020)).

On the other hand, extrinsic models are initially rigid and hence immediately start to decohere as the displacement jump increases (Kubair and Geubelle, 2003;Seagraves and Radovitzky, 2010). ese models do not e ect the elasticity of the bulk, however, typically they are inserted adaptively on-the-y into nite element meshes (Zhou and Molinari, 2004a), as pre-inserting the elements leads to very large computational overheads due to each node requiring duplicates. Historically the on-the-y insertion has meant that extrinsic models were di cult to parallelise (Carter et al., 2000), but modern techniques have been developed that have overcome the previous di culties (Espinha et al., 2013). e absence of arti cial sti ness in the extrinsic formulation renders it suitable for use in dynamic analyses due to the absence of arti cial compliance e ects (Camacho and Ortiz, 1996;Murphy and Ivankovic, 2005;Seagraves and Radovitzky, 2010), but care must be taken to ensure that the system exhibits time-continuous behaviour (Papoulia et al., 2003;Sam et al., 2005). A modi ed Lagrangian formulation can ensure this time-continuity (Cazes et al., 2013). While extrinsic models do not have the pathological mesh-dependency of intrinsic models, the large number of elements required to fully resolve the cohesive zone for arbitrary crack paths has been impractical, meaning that simulations are typically not fully converged. is issue can be at least partially addressed by modelling cohesive zone strength via a Weibull distribution (Zhou and Molinari, 2004a,b). e use of more sophisticated nite element techniques such as those based on the partition of unity (Bybordiani and Dias-da-Costa, 2021), Hybrid Equilibrium Elements (Parrinello, 2020;Parrinello andBorino, 2020), or Discontinuous Galerkin (Nguyen, 2014;Versino et al., 2015) constitutes a promising path towards truly mesh-independent results. However, extrinsic cohesive zone models implemented on a highly-re ned mesh can still su er from issues of ill-posedness (Foulk, 2010). In quasi-statics, solution jumps can appear due to the elasticity of the system storing more energy than can be released by the cohesive zone [START_REF] Acary | Nonsmooth fracture dynamics using a cohesive zone approach[END_REF]. is issue has been addressed using either sophisticated enriched nite element schemes (Samimi et al., 2011) or viscous regularisation (Chaboche et al., 2001), in order to ensure that the problem remains well-posed.

We must also pay close a ention to the unload-reload behaviour of models, particularly in cases of non-monotonic loading e.g. repeated impacts or complex stress wave pa erns, where cohesive elements may incur only partial decohesion before being subjected to unloading and reloading. By considering the mathematical structure detailed in Kubair and Geubelle (2003), where by shi ing the values of model parameters both intrinsic and extrinsic models may be obtained from the same formula, we may de ne the notion of a "shi ed intrinsic model", where the extrinsic model retains an underlying intrinsic mathematical structure. Typically extrinsic models indicate that a er the cohesion has decreased, the unload-reload behaviour is elastic until decohesion recommences (Bybordiani and Dias-da-Costa, 2021;Camacho and Ortiz, 1996;Parrinello, 2020;Parrinello and Borino, 2020;Sam et al., 2005). Models exhibiting this behaviour constitute shi ed intrinsic models where the e ective critical traction σ c,e and hardening length δ h are shi ed away from their initial values (σ c and 0 respectively) as the cohesion β evolves. For this family of models, the unload-reload elasticity can be approximated by E ≈ tan β π 2 . It is clear that for very small amounts of decohesion with β ≈ 1, the elasticity of the interface is arbitrarily large and the problems of articial compliance inherent to intrinsic models may also arise in extrinsic models if they have the shi ed intrinsic model structure.

us, we may conclude that an extrinsic model is the most appropriate to model crack behaviour, but special care must be taken to avoid unphysical behaviour at the interface in both the initial loading phase, and for cases of unloading and reloading. An extrinsic cohesive model may be naively viewed as an interface model with an in nite initial sti ness.

e correct mathematical se ing to impose such a constraint is convex and variational analysis, exploiting the techniques of mathematical programming. To this end, we turn to the eld of contact mechanics, in particular the seminal work of Moreau (Moreau, 1970(Moreau, , 1974(Moreau, , 1986)), who developed the mathematical framework of non-smooth mechanics. By appropriately specifying the potential of energy and the pseudo-potential of dissipation within the framework of convex analysis, rigorous thermodynamic formulations for a range of materials may be developed (Halphen and Nguyen, 1975;Houlsby, 2019;Marigo, 1981) including unilateral constraints on the variables and their time derivatives. In particular, this family of models has been extended to cohesive zone modelling in a series of seminal works by Frémond (Frémond, 1988(Frémond, , 2002(Frémond, , 2012a,b),b), which provides a natural framework in which we present our models. e pioneering work of Frémond has already been extended in various directions for intrinsic cohesive zone models [START_REF] Acary | Nonsmooth fracture dynamics using a cohesive zone approach[END_REF]Chaboche et al., 2001;Monerie and Acary, 2001;Nkoumbou Kaptchouang et al., 2021;Perales et al., 2010;Raous et al., 1999) but has been barely used for extrinsic models other than those of Jean et al. (2001) and Talon and Curnier (2003). We note that in the la er formulation, the model does not su er from the issues raised by the shi ed intrinsic model structure, unlike those models developed following Camacho and Ortiz (1996) (amongst others).

An alternative approach where extrinsic cohesive models appear naturally is the variational approach to fracture (Bourdin et al., 2008;Charlo e et al., 2006;Del Piero, 1999). e equilibrium of a fractured system is formulated as an energy-minimisation principle. e constitutive law for cohesion is de ned by the surface energy that is created when the fracture progresses, as a concave function of the displacement jump. is surface energy converges asymptotically to the fracture toughness when the interface is completely broken. e derivative of the surface energy at the origin with respect to the displacement jump de nes the critical strength of the interface. e constitutive law is completed with a law that accounts for the irreversibility of the process, and is implemented in an incremental form of the energy minimisation. As in the classical cohesive theory of fracture, there is no initial sti ness. e optimality conditions (or stationarity conditions if we prefer) yield the de nition of an extrinsic cohesive zone model. e theory, in quasi-statics, demonstrates that some energy jumps are possible in speci c cases that match those observed in the classical formulation of cohesive zone models.

Following this original idea, numerical methods have been designed to simulate fracture problems by combining energy minimisation and extrinsic cohesive zone models. In one of the most advanced works (Lorentz, 2008), the unilateral contact condition is added by means of an augmented Lagrangian that helps to retrieve convexity at the price of needing to correctly determine the exact penalty parameter. To model this irreversibility process, the model developed in Talon and Curnier (2003) is used. A nite element discretisation based on a mortar-like approach is solved by a non-smooth Newton method. A time-stepping is then implemented using a solver based on an alternate minimisation xed point. In Doyen et al. (2010), a mathematical analysis of a similar model with mixed elements is proposed. Although the discrete minimisation is non-convex, the convergence study of numerical methods such as Uzawa and non-smooth Newton methods is performed. In Papoulia (2017) and Vavasis et al. (2020), a very similar approach is developed, taking into account the inertia e ects in discrete time and using modern optimisation methods. Nevertheless, the irreversibility process is modelled in the same fashion as in Camacho and Ortiz (1996) and hence leads to the same issues. e minimisation principle is based on the non-convex energy which includes the constraints (unilateral contact, irreversibility) using non-smooth and non-di erentiable functions.

To situate our work with respect to the variational approach to fracture, we note that our di erences mainly lie in the methodology, which leads to rather di erent properties for the numerical scheme. In our work, we start from a consistent mechanical model and use the laws of thermodynamics in a non-smooth se ing. is leads to variational inequalities or complementarity problems that can accommodate a wide variety of models, but these problem formulations are not necessarily equivalent to the optimality conditions of an optimisation problem. In other words, the variational inequality is not necessarily the optimality condition of a minimisation problem. In some structured cases, variational inequalities and complementarity problems can be recast into (possibly convex) optimisation problems, but their mechanical interpretation may be di cult. To place our framework in a minimisation se ing that can play the role of a mechanical principle, further investigations are needed, which are beyond the scope of the paper.

To complete this brief review of the literature, the closest work to our approach is developed in Doyen et al. (2013), where an extrinsic cohesive zone model in dynamics with unilateral constraints is proposed. Two models of irreversilibity are used. One is similar to the Camacho and Ortiz (1996) model and the other to the Talon and Curnier (2003) model. Using an explicit evaluation of some interface variables, they are able to show that the discrete problem is well-posed at each time step given some mild assumptions on the time step and the mesh size. Discrete energy balances are also provided, but they are not directly related to the fracture energy. e method has been extended in Crump et al. (2017) in the context of the extended nite element method to enable the developments of cracks not only at the boundary of the mesh elements, and in Marazzato (2020) in the context of a variational discrete element method. However, the proposed scheme does not take into account the possible appearance of percussions due to velocity jumps. is la er discrete property is important when dealing with nite masses (e.g rigid bodies, the discrete element method, slender structures or space-discretised structures). e aim of our paper is to bridge this gap.

Novelty of the contribution and outline of the article:

e novelty of our work is that we present the formulation of an extrinsic cohesive zone model that provides us with:

1. a formulation based on non-smooth thermo-mechanics principles that take into account the e ects of inertia and the inequality constraints on state variables and their time derivatives (unilateral contact, irreversibility) with a simple loading/unloading behaviour related to the irreversibility of the process which does not have the issues of the shi ed intrinsic model structure or the problem of in nite sti ness ( §2), and 2. a formulation of the non-smooth dynamics in a nite-dimensional se ing in terms of di erential measures that takes into account the e ect of inertia and the possibility of discontinuities in the velocity and the associated percussion together with an impact law ( §3), and a numerical procedure in §4 that features the following properties:

1. an implicit time-stepping scheme consistent with the non-smooth dynamics based on the Moreau-Jean scheme, that respects the energy balance in discrete time, and which provides us with a stable scheme with quite large time steps, 2. a complementarity problem formulation for the space and time discretised problem with a proof of well-posedness (existence and uniqueness of solutions) that solves all of the constraints in an implicit manner; in that way, the extrinsic cohesive model is satis ed at each time step while avoiding the solution jumps that occur in quasi-statics when the cohesive model is not regularised by viscous or second gradient techniques, and 3. a formulation as a monolithic complementarity problem allowing us to exploit the e cient algorithms that have been developed for this class of problems in the mathematical programming literature.

Finally, we demonstrate the interest of the approach in §5 by applying the model to some pertinent example systems and compare the results with those obtained by other workers.

2 Formulation of extrinsic cohesive zone models with contact

In this section, we de ne the state variables of the system, obtain the equilibrium and boundary conditions via the principle of virtual power, specify the constitutive model, and demonstrate its behaviour with an analytic example.

State variables, powers and principle of virtual power

We start by de ning our system. Let us consider a body de ned by Ω ∈ IR d , d ∈ 1, 3 . e vector x de nes the current position and X the initial position, u(x) the displacement and v(x) = u(x) the velocity. e de nition of the displacement jump at the interface is not trivial in practice. In this work, we consider that, initially, the material is undamaged. At a point x ∈ Ω, x ∈ IR d , the displacement u(x) and the velocity v(x) are continuously di erentiable functions of x. If a crack occurs and an interface is created, two material points x l and x r are de ned by spli ing the bodies assuming that they correspond to the material point X initially. We choose to denote x l by x. e displacement jump is de ned by the di erence in the position of the material point that was at X initially, with respect to x and x r , that is u(x, x r ) = u(x r )u(x). We also assume that we are able to de ne an orthonormal local frame at any point x of the interface de ned by (x, n, t) where n ∈ IR d is the normal unit vector from x towards x r and the vector t = [t 1 , t 2 ] ∈ IR d×(d-1) completes the frame. In this work, we consider only the normal displacement (jump), de ned by u N (x, x r ) = u(x, x r ) • n ∈ IR. e relative velocity (jump in space) is de ned as v N = uN . Before the creation of the interface, we assume that u N and v N vanish whatever the arbitrary de nition of the local frame since u and v are continuous.

To describe the state of the cohesion we introduce the cohesion variable β(x) ∈ [0, 1], using the notation introduced by Frémond for describing the intensity of cohesion, or the proportion of active bonds. For a point x on the interface, the power of the cohesion for a surface Γ is de ned by

P coh = Γ βA dx, (2) 
introducing A which is the dual force (driving force) associated to β. In the same way, the power of contact is given by

P con = Γ v N r N dx, (3) 
introducing r N as the normal reaction force related to the stress σ(x) at the interface by

r N = -σ • n • n.
For the material in Ω, the power of the external, internal and inertial forces are respectively given by

P ext = Ω v • f dx - Γ N v • τ dx - Γ βΘ dx, (4) 
P int = - Ω σ : ε dx + Γ v N r N dx + Γ βA dx, (5) 
P acc = Ω ρv • v dx, ( 6 
)
where f is the body force in Ω, τ is the surface traction on Γ N (i.e. where the Neumann boundary condition is applied on the surface), Θ is an external force that does work on the cohesion (such as may arise from thermal or chemical e ects) that is taken as identically zero in this work, ε is the strain in Ω, ρ is the density and v is the acceleration.

e principle of virtual power states that for any virtual velocities v, ε and β, we have

Pacc = Pext + Pint , Ω ρv • v dx = Ω v • f dx - Γ N v • τ dx - Γ βΘ dx - Ω σ : ε dx + Γ vN r N dx + Γ βA dx. (7) 
For a rigorous mathematical se ing of this principle, we refer to Frémond (1988). Using su cient smoothness assumptions on the elds, this leads by localisation to the set of equations describing the equilibrium and boundary conditions of the system:

             ∇ • σ + f = ρ v in Ω, A = Θ = 0 on Γ, τ = σ • n on Γ N , r N = -σ • n • n on Γ. (8)

A non-smooth thermo-mechanics potential in the normal direction

Now, we specify our constitutive model via the appropriate speci cation of an energy potential, and a dissipation pseudopotential. We will also show that the system can be wri en in terms of complementarity relations, and use this to derive an expression for the energy balance.

Free energy and reversible state laws.

e free energy Ψ of the system is the sum of the free energy in the bulk with that of the surface, that is

Ψ = Ω Ψ e (ε) dx + Γ Ψ s (u N , β) dx, (9) 
where Ψ e and Ψ s are the volume and surface free energies. In this work, we assume all strain is elastic. Firstly, the stresses may be obtained by assuming a classical linear elastic potential for the bulk:

Ψ e (ε) = 1 2 ε : E : ε, (10) 
σ(ε) = ∂Ψ e (ε) ∂ε = E : ε, ( 11 
)
where E is a fourth order sti ness tensor. e stress-like variables are similarly derived from the surface potential by

-r r N ∈ ∂ uN Ψ s (u N , β), -A r ∈ ∂ β Ψ s (u N , β), (12) 
where r r N stands for the reversible part of the normal reaction force, and ∂u N and ∂ β indicate the subdi erentials with respect to u N and β of a convex (or concave) but non-smooth potential (Frémond, 2002).

e rst assumption in our model is that the displacement is constrained to be positive, u N 0, which is enforced as a unilateral constraint, and the cohesion variable constraints are 0 β 1. is yields the possible form of the surface free energy

Ψ s (u N , β) = ψ(u N , β) + I IR+ (u N ) + I [0,1] (β), (13) 
where I C is the indicator function of a convex set C. To obtain an extrinsic CZM, the tangent sti ness of the model when u N 0 must vanish. In other words, the derivative of ψ(u N , β) with respect to u N must be constant, i.e. ∂ 2 ψ ∂u N 2 = 0. e simplest choice for the free energy is:

Ψ s (u N , β) = βσ c u N + wf (β) + I IR+ (u N ) + I [0,1] (β), (14) 
where

• σ c > 0 is the critical traction,
• w > 0 is the surface free energy which is released by decohesion, and

• f (β) is a function that enables us to parametrise the evolution of β in the decohesion process.

e state laws are deduced by applying ( 12) to ( 14):

-(r r N + βσ c ) ∈ ∂I IR+ (u N ), -(A r + σ c u N + wf (β)) ∈ ∂I [0,1] (β). (15) 
e rst law in ( 15) is a shi ed Signorini condition by the value of the cohesive force de ned by r c N (β) = βσ c . is can be wri en in terms of a complementarity relation:

0 r r N + r c N (β) ⊥ u N 0. (16) 
e surface free energy Ψ s is not a convex function of its arguments (u N , β) since the determinant of its Hessian matrix is equal to -σ c 2 . Nevertheless Ψ s is convex with respect to u N since it is linear. By choosing f (β) 0, the convexity with respect to β is ensured. e smooth part of the free energy in ( 14) is composed of two terms. e rst term βσ c u N is homogeneous to a potential energy given by the cohesive force βσ c in the displacement eld u N . e second term wf (β) is the surface free energy released by decohesion for a given β. Some further modelling assumptions may also be speci ed on the function f . For an intact interface (β = 1), we may assume that f (1) = 0 such that the released free energy vanishes. For a broken interface (β = 0), we may assume that the cohesive free energy w has completely been released then f (0) = 1. Furthermore, we may also assume a monotone release for the cohesion free energy with β, that f (β) 0. is choice is consistent with the convexity of f if the minimum is a ained for β = 1. In the following, these assumptions will be satis ed by the triangle law we propose.

Dissipation pseudo-potential and irreversible processes. To de ne the irreversibility of the process of decohesion in a way consistent with the second law of thermodynamics, the dissipation function, de ned for an isothermal process as

D = -P int - Ω Ψe (ε) dx - Γ Ψs (u N , β), (17) 
must be non-negative. e computation of the time derivative of the non-smooth and non-convex potential requires some care. e functions u N (t) and β(t) are assumed to be absolutely continuous, and hence they have a derivative almost everywhere but not necessarily at any given point. Since absolutely continuous functions are of bounded variations, their le and right derivatives exist. Assuming Ψs is convex in u N and in β separately, and Ψs (u N , β) is also an absolutely continuous function for u N 0, β ∈ [0, 1], a result given by Frémond (2002, Appendix A.1.9) provides us with the following inequality:

Ψs (u N , β) -v N r r N -βA r , (18) 
for any r r N and β that satis es the inclusions (15). 1 Substituting this inequality in the de nition of the dissipation yields,

D Ω σ : ε dx - Γ v N r N + βA dx - Ω ∂Ψ e (ε) ∂ε ε dx + Γ v N r r N + βA r dx. ( 19 
)
1 To avoid complicated notation, we do not mention le or right derivatives.

In ( 19), the terms integrated over Ω cancel out. We then obtain

D Γ -v N r N -βA + v N r r N + βA r dx. (20) 
Since we want to ensure that D 0, we will assume that

-v N r N -βA + v N r r N + βA r 0, or equivalently, -v N r ir N -βA ir 0, (21) 
using the standard decomposition r N = r r N + r ir N and A = A r + A ir for the irreversible parts of the stress-like variables. A standard way to ensure this inequality is to postulate the existence of a proper closed convex pseudo-potential2 of dissipation Φ(v N , β) such that the dissipation process is governed by

-r ir N ∈ ∂ vN Φ(v N , β), -A ir ∈ ∂ β Φ(v N , β). ( 22 
)
Let us assume that the dissipation process is only governed by the rate of β. We can choose for the pseudo-potential of dissipation

Φ(v N , β) = I IR-( β). ( 23 
)
is model of dissipation only imposes that the evolution of β must decrease with time, i.e. β 0. e dissipative laws are thus

-r ir N = 0, -A ir ∈ ∂I IR-( β). (24) 
Equivalently, the last line of ( 24) can be wri en as

β ∈ ∂I IR+ (-A ir ). (25) 
In this form, we can easily interpret that A ir is the force that drives the evolution of β. Given that in (8), A = 0, we must have A r = -A ir , and thus

β ∈ ∂I IR+ (A r ). ( 26 
)
Remark 1. e choice of the pseudo-potential (23) results in a model that is rate independent. A rate dependency can be easily added here by considering a model that is non-linear in the rates of the dissipative variables, such as

Φ(v N , β) = c p + 1 (-β) p+1 + I IR-( β), (27) 
where the coe cient c is a viscosity and p a given parameter for the non-linear viscosity [START_REF] Acary | Nonsmooth fracture dynamics using a cohesive zone approach[END_REF].

Complete extrinsic cohesive zone model. Noting that r N = r r N , the complete model of the interface is given by

       β ∈ ∂I IR+ (A r ), -(r N + βσ c ) ∈ ∂I IR+ (u N ), -(wf (β) + σ c u N + A r ) ∈ ∂I [0,1] (β). ( 28 
)
We highlight that as r ir N = 0 and (26) implies one of β or A r is always zero, ( 21) is also zero. While the process of decohesion and surface creation is irreversible, it is also non-dissipative in the sense that -v N r ir N -βA ir = 0.

Variational inequality and complementarity problem. e system can be formulated as an evolution variational inequality by

-F ( β, β, u N , r N , A r ) ∈ N IR+×IR+×[0,1]          A r u N β          , with F ( β, β, u N , r N , A r ) =     - β r N + βσ c wf (β) + σ c u N + A r     . (29) 
Introducing slack variables µ, λ, and ν, this system can also be formalised using normal cones to convex sets as

   β = -λ, wf (β) + σ c u N + A r = µ, r N + βσ c = ν, -ν ∈ N IR+ (u N ), -µ ∈ N [0,1] (β), -λ ∈ N IR+ (A r ). (30) 
Using the de nition of a normal cone to a convex set de ned by simple bounds, this model can be wri en with complementarity conditions as a Mixed Complementarity System (MCS):

   β = -λ, wf (β) + σ c u N + A r = µ, r N + βσ c = ν, µ = µ + -µ -, 0 ν ⊥ u N 0, 0 µ + ⊥ β 0, 0 µ -⊥ 1 -β 0, 0 λ ⊥ A r 0. ( 31 
)
Energy Balance With the chosen constitutive laws, the power of internal forces can be wri en as

P int = - Ω ε : E : ε dx + Γ r N v N dx + Γ A β dx, = - d dt Ω ε : E : ε dx + Γ r N v N + A β dx, = -U + P s,int , ( 32 
)
where U is the potential elastic strain energy, and P s,int the power of surface internal forces de ned by

P s,int = Γ r N v N + A β dx.
Using the constitutive laws (30), we have

0 = v N r ir N + βA ir , = v N r N + βA -v N (ν -βσ c ) -β(µ -σ c u N -wf (β)). (33) Since -ν ∈ N IR+ (u N ) and -µ ∈ N [0,1] (β),
we have νv N = 0 and µ β = 0 almost everywhere, the expression (33) can be simpli ed to

0 = v N r N + βA + v N βσ c + β(σ c u N -wf (β)), = v N r N + βA + v N ∂ψ ∂u N + β ∂ψ ∂β , = v N r N + βA + ψ. ( 34 
)
We deduce that the power of surface internal forces is equal, almost everywhere, to the change of the smooth part of the free energy

P s,int = - Γ ψ dx = Γ βσ c v N dx. (35) 
Using the principle of virtual power for the actual velocities of the system, the energy balance, K = P ext + P int is almost everywhere

K + U + Γ ψ dx = P ext , ( 36 
)
where K is the kinetic energy. e rst law of thermodynamics in an isothermal se ing results in the energy balance K + Ė = P ext , where E is the internal energy. A simple identi cation shows that

Ė = -P int = Γ ψ dx + U. ( 37 
)
Since Ψ s = ψ for all admissible u N , β, we obtain that the fracture energy is given by

G = Γ βσ c v N dx dt = - Γ ψ dx dt = - Γ Ψs dx dt. (38) 
e following incremental energy balance can be then wri en as 

∆K + ∆U + ∆G =
Remark 2. For an evolution from an intact interface with u N = 0, β = 1 to a broken interface β = 0 on Γ, we get from (38) that ∆G = Γ w dx.

A linear evolution of the cohesion: triangle law

We now specify the exact form of the surface potential. We require that when the surface does not exist, i.e. u N = 0 and β = 1, Ψ s = 0, and that when the surface is fully decohered, i.e. β = 0, Ψ s = w. We assume that this decohesion is complete at a critical length δ c > 0. Choosing

   w = σ c δ c 2 , f (β) = (β -1) 2 , (40) 
ful ls the required conditions for the energy while ensuring that the potential remains convex in β. While β ∈ [0, 1] and β < 0, the second term in (31

) gives β = 1 - u N δ c
. Substituting this displacement-cohesion law into the free energy, we get:

Ψ s (u N ) = σ c u N - σ c u N 2 2δ c + I IR+ (u N ) + I [0,1] 1 - u N δ c . (41) 
e linear evolution of β, obtained as a consequence of (40), is depicted in Figure 1. e model ( 30) is now speci ed for a triangle law by

β Ψ s (0, β) u N β 1 w (a) δ c 1 (b) u N Ψ s (u N ) δ c w (c)
   β = -λ, σ c (δ c (β -1) + u N ) + A r = µ, r N + βσ c = ν, -ν ∈ N IR+ (u N ), -µ ∈ N [0,1] (β), -λ ∈ N IR+ (A r ). ( 42 
)
Since β is constrained to be non-positive, a smooth evolution of β starting with the initial value β = 1 will result in β being less than 1. We will show that in this case the µ -condition wri en in ( 31) is redundant and can be dropped from the formulation. Let us assume that β = 1 and µ -> 0. As β > 0, µ + = 0 and µ = -µ -. e second equation of ( 30) is then

σ c u N + A r = -µ -. (43) 
As A r and u N are both constrained to be positive, (43) implies that µ -0, which contradicts our assumption. We conclude that µ -vanishes. us, the condition is redundant and is dropped from the model in the following, allowing us to write µ = µ + and -µ ∈ N IR+ (β).

is model in ( 42) can be wri en as a Mixed Linear Complementarity Systems (MLCS) given by

   β = -λ, σ c (δ c (β -1) + u N ) + A r = µ, r N + βσ c = ν, 0 ν ⊥ u N 0, 0 µ ⊥ β 0, 0 λ ⊥ A r 0. ( 44 
)
Analytical expressions for an experiment with a given driven displacement Let us assume for a while that u N is a given function of time t given by the following piecewise linear function:

u N (t) =        1 2 t for 0 t < 1, 1 -1 2 t for 1 t < 2, -1 + 1 2 t for 2 t, (45) 
where u N is measured in mm and t in ms, and we choose δ c = 1 mm and σ c = 1 2 MPa. e time integration of the model described in (44) leads to the following piecewise linear response. We assume that the evolution is continuous.

• First loading phase 0 t < 1 Since u N (t) > 0 for t > 0, the reaction force is r

N (t) = -β(t)σ c . Let us assume that β(t) > 0 for t ∈ [0, T 1 ). We deduce that µ(t) = 0. Let us note that A r (t 0 ) = -σ c (δ c (β 0 -1) + u N (0)) = 0. Let us assume that λ(t) = 0, t ∈ [0, ], > 0 or equivalently β(t) = 0, t ∈ [0, ], > 0.
In that case, we get Ȧr (t) = -σ c v N (t) < 0 and then A r ( ) < 0, for > 0 which is impossible. Let us try with β(t) < 0, then A r (t) = 0 and

β(t) = 1 - u N (t) δ c and β(t) = - v N (t) δ c < 0. Since β(1) = 1 - 1 2δ c = 1 2
> 0, this is the only consistent solution for t ∈ [0, 1).

• Unloading phase 1 t < 2 Let us assume that β(t) > 0 for t ∈ [1, 2) and µ(t) = 0. Let us assume that λ(t) = 0, t ∈ [1, 2) or equivalently β(t) = 0.

In that case, we get Ȧr (t) = -σ c v N (t) > 0 and then A r (t) = 1 4 (t -1) > 0. is solution satis es the complementarity condition up to t = 2.

• Second loading phase 2 t Let us assume that

β(t) > 0 for t ∈ [T 1 , T 2 ) and µ(t) = 0. Let us assume that λ(t) = 0, t ∈ [2, 2 + ], > 0 or equivalently β(t) = 0. In that case, we get Ȧr (t) = -σ c v N (t) < 0 and then A r (t) = - 1 2 σ c (t -2) + A r (2) = - 1 4 (t -3)
which is positive for t < 3. For t 3, the only possible solution of the complementarity leads to

β(t) = - v N (t) δ c < 0 and A r (t) = 0. e cohesion variable β is then β(t) = - 1 2 (t -3) + 1 2 which is positive for t < 4. For t 4, the solution is β(t) = 0 and µ(t) = 1 2 (u N (t) -1).
e solution of this experiment is depicted in Figure 2.

Remark 3. Let us note that we need to derive the second term of (44) to get a closed form solution. is means that the evolution variational inequality is of relative degree at least 1. We observe in Figure 2 that the model behaves correctly, with β only changing as the crack opens v N > 0, and no change in β during reloading until u N exceeds its previous maximum value. Once the interface cohesion is fully eliminated we observe no further change in β.

Remark 4. Other types of smoother cohesion evolution behaviours are possible, for examples laws modelled a er that proposed in Michel and Suquet (1994).

Remark 5. We note in particular that other unloading behaviours are possible within the non-smooth mechanics framework. Rather than the horizontal unload-reload behaviour exhibited in our model, Talon and Curnier (2003) proposed a model where the unload-reload behaviour is vertical. is behaviour arises as they treat adhesion as a phenomenon featuring thin laments that immediately crumple under unloading, and thus cannot exert any force whatsoever. However, we view cohesion as the material providing a force that acts to close the crack, and unloading changes nothing about the underlying material state that would cause this force to change. We note that these two views are not mutually exclusive, as they model subtly di erent phenomena (adhesion vs cohesion).

Non-smooth elasto-dynamics of nite-dimensional systems

We now extend our model to consider bodies with nite numbers of degrees of freedom, to which are a ached masses, stinesses and external forces. ese degrees of freedom may or may not be associated with cohesive zones. We also consider the dynamic interaction of multiple bodies via the formulation of an impact law for the system.

Finite-dimensional systems via space-discretisation

Let us consider a nite-dimensional model of a linear elastic mechanical system, potentially a er a space-discretisation by the nite element method. Let us note by u ∈ IR n the displacements of the system and v = u the velocity. Starting from the principle of virtual power (7), the equilibrium equation can be wri en as

M v + K u = F ; u = v, (46) 
where M ∈ IR n×n is the mass matrix, assumed to be symmetric positive de nite, K ∈ IR n×n is the structural symmetric semi-de nite positive sti ness matrix and F ∈ IR n is the external applied force.

Let us now add that the cohesive zone is applied on a nite set of cohesive contact points labelled by α ∈ 1, m . In the case of small perturbations, the local displacements at contact u N = col(u α N , α ∈ 1, m ) are related to the displacements u by a linear relation wri en as

u N = Hu + b, (47) 
where H ∈ IR m×n and b ∈ IR m . Collecting all variables at contact in the same way (x = col(x α , α ∈ 1, m )), the equilibrium equations of the system are given by

             M v + Ku = F + H Sr N , u = v, β = -λ, u N = Hu + b, r c N = βσ c , wf (β) + σ c u N + A r = µ, r N + r c N = ν, -ν ∈ N IR+ (u N ), -µ ∈ N IR+ (β), -λ ∈ N IR+ (A r ), (48) 
where S ∈ IR m×m is a diagonal matrix that contains the tributary area of each cohesive zone node a er space-discretisation of the interface. For the sake of simplicity, we assume that σ c , w and f do not depend on α, but this can be straightforwardly extended.

Non-smooth dynamics and impacts

In the presence of unilateral contacts, solutions of nite-dimensional dynamical systems with a regular mass matrix (with nite masses associated with all degrees of freedom) exhibit jumps in velocities. In this context, the non-smooth dynamics must be carefully treated to obtain a consistent time-discretisation (Moreau, 1999). To this end, the equations of motion of a discrete ( nite-dimensional) mechanical system, and the relation with contact variables are wri en in terms of di erential measures by

   M dv + Ku dt = F dt + H di N , u = v, ( 49 
)
where dv is the di erential measure associated with the velocity v, assumed to be a bounded value function, and di N is the measure of the reaction at the contact. For the cohesive zone model, several further assumptions are made:

• We assume that the reaction due to cohesion force r c

N is bounded. In other words, the corresponding impulse does not contain atoms (Dirac measures);

• We assume that β and A r are absolutely continuous functions of time. Since the evolution of the cohesion variable is governed by the displacement u N that is assumed to be absolutely continuous in time, we assume the same regularity for β and A r .

e reaction at the contact can then be decomposed into the "contact impulse" dp N , and the contribution of the cohesive forces by

di N = S dp N -Sσ c β dt. ( 50 
)
When the interface is completely broken, we want to retrieve a contact law with impact. We choose in this work Moreau's impact law

0 dp N ⊥ v + N + ev - N 0 if u N 0, else dp N = 0, ( 51 
)
where e is the Newton coe cient of restitution. In terms of normal cone inclusion, this is equivalent to

-dp N ∈ N TIR + (uN) (v + N + ev - N ), or equivalently, -(di N + Sσ c β dt) ∈ N TIR + (uN) (v + N + ev - N ), (52) 
where T IR+ is the tangent cone of the set IR + .

Remark 6. e inclusiondp N ∈ N TIR + (uN) (v + N + ev - N ) deals with the impact and the constraints at the velocity level. When u N (t) = 0, this inclusion imposes that v + N (t) 0 and then u N (t + ) 0 for > 0. is result is formalised in Moreau's viability lemma (Moreau, 1999). e inequality u N 0 is not explicitly wri en since it is satis ed if (51) is satis ed and u N (t 0 ) 0. us, we can write the full set of equations for the system as

                   M dv + Ku dt = F dt + H (S dp N -Sσ c β dt), u = v, β = -λ, u N = Hu + b, v N = Hv, wf (β) + σ c u N + A r = µ, -µ ∈ N IR+ (β), -λ ∈ N IR+ (A r ), -dp N ∈ N T IR + (u N ) (v + N + ev - N ). (53) 
In complementarity terms, we write the model as

                                       M dv + Ku dt = F dt + H (S dp N -Sσ c β dt), u = v, β = -λ, u N = Hu + b, v N = Hv, wf (β) + σ c u N + A r = µ, 0 µ ⊥ β 0, 0 A r ⊥ λ 0, 0 dp N ⊥ v + N + ev - N 0 if u N 0, else dp N = 0. (54) 
e formulation of the dynamics of the problem with impact and a cohesive zone model is rather di erent from what is proposed in [START_REF] Acary | Nonsmooth fracture dynamics using a cohesive zone approach[END_REF]. In (53), the cohesion impulse measure -σ c Sβ dt is assumed to have only a density with respect to the Lebesgue measure. Furthermore, it is decoupled from the contact impulse measure dp N in the formulation of the constitutive laws of the interface. In other words, the cohesive reaction force is driven by u N and the contact impulse measure by v + N + ev - N .

Numerical time integration

We now specify the time-discretisation of the system, and show that it can be rearranged to a linear complementarity problem.

We then demonstrate that this problem is well-posed, and that the resulting discrete energy balance is dissipative.

4.1 Principles of the time integration scheme e time-integration scheme is based on the same principle as the Moreau-Jean scheme [START_REF] Acary | Numerical methods for nonsmooth dynamical systems[END_REF]Jean, 1999;Jean and Moreau, 1992;Moreau, 1999) for contact dynamics. For the impulsive terms, the measure of the time interval (k, k +1] is kept as a primary unknown:

p N,k,k+1 ≈ dp N ((k, k + 1]) = (k,k+1] dp N and i N,k,k+1 ≈ di N ((k, k + 1]) = (k,k+1] di N . (55) 
All the continuous or bounded value terms are approximated with a θ-method by

t k+1 t k x(t) dt ≈ hx k+θ , (56) 
using the notation

x k+θ = θx k + (1 -θ)x k+1 with θ ∈ [0, 1].
For the cohesive reaction force that is assumed to be bounded, we have

(k,k+1] di N = S (k,k+1] dp N -S t k+1 t k σ c β dt, (57) 
that is approximated by

i N,k,k+1 = Sp N,k,k+1 -hσ c Sβ k+θ . (58) 
e last equation of ( 54) is discretised as follows:

0 p N,k,k+1 ⊥ v N,k+1 + ev N,k 0 if ũN,k 0, else p N,k,k+1 = 0, (59) 
where a conditional statement determining whether contact occurs is de ned by an approximation of the displacement usually de ned as :

ũn,k = u N,k + h 2 v N,k . (60) 
In the following, we consider the index set

I k = {α, ũα N,k
0} and the following compact notation p

N,k,k+1 = col(p α N,k,k+1 , α ∈ I k ), v N,k+1 = col(v α N,k+1 , α ∈ I k ), H = row(H Iα• , α ∈ I k ) = H Iα•
. Following this principle, the time-stepping scheme is wri en as follows:

                                       M (v k+1 -v k ) + hKu k+θ = hF k+θ -hσ c H Sβ k+θ + H Sp N,k,k+1 , u k+1 = u k + hv k+θ , β k+1 -β k = -hλ k+1 , u N,k+1 = Hu k+1 + b k+1 , v N,k+1 = Hv k+1 , wf (β k+1 ) + σ c u N,k+1 + A r k+1 = µ k+1 , 0 β k+1 ⊥ µ k+1 0, 0 A r k+1 ⊥ λ k+1 0, 0 p N,k,k+1 ⊥ v N,k+1 + ev N,k 0. (61)
e problem (61) amounts to solving a special type of nite-dimensional variational inequality at each time step, namely a Mixed Complementarity Problem.

Discrete LCP for the triangular law.

e only non-linear term in the formulation of the complementarity system is due to f . In the following, we show that if f is linear, the problem (61) reduces to a Linear Complementarity System LCP(L, q) de ned by

w = Lz + q, 0 w ⊥ z 0. (62)
Substituting the triangle law into (61), we nally obtain the discretisation:

                                       M (v k+1 -v k ) + hKu k+θ = hF k+θ -hσ c H Sβ k+θ + H Sp N,k,k+1 , u k+1 = u k + hv k+θ , β k+1 -β k = -hλ k+1 , u N,k+1 = Hu k+1 + b k+1 , v N,k+1 = Hv k+1 , σ c δ c (β k+1 -1) + σ c u N,k+1 + A r k+1 = µ k+1 , 0 β k+1 ⊥ µ k+1 0, 0 A r k+1 ⊥ λ k+1 0, 0 p N,k,k+1 ⊥ v N,k+1 + ev N,k 0. (63)
Now, if we expand the rst line with the appropriate θ-method substitutions, we arrive at

M (v k+1 -v k ) + hK u k + hθ (1 -θ)v k + θv k+1 =h (1 -θ)F k + θF k+1 -hσ c H S (1 -θ)β k + θβ k+1 + H Sp N,k,k+1 . (64) 
We denote the augmented mass matrix as M = M + h 2 θ 2 K and the free impulse (without the contribution of the cohesive zone model

) îk,k+1 = M v k -hK u k + hθ(1 -θ)v k + h (1 -θ)F k + θF k+1
. us, the velocities can be determined by

v k+1 = M -1 îk,k+1 -hσ c H S (1 -θ)β k + θβ k+1 + H Sp N,k,k+1 , (65) 
and then

v N,k+1 = H M -1 îk,k+1 -hσ c H M -1 H S (1 -θ)β k + θβ k+1 + H M -1 H Sp N,k,k+1 , = H M -1 îk,k+1 + hσ c V S (θhλ k+1 -β k ) + W Sp N,k,k+1 , (66) 
where W = H M -1 H is the Delassus matrix reduced to active contacts and V = H M -1 H . When necessary, we modify the augmented mass matrix M and the free impulse î to take into account Dirichlet boundary conditions. In the same way as the velocity, we expand A r k+1 = µ k+1σ c δ c (β k+1 -1)σ c u N,k+1 where 1 represents a vector of ones, using the expression of u N,k+1 for all cohesive points:

u N,k+1 = u N,k + h(1 -θ)Hv k + hθHv k+1 + b k+1 , = u N,k + h(1 -θ)Hv k + hθH M -1 îk,k+1 + hσ c H S (θhλ k+1 -β k ) + H Sp N,k,k+1 + b k+1 , = h 2 θ 2 σ c U Shλ k+1 + hθV Sp N,k,k+1 + u N,k + h(1 -θ)Hv k + hθH M -1 îk,k+1 -h 2 θσ c U Sβ k + b k+1 , (67) 
where U = H M -1 H is the complete Delassus matrix. We obtain

A r k+1 = µ k+1 + σ c (δ c I -h 2 θ 2 σ c U S)hλ k+1 -hθσ c V Sp N,k,k+1 -σ c δ c (β k -1) + u N,k + h(1 -θ)Hv k + hθH M -1 îk,k+1 -h 2 θσ c U Sβ k + b k+1 . (68) 
We can now formulate an LCP with three variable pairs, (A, hλ), (β, µ) and v + N + ev - N , p N , noting that the unusual formulation of the third variable pair is required by the complementarity condition. In the most general case of multiple cohesive zones with boundary conditions enforced, the LCP(L, q) is de ned by

L =     0 -I 0 I σ c (δ c I -h 2 θ 2 σ c U S) -hθσ c V S 0 hθσ c V S W S     , q =      β k -σ c δ c (β k -1) + u N,k + h(1 -θ)Hv k + hθH M -1 îk,k+1 -h 2 θσ c U Sβ k + b k+1 H M -1 îk,k+1 -hσ c V Sβ k + ev N,k      , ( 69 
)
where 0 represents a matrix of zeros, and I is the identity matrix. e LCP is solved for the following complementarity variables:

w =     β k+1 A r k+1 v N,k+1 + ev N,k     , z =     µ k+1 hλ k+1 p N,k,k+1     , (70) 
where all of the cohesive zone variables should be understood as vectors. It is possible to straightforwardly generalise to each cohesive zone possessing its own values of the material parameters, in which case the material parameters can be treated as vectors.

Remark 7. e choice of hλ k+1 as an unknown of the LCP, rather than λ k+1 , is made to ensure that L does not degenerate in the limit as h → 0. is is related to the fact that λ, and hence β may jump at a given instant (see Figure 2).

Well-posedness of the discrete LCP

We wish to demonstrate that the system (69) exhibits correct behaviour for su ciently small time steps, i.e. that it has a unique solution for the state variables, and hence will reliably resolve the system numerically without introducing spurious and unphysical solution jumps. Let us start by formulating the main assumption:

Assumption 1. e time step h is chosen such that δ c Ih 2 θ 2 σ c U S is positive de nite.

Now, we prove a proposition that the system is well-posed:

Proposition 1. Under Assumption 1, the LCP(L, q) de ned by (69) has a solution. e solution is unique for β k+1 and λ k+1 and v N,k+1 . For β k > 0, the solution is also unique for A r k+1 and µ k+1 .

We start by proving that L is a semi-positive de nite matrix for h satisfying Assumption 1. Proving this property for L amounts to proving that 1 2 L + L given by

1 2 L + L =     0 0 0 0 σ c (δ c I -h 2 θ 2 σ c U S) 0 0 0 W S     , (71) 
is also a positive semi-de nite matrix. Since M is a positive de nite matrix, the matrices W and U are semi-positive de nite matrices. erefore, we can conclude that L is a semi-de nite positive matrix. From eorem 3.1.2 in Co le et al. ( 2009), if the LCP(L, q), with a semi-de nite positive matrix L, is feasible, then it is solvable. e feasibility conditions for a LCP are given by Lz + q 0 and z 0,

and in the case of LCP(L, q),

           z 1 0, z 2 0, z 3 0, -z 2 + β k 0, z 1 + σ c δ c I -h 2 θ 2 σ c 2 U S z 2 -hθσ c SV z 3 + q 2 0, hθσ c V Sz 2 + W Sz 3 + q 3 0. ( 73 
)
Rearranging the inequalities, we obtain

       0 z 2 β k , z 1 0, z 1 -σ c δ c I -h 2 θ 2 σ c U S z 2 + hθσ c SV z 3 -q 2 , z 3 0, W Sz 3 -hθσ c V Sz 2 -q 3 . (74) 
Since β k 0, the rst inequality is feasible for z 2 . Let us search for a feasible point z such that z 2 = 0. We must check that the following inequalities are feasible for z 1 and z 3 :

z 1 hθσ c SV z 3 -q 2 , z 1 0, W Sz 3 + q 3 0, z 3 0. ( 75 
)
Let us consider the following convex quadratic program:

min z3 1 2 z 3 W Sz 3 + z 3 q 3 , z 3 0. (76) 
A solution z 3 of ( 76) exists and satis es the optimality conditions:

w 3 = W Sz 3 + q 3 0, z 3 0, w 3 z 3 = 0. ( 77 
)
Finally, let us choose z 1 = max(0, hθσ c SV z 3q 2 ), which satis es the relevant inequalities. We have proved that the point z = col(z 1 , 0, z 3 ) is a feasible point of the inequalities ( 73). e LCP(L, q) is feasible and thus solvable.

For the uniqueness of the solution, we use the characterisation of the solutions of LCP(L, q), denoted by SOL(L, q), when L is a semi-positive de nite matrix (Co le et al., 2009, eorem 3.1.7) as a polyhedral set de ned by

SOL(L, q) = z | z 0, Lz + q 0, q (z -z) = 0, L + L (z -z) = 0 , ( 78 
)
where z is an arbitrary solution. In our case, the condition L + L (zz) = 0 yields

σ c δ c I -h 2 θ 2 σ c U S (z 2 -z2 ) = 0, W S(z 3 -z3 ) = 0. ( 79 
)
Under Assumption 1, δ c Ih 2 θ 2 σ c U S has full-rank. We get that z 2 , and hence hλ k+1 is unique. Since β k+1 = β khλ k+1 , β k+1 is also unique. From w 3 -w3 = hθσ c V S(z 2 -z2 ) + W S(z 3 -z3 ) = 0, we conclude that w 3 is unique and therefore v N,k+1 is also unique. Furthermore, (z 3 -z3 ) is in the kernel of W and then of H , so we have also H (z 3 -z3 ) = 0.

From the condition, q (zz) = 0, we obtain

β k (z 1 -z1 ) + H M -1 îk,k+1 -hH Sσ c β k + ev N,k (z 3 -z3 ) = 0, (80) 
since z 2 -z2 = 0. Since v N,k = Hv k , we have the following simpli cation:

M -1 îk,k+1 -h(1 -θ)σ c H Sβ k + ev k H (z 3 -z3 ) = 0, (81) 
since H (z 3 -z3 ) = 0, and then

β k (z 1 -z1 ) = 0. (82) 
For

β k > 0, z 1 , hence µ k+1 is unique. Using that the linear relations A r k+1 = µ k+1 -σ c δ c (β k+1 -1) + σ c u N,k+1 and u N,k+1 = u N,k + hv N,k+θ , we conclude that A r k+1 is unique if β k > 0.
Corollary 1. Under Assumption 1, the solution of the problem (63) exists and is unique for the variables (v k+1 , u k+1 , β k+1 , λ k+1 ) for a su ciently small time step h.

e uniqueness of β k+1 comes from Proposition 1. For the uniqueness of v k+1 , let us consider two solutions vk+1 , βk+1 , pN,k,k+1 and vk+1 , βk+1 , pN,k,k+1 , from (65), we get

vk+1 -vk+1 = M -1 -hθσ c H S( βk+1 -βk+1 ) + H S(p N,k,k+1 -pN,k,k+1 ) . ( 83 
)
Since pN,k,k+1 -pN,k,k+1 is in the kernel of H and βk+1 -βk+1 = 0, we can conclude that v k+1 is unique, and the integration rule u k+1 = u k + hv k+θ implies the uniqueness of u k+1 .

Corollary 2 (Convex optimisation problem). Under Assumption 1, the LCP(L, q) is equivalent to the following convex quadratic problem:

min hλ k+1 ,p N,k,k+1 ,µ k+1 1 2   hλ k+1 p N,k,k+1     σ c (δ c I -h 2 θ 2 σ c U S) 0 0 W S     hλ k+1 p N,k,k+1   + q     µ k+1 hλ k+1 p N,k,k+1     ,
subject to µ k+1 0, hλ k+1 0, p N,k,k+1 0, -hλ k+1 + q 1 0,

µ k+1 + σ c δ c I -h 2 θ 2 σ c U S hλ k+1 -hθσ c V Sp N,k,k+1 + q 2 0, hθσ c V Shλ k+1 + W Sp N,k,k+1 + q 3 0. ( 84 
)
e following remarks and comments can be made:

• e condition on the size of the time step is not an onerous one in practice since it is based on the condition that δ c Ih 2 θ 2 σ c U S is positive de nite in which h only appears as h 2 . In most nite elements applications, H is assumed to be full-rank. In that case, p N,k,k+1 is also unique. e possible non-uniqueness of µ k+1 and A r k+1 when β k = 0 comes from the fact that we impose two redundant constraints β k+1 0 and β k+1 0 related to β 0 and β 0. In practice, this is harmless since it does not in uence the state variables (v k+1 , u k+1 , β k+1 ).

• It is important to note that the LCP becomes infeasible if β k < 0. While in principle the constraints act to enforce a β k = 0 condition, in practice due to the nite numerical precision of the solution at each step, the condition can be violated. In this case, the solution of the LCP can fail in turn. As such, when the value of β k is near the machine accuracy, we set β k+1 to 0 and µ k+1 is given by the equation ( 68). We reduce the corresponding contact to a simple unilateral contact with impact LCP solving only for v N,k+1 , p N,k,k+1 . We note that this schema is also e ective numerically, as by decreasing the size of the LCP, we speed up its solution.

• e convex minimisation problem has no straightforward mechanical meaning. A future goal would be to express a convex minimisation problem in the spirit of the variational approach to fracture (Bourdin et al., 2008). is is beyond the scope of the paper and le to further investigations.

• In practice, the LCP(L, q) can be solved by pivoting techniques for LCPs (such as Lemke's algorithm) or other methods such as interior point methods, taking advantage of the convex minimisation problem (Nocedal and Wright, 1999;Wright, 1996) (see also Acary and Brogliato (2008, Chapter 9) in the context of non-smooth mechanics).

Discrete energy balance

In this section, we show that the discrete energy balance is satis ed by the proposed time-stepping scheme. Starting from the energy balance in the non-impulsive case in (36), we need to adapt the de nition of the energy balance when impacts occur, as can be the case with nite masses. Starting from the equation of motion given in ( 49) and multiplying by 1 2 (v + + v -), we get

1 2 v + + v -M dv+ 1 2 v + + v -Ku dt = 1 2 v + + v -F dt+ 1 2 v + + v -H S dp N - 1 2 v + + v -H σ c Sβ dt, (85) 
Since v + dt = v -dt = v dt and M and K are symmetric matrices, we obtain

d 1 2 v M v + d 1 2 u Ku = F v dt -(Hv) σ c Sβ dt + 1 2 H v + + v - S dp N . (86) 
With the standard de nition of the kinetic energy K and strain potential energy U in the space-discretised case, we obtain

dK + dU = F v dt -(Hv) σ c Sβ dt + 1 2 H v + + v - S dp N = v F dt -v N σ c Sβ dt + 1 2 v + N + v - N S dp N . ( 87 
)
With the space-discretised version of the fracture energy given in ( 38)

G = v N σ c Sβ dt, (88) 
we obtain the equivalent energy balance for the space-discretised system:

dK + dU + dG = v F dt + 1 2 v + N + v - N S dp N . ( 89 
)
By integrating this la er relation over a time interval (t 1 , t 2 ] and de ning the total energy of the system as T = K + U + G, we obtain the incremental energy balance:

∆T = T + (t 2 ) -T -(t 1 ) = W ext + W impact , (90) 
where the work of external forces and impact are given by

W ext = t2 t1 v F dt, and W impact = (t1,t2] 1 2 v + N + v - N S dp N . ( 91 
)
Using the constitutive law for the impact equation ( 52), it is shown (Acary, 2016) that as the work of impact dissipates energy, then

∆T = T + (t 2 ) -T -(t 1 ) -W ext = W impact 0. ( 92 
)
Let us now show that an equivalent incremental energy balance is also satis ed by the time-stepping method. Following the same method as in Acary ( 2016), we derive the following incremental energy balance for the θ-method:

∆K + ∆U = 1 2 -θ v k+1 -v k 2 M + (u k+1 -u k ) 2 K + hv k+θ F k+θ -hv N,k+θ σ c Sβ k+θ + v N,k+θ Sp N,k,k+1 , (93) 
where v 2 M = v M v and u 2 K = u Ku. Let us de ne the discrete approximation of the work done by the external forces and the impact term within the step by

W ext,k+1 = hv k+θ F k+θ ≈ t k+1 t k F v dt, and W impact,k+1 = v N,k+θ Sp N,k,k+1 , (94) 
and the discrete approximation of the fracture work by

∆G k,k+1 = hv N,k+θ σ c Sβ k+θ ≈ t k+1 t k v N σ c Sβ dt. (95) 
We have the following estimate for the variation of the total mechanical energy for 1 2 < θ 1:

∆(K + U) + ∆G k,k+1 -W ext,k+1 < W impact,k+1 . (96) 
Furthermore, it can be shown (see Acary (2016) for details) that the discretisation of the Moreau impact law (52) yields

W impact,k+1 0 if θ 1 1 + e , (97) 
and then, we obtain

∆(K + U) + ∆G k,k+1 -W ext,k+1 < W impact,k+1 0. (98) 
For θ = 1 2 , and then for any value of e ∈ [0, 1], the incremental energy balance can be re ned to

∆(K + U) + ∆G k,k+1 -W ext,k+1 = W impact,k+1 0. (99) 
Comparing to the energy balance (39), we conclude that the incremental discrete energy balance, provided by the time-stepping scheme, ensures the practical stability of the scheme by not spuriously adding energy into the system.

Numerical validations

We implement our discretised system in Python, and we solve the LCP using the Siconos so ware [START_REF] Acary | An introduction to Siconos[END_REF], and use the robust Lemke (Lemke and Howson, Jr., 1964) algorithm to resolve the system. While other (possibly faster) algorithm choices are available, Lemke guarantees that the correct solution to the LCP will be found, within numerical precision.

asi-static scalar case with elastic spring

For the sake of illustration, we will consider rstly a static system. Let us consider the case of an elastic rod bound onto a rigid substrate with a cohesive zone, as outlined in [START_REF] Acary | Nonsmooth fracture dynamics using a cohesive zone approach[END_REF] and Chaboche et al. (2001), and depicted in Figure 3:

1 2 u/F
Figure 3: Two nodes joined by a spring. Node 1 features a cohesive zone bound onto a rigid substrate, while the driving displacement or force is applied to node 2.

First, we consider the structural sti ness matrix:

K =   ES/ -ES/ -ES/ ES/   , (100) 
where is the rod length, S the rod cross-sectional area (and area of the cohesive zone) and E is the Young's modulus of the rod. However, it is clear that this matrix is singular, so we modify it (and the external force F ) in order to enforce the boundary conditions and create an invertible matrix K. If we consider (48) in static equilibrium (i.e. where we remove the M v term from the equilibrium equation), we can conduct some simple re-arrangements to obtain an LCP for the general case of multiple cohesive zones, 0 w = Lz + q ⊥ z 0. e discretisation otherwise follows (61), other than there being no θ-method used, as the velocities do not enter into the formulation. us, we have a fully implicit discretisation, giving the LCP

w =     β k+1 A r k+1 u N,k+1     , L =     0 -I 0 I σ c δ c I -σ c 2 H K-1 H S -σ c H K-1 H S 0 σ c H K-1 H S H K-1 H S     , z =     µ k+1 hλ k+1 ν k+1     , q =       β k -σ c δ c (β k -1) + H K-1 Fk+1 -σ c H Sβ k + b k+1 H K-1 Fk+1 -σ c H Sβ k + b k+1       . ( 101 
)
We can then solve this system for the case where the far end of the rod is driven according to the relation

u 2 (t) =        1 2 t for 0 t < 1, 1 -1 2 t for 1 t < 3, -2 + 1 2 t for 3 t, (102) 
where extension is taken to be positive, and compression negative. e solution of the system (101) under driving input ( 102) with H = 1 0 , material parameters σ c = 0.5 MPa, δ c = 1.0 mm, E = 5.0 MPa and = 1.0 mm, simulated for 8 ms with 4000 time steps is given in Figure 4: However, we must be careful that the behaviour of the system remains well-posed. When σ c δ c I -H K-1 H S is no longer positive de nite, the system loses uniqueness and multiple solutions are possible. So long as the condition

0 5 t (ms) -0.5 0.0 0.5 1.0 1.5 2.0 u (mm)
σ c δ c E , (103) 
is ful lled, the system remains stable and there is a unique solution. Physically the unstable behaviour represents the accumulation of more elastic strain energy than can be released at the cohesive zone. Geometrically, the so ening slope of the triangular law is greater than the elastic sti ness of the system, resulting in both constitutive laws only being satis ed at u N > δ c (see Chaboche et al. (2001) for further details). For the sake of illustration, we simulate the above system, but with E = 0.5 in Figure 5: We may observe that the loss of uniqueness results in a "solution jump", where the system moves from completely unbroken to completely broken in a single time step. More energy is stored elastically than can be released by the cohesive zone, resulting in the instantaneous rupture once the critical traction is achieved. It should also be noted that if larger time steps are chosen, the value of u N at which β goes to zero is subject to "overshoot", meaning that an additional spurious energy release occurs.

0 5 t ( 
is ill-posed system behaviour can be entirely avoided by working in dynamics, so from this point onwards we do so. However, as Figure 4 demonstrates, the model can be successfully implemented in statics, provided that the condition given in ( 103) is always respected.

Dynamic cohesive zone model with elasticity

Dynamic case with single elastic spring

Now, we consider the same system as above, but this time in dynamics. We use the system parameters σ c = 0.5 MPa, δ c = 1.0 mm, e = 0.0, E = 0.5 MPa, l = 1 mm, S = 1 mm 2 , and M =   0.25 0 0 0.25   g. ese values result in an ill-posed system in the static case, but as we demonstrate below, the addition of dynamics regularises the system. We simulate the system for 8 ms using 4000 time steps and θ = 1, subject to the same driving displacement (102). We observe the system evolution depicted in Figure 6: We may observe in Figure 6 that the inertial e ects result in a smoothly changing value of β with time, as opposed to the instantaneous rupture of the equivalent system in statics, thus demonstrating the well-posed nature of the system.

In order to demonstrate the e ect of including percussions in the formulation, we may simulate the same system of a spring a ached to a cohesive zone, but with di erent parameters and subject to a di erent driving force. We use the system parameters σ c = 1.0 MPa, δ c = 1.0 mm, e = 0.0, E = 10 MPa, l = 1 mm, S = 1 mm 2 , and M =   2.5 0 0 2.5   g. e system is subject to the driving force in Newtons:

F = 1.5σ c exp (0.25t) sin (πt) . (104) 
We observe the system evolution depicted in Figure 8: e symmetry of the double cantilever beam allows us to simulate it as a single cantilever beam xed at the le end (diagonal hatching), with cohesive zone nodes a ached to a rigid substrate along the symmetry plane (cross hatching). A force or velocity is applied at the upper right hand corner, at the free end. We follow the decohesion at the points labelled 0 through 4.

We simulate a double cantilever beam (DCB) shown in Figure 8 inspired by that found in Camacho and Ortiz (1996), but using parameters for polymethyl methacrylate (PMMA). We simulate a DCB with a length of 2 mm, with a pre-existing crack of 0.4 mm length. e beam is taken to have a thickness of 1 mm, and to be loaded in plane stress. e beam is meshed using Gmsh 4.8.1 (Geuzaine and Remacle, 2009), and read into Python with Meshio 5.3.0 (Schlömer, 2022) (as are all the nite element meshes in this work). e bulk material has Young's modulus E = 2.7 × 10 3 MPa, a Poisson's ratio ν = 0.39 (Doitrand et al., 2021b), and a mass density ρ = 1.18 × 10 -3 g/mm 3 (Doitrand et al., 2019). We use constant strain (T3) triangular elements in our nite element discretisation, with a consistent mass matrix. e cohesive zone parameters are the critical traction σ c = 45 MPa, the fracture energy G c = 0.14 N/mm, and the critical distance δ c = 0.0062 mm, while the coe cient of restitution e = 0.

We simulate only half the system, exploiting the symmetry inherent to the problem. us, the lower boundary of the system consists of a series of nodes with cohesive zones a ached, excepting a section representing an initial crack. It is important to note that where the Dirichlet boundary intersects with the cohesive zone boundary, the node is removed from the set of cohesive zone nodes, and its tributary area is allocated to the neighbouring cohesive node. us, the crack is allowed to propagate over the entire length of the system, but there is no possibility of the LCP being made infeasible by trying to enforce the Dirichlet boundary condition on a cohesive zone node. e mesh is shown in Figure 9: We simulate the upper half of the DCB using a controlled displacement test, displacing at the rate of 1 mm/ms to a target displacement at the free end of 0.6 mm. We set θ = 0.5, and adopt a large initial time step of h = 0.0015 ms, so that the loading stage before the crack initiates is not overly time-consuming. Once the crack initiates, we enforce a smaller time step of h = 2.5 × 10 -4 ms, ensuring that the LCP remains well-posed. In principle, we also allow adaptive time-stepping (dividing the time step in half) in the event that the LCP does not resolve correctly, however, this condition is never activated during the simulation. We insist on the fact that this time step is relatively large compared to simulations performed with intrinsic models which require small time steps due to the initial sti ness of the system. e results of the simulation are shown in 

c R = E 2ρ(1 + ν) 0.886 + 1.14ν 1 + ν , (105) 
which is a good approximation to the solution of the Rayleigh wave function (Freund, 1998). We apply a Savitzky-Golay lter (Savitzky and Golay, 1964) to the crack length in order to smooth the signal slightly. A window of 31 time steps and a rst-order polynomial is observed to reduce the noise su ciently so that the underlying velocity trend is legible. e crack tip velocity is then calculated by assuming a linear growth rate between the spatial points as they crack. We may observe in Figure 10 that the speed of the decohesion gradually declines over time, other than for the very rst point to crack, which takes substantially longer than the others. Some slowing of the initial decohesion is observable in the curve for β 3 in sub gure (a), as a result of the in uence of the geometry of the problem. In sub gure (b), we can see that the size of the fracture process zone remains essentially constant throughout the cracking process. Sub gures (c) and (d) demonstrate the relatively steady growth in the crack length, with an initial sharp increase occurring as the crack establishes before gradually tapering away. We also note that the crack velocity is very small relative to the mode I theoretical limit of c R , due to both geometrical e ects and the low velocity at which the displacement is controlled.

We can also consider the energy-conserving properties of the integration scheme, by plo ing the changing energetic quantities: We can see in Figure 11, that the work input matches exactly with the sum of the strain, kinetic and expended cohesive energies, indicating that the integration scheme successfully conserves the energy. As the crack grows, a comparatively greater share of the work input is used in the creation of new surface area than in the storage of strain energy, while the kinetic energy remains negligible (as is to be expected in a slow displacement-controlled simulation). However, at the point at which the crack is constrained from further growth, elastic energy becomes the dominant fraction of the total energy. We also simulate the same system under force control, this time increasing the loading (in Newtons) according to F = 10t until one element is fully decohered, at which point the force is held constant. e results of the simulation are shown in Figure 12 Once again, we apply a Savitzky-Golay lter with a window size of 31 time steps and a rst order polynomial on the crack length L, to reduce the noise when calculating L. In comparing Figure 10 and Figure 12, we may observe that the forcecontrolled system decoheres much more slowly initially, up until the point at which the crack begins, where it then travels much more rapidly than the velocity-controlled system, with crack arrest being achieved by the interaction with the xed boundary of the system. is geometry, as well as the small applied force, once again results in the crack being slow in comparison with the theoretical limit of c R , although at the peak velocity it is approximately an order of magnitude faster than the speed of the crack under velocity control. We note that the decohesion of points 1, 2 and 3 are more rapid and more concentrated in time than for the velocity controlled system, and that point 4 experiences some decohesion, whereas it remained intact for the velocity controlled system. Once again, we can also consider the energetic properties of the system: We may observe that the energetic behaviour of this system depicted in Figure 13 is rather di erent to that of the velocity controlled system. We observe that the system is truly dynamic, and a signi cant part of the work input is transformed into kinetic energy. We also observe that at a certain point, the work input decreases and the system moves towards its equilibrium state, with a certain amount of surface energy, and exchanges between the strain and kinetic energies. We note that total system energy matches exactly the total work input, indicating that the numerical schema successfully conserves energy in a simulation with more dynamic e ects.

Rhombus hole specimen

As a more direct comparison of our method against an equivalent intrinsic model, we also simulate the rhombus hole specimen in Doitrand et al. (2019), applying (69) with the same principles as for the DCB. e sample has a width of 40 mm and a height of 60 mm, with a rhombus hole in the centre that has a corner angle γ and a half-diagonal length of 4.95 mm, as illustrated in Figure 14. e sample has a thickness of 10 mm, and is simulated in plane strain (Doitrand, personal communication). e vertical half diagonal retains a constant length, but the angle γ is varied to produce di erent geometries.

We exploit symmetry so that we need only simulate one quarter (the top-right) of the sample. e boundary conditions on the le and bo om edges are thus symmetry conditions, with normal displacements restricted to be positive or zero, and tangential displacements unrestrained. e right edge and the rhombus hole edge are similarly unrestrained, while the loading is applied as a Dirichlet condition on the top edge. As the crack is predicted to occur along the le edge, these nodes are included in the set of cohesive zone nodes. e 1 mm length closest to the corner of the rhombus hole is allocated a very ne mesh, with one node every 0.002 mm, ensuring accurate resolution of the cohesive zone.

e mesh is steadily coarsened to reach a characteristic size of 0.5 mm at the top of the le hand edge, while all of the bulk regions that exhibit purely elastic behaviour are allocated a characteristic size of 2 mm. Hence, the mesh is highly re ned in the region of the crack process, while remaining computationally e cient. In order to be er match the simulations of Doitrand et al. ( 2019), we use a quadrangular mesh, generated by the Blossom-ad algorithm included in Gmsh (Remacle et al., 2012). e mesh is shown in Figure 15: e loading protocol is to impose a vertical displacement of a rate of 1 mm/s on the top edge, while also enforcing a no-slip condition, so that the horizontal velocities on the top edge are zero. At the time the rst node cracks (i.e. β 1 × 10 -12 ), the vertical loading is stopped and the displacement is held constant. e simulation continues until 20 time steps have passed with no changes in the value of β in any of the cohesive zone nodes. e simulation is carried out with the values in Doitrand et al. ( 2019) representing PMMA, namely a Young's modulus E = 1600 MPa, a Poisson's ratio ν = 0.37, a density ρ = 1.19×10 -3 g/mm 3 , a critical traction σ c = 80 MPa, a fracture energy G c = 0.25 N/mm, and a coe cient of restitution e = 0. We use linear quadrangular (Q4) nite elements with full integration and a consistent mass matrix. We set θ = 0.5, and our initial time step size as h = 4 ms, up until the point that cracking occurs, when we set h = 1 × 10 -4 ms. We once again allow in-principle adaptive time-stepping if required to resolve the LCP, however the simulation successfully completes without activating this condition.

We can plot the results of the simulation in terms of the crack progression, once more tracking results at the points of interest, which in this case are the point at which the crack begins (index 0), the point at which the crack arrests (index 4), and the quarter, half and three-quarter points between them (indices 1, 2, and 3, respectively). Once again, we have applied a Savitzky-Golay lter of window size 31 time steps, and polynomial order 1 to the crack length, to obtain a smoother crack velocity. In this case, we observe several interesting behaviours in Figure 16. Unlike the relatively steady decohesion observed in the DCB, we observe that the node at the corner of the rhombus hole steadily decoheres over a long period of time, but once it reaches zero and the crack begins growing, the speed of decohesion is rapid (shown in the inset to (a)). Similarly, when considering the spatial distribution of the cohesion variable at the time each quarter point is fully decohered, we see that the length of the fracture process zone is essentially constant, as is the case with the DCB. e length of the crack grows with a velocity that appears to uctuate around a decreasing overall trend.

e nal crack arrest length is 0.64 mm, which compares well with the value of 0.593 mm obtained by Doitrand et al. (2019).

Once again, we may also study the energetic properties of the solution algorithm that we implement: We can see that the strain energy accounts for the majority of the work input, while the kinetic energy and surface energy are both negligible.

As a nal point of comparison, we may follow Doitrand et al. (2019), and vary the rhombus hole angle γ while observing the e ect on the crack initiation force F init and the crack arrest length L arrest . Some changes to the pa erns of mesh re nement were made in the interests of computational e ciency, with a re ned mesh being retained at the corner and in the region of the expected crack arrest point, but being less re ned in between. We may observe in Figure 18 that there is a good agreement between the results of the simulations in Doitrand et al. ( 2019), and the results of our models, with the initiation force decreasing and crack arrest length increasing as the rhombus hole angle increases. Possible reasons that may account for the di erences may be the initial rigidity present in the CZM used by Doitrand et al. (2019) (they allocated an initial sti ness of 1 × 10 8 MPa/mm), di erent meshes used to simulate the results, and di erent implementations of the cohesive zone between our nite elements and those of Abaqus. We note also that our results are achieved with substantially larger minimum time steps (1 × 10 -4 ms in our case, against 1.5 × 10 -6 ms for Doitrand et al. ( 2019)).

ey also conducted a sensitivity analysis for the sti ness of the CZM using the 90 • rhombus hole mesh, with the minimum time step size ranging from 1 × 10 -4 ms for a sti ness of 1 × 10 6 MPa/mm, down to 2.4 × 10 -7 ms for a sti ness of 1 × 10 10 MPa/mm. It is clear that our implementation of an extrinsic CZM is substantially more numerically e cient than a typical intrinsic CZM, in some cases by orders of magnitude.

Conclusions

In this paper, we rst used the principle of virtual power to establish the equilibrium and boundary conditions of a body with a cohesive zone. en, we postulated a free energy potential for the surface that allowed us to obtain non-smooth state laws of the system. ese state laws describe extrinsic cohesive zone models that do not have the "shi ed intrinsic model" structure, thus guaranteeing appropriate physical behaviour under complex dynamic loading. By appropriately specifying a dissipative pseudo-potential, we obtained a complete generalised constitutive model of the cohesive zone system for normal crack opening, and demonstrated that while in this model decohesion is an irreversible process, it is also non-dissipative. We then speci ed a particular energetic potential in order to obtain a linear evolution of the cohesion variable with the displacement jump across the crack.

By appropriately discretising our system, and working with di erential measures, we were able to include non-smooth impact dynamics within our model. e discretised system was combined with a θ-method to obtain a time-stepping scheme that could be formulated as a linear complementarity problem. We then proved that the problem was well-posed for a su ciently small time step, meaning that a solution exists, and that it is unique for certain variables. Moreover, it has been shown that the scheme has very good properties of conservation of energy balances.

We then implemented the model numerically by solving the complementarity problem at each time step. We demonstrated the system in statics, rstly parameter values leading to a well-posed problem, and then with values leading to an ill-posed problem. We then demonstrated that the same system in dynamics remains well-posed. Finally, we simulated some physical systems of interest by combining the linear complementarity problem with the nite element method. Both a double cantilever beam, and a rhombus hole sample were satisfactorily resolved, with the numerical scheme demonstrating good integration properties. e results of the rhombus hole simulations compared well with those of other authors in the literature, and were achieved with much larger time steps. is work has demonstrated that applications of convex analysis can lead to physically correct and numerically e cient models for crack propagation. In this work, we decided to remain in a frictionless linear se ing and to consider only a normal decohesion process to avoid excessive complexity in the presentation, but natural extensions of this work are to generalise the model to tangential displacements, adopt other possible forms of the cohesion evolution law, and to combine crack propagation with other physical phenomena.
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Figure 1 :

 1 Figure 1: (a) e shape of the surface potential Ψ s with respect to β. (b) e consequent linear evolution of β with u N . (c) e shape of the surface potential Ψ s with respect to u N , where the initial slope is equivalent to the value of σ c , and the nal value is w.

Figure 2 :

 2 Figure 2: Illustration of the extrinsic cohesize law with a linear evolution of cohesion. (a) e displacement u N as a function of time t. (b) e cohesion β as a function of time t. (c) e cohesion β as a function of displacement u N . (d) e thermodynamic driving force A r as a function of time. (e) e slack variable µ as a function of time t. (f) e slack variable λ as a function of time t.

Figure 4

 4 Figure 4: e solutions of the elastic bar with cohesive zone system. (a) e nodal displacements u 1 and u 2 as a function of time t. (b) e cohesion β as a function of time t. (c) e cohesion β as a function of crack opening displacement u N . (d) e driving force A r as a function of time t. (e) e reversible part of the reaction force r N and the cohesive force r c N as a function of time t. (f) e rate of decohesion λ as a function of time t.

Figure 5

 5 Figure 5: e solutions of the elastic bar with cohesive zone system for ill-posed system values. (a) e nodal displacements u 1 and u 2 as a function of time t. (b) e cohesion β as a function of time t. (c) e cohesion β as a function of crack opening displacement u N . (d) e driving force A r as a function of time t. (e) e reversible part of the reaction force r N and the cohesive force r c N as a function of time t. (f) e rate of decohesion λ as a function of time t.

Figure 6

 6 Figure 6: e solutions of the dynamic CZM system with elasticity, for values that are ill-posed in statics. (a) e displacements u as a function of time t. (b) e velocities v as a function of time t. (c) e cohesion β as a function of time t. (d) e thermodynamic driving force A r as a function of time t. (e) e percussion p N as a function of time t. (f) e cohesion β as a function of crack opening displacement u N .

Figure 7

 7 Figure 7: e solutions of the dynamic CZM system with elasticity. (a) e displacements u as a function of time t. (b) e velocities v as a function of time t. (c) e cohesion β as a function of time t. (d) e thermodynamic force A r as a function of time t. (e) e percussion p N as a function of time t. (f) e cohesion β as a function of crack opening displacement u N .

Figure 9

 9 Figure 9: e mesh of the double cantilever beam, and the total displacements of the mesh at the end of the controlled displacement test, measured by the norm of the displacements at each node.

Figure 10

 10 Figure 10: e simulation of a double cantilever beam under velocity control. (a) e cohesion β as a function of time t at the points of interest. (b) e cohesion β as a function of distance from the tip of the initial crack x crack , at the times that the cohesion of each of the points of interest goes to zero. (c) e length L of the crack as a function of time t. (d) e crack tip velocity L normalised by the Rayleigh wave speed c R , as a function of time t.

  Figure 11: e energies of the dynamic double cantilever beam simulation under velocity control.

Figure 12

 12 Figure 12: e simulation of a double cantilever beam under force control. (a) e cohesion β as a function of time t at the points of interest. (b) e cohesion β as a function of distance from the tip of the initial crack x crack , at the time that the cohesion of each of the points of interest goes to zero. (c) e length L of the crack as a function of time t. (d) e crack tip velocity L normalised by the Rayleigh wave speed c R , as a function of time t.

  Figure 13: e energies of the dynamic double cantilever beam simulation under force control.

  Figure14:e double symmetry of the rhombus hole specimen allows us to simulate only the top right quarter. Standard symmetry conditions (diagonal hatching) are applied to the bo om boundary, while cohesive zone nodes and a symmetry condition are a ached to the le boundary (cross hatching). A velocity is applied uniformly to all points on the top boundary.e vertical half diagonal retains a constant length, but the angle γ is varied to produce di erent geometries.

Figure 15

 15 Figure 15: e mesh of the rhombus hole specimen for the angle γ = 90 • , and the total displacements of the mesh at the end of the test, measured by the norm of the displacements at each node.

Figure 16

 16 Figure 16: e simulation of a rhombus hole specimen with γ = 90 • . (a) e cohesion β as a function of time t at the quarter points. (b) e cohesion β as a function of distance from the tip of the initial crack x crack , at the time that the cohesion of each of the quarter points goes to zero. (c) e length L of the crack as a function of time t. (d) e crack tip velocity L, normalised by the Rayleigh wave speed c R , as a function of time t.

  Figure 17: e energies of the rhombus hole simulation.

Figure 18 :

 18 Figure 18: e results of simulations varying the rhombus hole angle γ. (a) e crack initiation force F init at which cracking begins. (b) e crack arrest length L at which crack propagation stops, in the absence of continued loading.

a closed convex function is a convex function that is lower-semi continuous, or equivalently its epigraph is a closed convex set
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