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Notation For vector and tensors, we choose the following notation:

‖x‖2 = ‖x‖2 = xix
i︸ ︷︷ ︸

indicial notation

= x.x︸ ︷︷ ︸
tensor notation

= x>x︸ ︷︷ ︸
vector notation

(1)

Abstract
An extrinsic cohesive zone model with a novel unload-reload behaviour is developed in the framework of non-smooth me-

chanics. �e model is extended to include the e�ects of dynamics with impact, and is discretised in such a way that it can be

wri�en as a Linear Complementarity Problem (LCP). �is LCP is proved to be well-posed, and to respect the discrete energy

balance of the system. Finally, the LCP system is validated numerically, in both statics and dynamics, by simple test cases, and

more involved �nite element simulations that correspond to standard test geometries in the literature. �e results correspond

well with those of other authors, while also demonstrating the simulations’ ability to resolve with relatively large time steps

while respecting the energetic balance.

1 Introduction
�e modelling of crack propagation touches on a wide variety of areas of interest within mechanics, ranging from a geological

scale such as earthquakes and avalanches (Bergfeld et al., 2021; Okubo et al., 2019), engineered materials such as composites

(Ashouri Vajari et al., 2013), polymers (Laiarinandrasana et al., 2021) and elastomers (Corre et al., 2021), to the small grains

in materials such as sandstone or concrete (Jiang et al., 2021). While linear elastic fracture mechanics (LEFM), pioneered by

Gri�th (1921), accurately describes signi�cant aspects of crack behaviour, it su�ers from the presence of a stress singularity at
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the crack tip, rendering the model non-physical in the “fracture process zone”, the region surrounding the crack tip. In order

to model situations where individual cracks have a large e�ect on the overall structural behaviour of a system such as frag-

mentation or dynamic crack branching problems, researchers make use of cohesive zone models (see seminal articles such as

Nguyen and Wu (2018), Xu and Needleman (1994), and Zhang et al. (2007)). Cohesive zone models regularise the LEFM stress

singularity at the crack tip by expressing a relationship between the displacement jump across a developing crack surface and

the traction that the surface can support. �e total area under the traction-displacement curve represents the classical fracture

energy of LEFM (Gri�th, 1921). In cohesive zone models the evolution of this interface is described in terms of a cohesion

variable β ∈ [0, 1], where β = 1 indicates a perfectly intact interface, and β = 0 a completely broken interface.

Direct experimental observation of the fracture process zone is extremely di�cult, due to their typically small size (depending

on the material, as small as the order of 10nm (Azab et al., 2020)) and rapid motion. Very few direct observations have been

made (Célarié et al., 2003; Guilloteau et al., 1996), although recent work studying the cohesive zones of “frictional cracks”

(Berman et al., 2020) o�ers a promising path towards further direct observations. Due to this di�culty of direct observation,

the properties of the cohesive zone are typically inferred via experimental observations at a larger scale, which may require

sophisticated image analysis (Réthoré and Estevez, 2013) and the inversion of �nite element models (Vargas et al., 2020). It

should be noted that the particular values of the inferred parameters such as total fracture energy Gc, critical traction σc and

critical length δc depend on the exact form of the cohesive zone model chosen (Azab et al., 2020). Some inference as to the

appropriate form of the model may be drawn by comparing back-analyses of experiments via cohesive zone models with those

conducted using other crack analysis techniques such as the coupled criterion, which characterises the initiation of the crack

depending on whether it is dominated by the stress across the incipient surface or the stored energy (Doitrand et al., 2019,

2021a).

While the particular form of cohesive zone models is arbitrary and limited only by the modeller’s imagination, in a broad

sense they may all be categorised as one of two �avours, intrinsic and extrinsic models. Intrinsic models include an initially

elastic response, with an initial strengthening of the cohesive zone as a function of the displacement jump, before weakening

due to the decohesion process (Falk et al., 2001). As a consequence, there is an additional length parameter, the hardening

length δh, where the cohesive traction obtains its maximum value (Kubair and Geubelle, 2003). Intrinsic cohesive elements

are inserted between the mesh elements before simulation, leading to straightforward computational parallelisation (Nguyen,

2014). However, the elasticity present in the intrinsic model has the e�ect of modifying the overall elasticity of the structure,

with this e�ect becoming more signi�cant with a greater number of cohesive elements. �us, intrinsic models introduce an

unwanted mesh-dependency to the problem (Falk et al., 2001). �e problem of induced arti�cial compliance can be reduced by

increasing the initial hardening slope of the cohesive law. However, in quasi-static analyses, this sti�ness increase results in

very unstable numerical methods, while in dynamic analyses, it results in severe restrictions on the stable time-step size, ren-

dering the method essentially unsuitable (Nguyen, 2014). �e presence of interface elasticity also allows for the possibility of

interpenetration and physically meaningless negative displacement jumps if the two sides of the interface are pushed together

(Acary and Monerie, 2006). Finally, we also note the conceptual impossibility of measuring interface sti�ness across a crack

face before the crack exists, meaning that any sti�ness assigned in an intrinsic model must necessarily be arbitrary and not

representative of a true physical property. As such, the sti�ness of the intrinsic model is o�en assumed to be that of the bulk

when identifying parameters, and is then taken as a given during the CZM parameter identi�cation procedure (see e.g. Vargas

et al. (2020)).

On the other hand, extrinsic models are initially rigid and hence immediately start to decohere as the displacement jump in-

creases (Kubair and Geubelle, 2003; Seagraves and Radovitzky, 2010). �ese models do not e�ect the elasticity of the bulk, how-

ever, typically they are inserted adaptively on-the-�y into �nite element meshes (Zhou and Molinari, 2004a), as pre-inserting

the elements leads to very large computational overheads due to each node requiring duplicates. Historically the on-the-�y

insertion has meant that extrinsic models were di�cult to parallelise (Carter et al., 2000), but modern techniques have been

developed that have overcome the previous di�culties (Espinha et al., 2013). �e absence of arti�cial sti�ness in the extrinsic

formulation renders it suitable for use in dynamic analyses due to the absence of arti�cial compliance e�ects (Camacho and

Ortiz, 1996; Murphy and Ivankovic, 2005; Seagraves and Radovitzky, 2010), but care must be taken to ensure that the system

exhibits time-continuous behaviour (Papoulia et al., 2003; Sam et al., 2005). A modi�ed Lagrangian formulation can ensure this

time-continuity (Cazes et al., 2013). While extrinsic models do not have the pathological mesh-dependency of intrinsic mod-

els, the large number of elements required to fully resolve the cohesive zone for arbitrary crack paths has been impractical,

meaning that simulations are typically not fully converged. �is issue can be at least partially addressed by modelling cohesive

zone strength via a Weibull distribution (Zhou and Molinari, 2004a; Zhou and Molinari, 2004b). �e use of more sophisticated

�nite element techniques such as those based on the partition of unity (Bybordiani and Dias-da-Costa, 2021), Hybrid Equilib-

rium Elements (Parrinello, 2020; Parrinello and Borino, 2020), or Discontinuous Galerkin (Nguyen, 2014; Versino et al., 2015)

constitutes a promising path towards truly mesh-independent results.

However, extrinsic cohesive zone models implemented on a highly-re�ned mesh can still su�er from issues of ill-posedness

(Foulk, 2010). In quasi-statics, solution jumps can appear due to the elasticity of the system storing more energy than can be

released by the cohesive zone (Acary and Monerie, 2006). �is issue has been addressed using either sophisticated enriched

�nite element schemes (Samimi et al., 2011) or viscous regularisation (Chaboche et al., 2001), in order to ensure that the problem
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remains well-posed.

We must also pay close a�ention to the unload-reload behaviour of models, particularly in cases of non-monotonic load-

ing e.g. repeated impacts or complex stress wave pa�erns, where cohesive elements may incur only partial decohesion before

being subjected to unloading and reloading. By considering the mathematical structure detailed in Kubair and Geubelle (2003),

where by shi�ing the values of model parameters both intrinsic and extrinsic models may be obtained from the same formula,

we may de�ne the notion of a “shi�ed intrinsic model”, where the extrinsic model retains an underlying intrinsic mathemati-

cal structure. Typically extrinsic models indicate that a�er the cohesion has decreased, the unload-reload behaviour is elastic

until decohesion recommences (Bybordiani and Dias-da-Costa, 2021; Camacho and Ortiz, 1996; Parrinello, 2020; Parrinello

and Borino, 2020; Sam et al., 2005). Models exhibiting this behaviour constitute shi�ed intrinsic models where the e�ective
critical traction σc,e and hardening length δh are shi�ed away from their initial values (σc and 0 respectively) as the cohesion

β evolves. For this family of models, the unload-reload elasticity can be approximated by E ≈ tan

(
β
π

2

)
. It is clear that

for very small amounts of decohesion with β ≈ 1, the elasticity of the interface is arbitrarily large and the problems of arti�-

cial compliance inherent to intrinsic models may also arise in extrinsic models if they have the shi�ed intrinsic model structure.

�us, we may conclude that an extrinsic model is the most appropriate to model crack behaviour, but special care must be

taken to avoid unphysical behaviour at the interface in both the initial loading phase, and for cases of unloading and reload-

ing. An extrinsic cohesive model may be naively viewed as an interface model with an in�nite initial sti�ness. �e correct

mathematical se�ing to impose such a constraint is convex and variational analysis, exploiting the techniques of mathematical

programming. To this end, we turn to the �eld of contact mechanics, in particular the seminal work of Moreau (Moreau, 1970,

1974, 1986), who developed the mathematical framework of non-smooth mechanics. By appropriately specifying the potential

of energy and the pseudo-potential of dissipation within the framework of convex analysis, rigorous thermodynamic formula-

tions for a range of materials may be developed (Halphen and Nguyen, 1975; Houlsby, 2019; Marigo, 1981) including unilateral

constraints on the variables and their time derivatives. In particular, this family of models has been extended to cohesive zone

modelling in a series of seminal works by Frémond (Frémond, 1988, 2002, 2012a,b), which provides a natural framework in

which we present our models. �e pioneering work of Frémond has already been extended in various directions for intrinsic

cohesive zone models (Acary and Monerie, 2006; Chaboche et al., 2001; Monerie and Acary, 2001; Nkoumbou Kaptchouang

et al., 2021; Perales et al., 2010; Raous et al., 1999) but has been barely used for extrinsic models other than those of Jean et al.

(2001) and Talon and Curnier (2003). We note that in the la�er formulation, the model does not su�er from the issues raised

by the shi�ed intrinsic model structure, unlike those models developed following Camacho and Ortiz (1996) (amongst others).

An alternative approach where extrinsic cohesive models appear naturally is the variational approach to fracture (Bourdin et

al., 2008; Charlo�e et al., 2006; Del Piero, 1999). �e equilibrium of a fractured system is formulated as an energy-minimisation

principle. �e constitutive law for cohesion is de�ned by the surface energy that is created when the fracture progresses, as

a concave function of the displacement jump. �is surface energy converges asymptotically to the fracture toughness when

the interface is completely broken. �e derivative of the surface energy at the origin with respect to the displacement jump

de�nes the critical strength of the interface. �e constitutive law is completed with a law that accounts for the irreversibility

of the process, and is implemented in an incremental form of the energy minimisation. As in the classical cohesive theory of

fracture, there is no initial sti�ness. �e optimality conditions (or stationarity conditions if we prefer) yield the de�nition of an

extrinsic cohesive zone model. �e theory, in quasi-statics, demonstrates that some energy jumps are possible in speci�c cases

that match those observed in the classical formulation of cohesive zone models.

Following this original idea, numerical methods have been designed to simulate fracture problems by combining energy minimi-

sation and extrinsic cohesive zone models. In one of the most advanced works (Lorentz, 2008), the unilateral contact condition

is added by means of an augmented Lagrangian that helps to retrieve convexity at the price of needing to correctly determine

the exact penalty parameter. To model this irreversibility process, the model developed in Talon and Curnier (2003) is used. A

�nite element discretisation based on a mortar-like approach is solved by a non-smooth Newton method. A time-stepping is

then implemented using a solver based on an alternate minimisation �xed point. In Doyen et al. (2010), a mathematical analysis

of a similar model with mixed elements is proposed. Although the discrete minimisation is non-convex, the convergence study

of numerical methods such as Uzawa and non-smooth Newton methods is performed. In Papoulia (2017) and Vavasis et al.

(2020), a very similar approach is developed, taking into account the inertia e�ects in discrete time and using modern optimi-

sation methods. Nevertheless, the irreversibility process is modelled in the same fashion as in Camacho and Ortiz (1996) and

hence leads to the same issues. �e minimisation principle is based on the non-convex energy which includes the constraints

(unilateral contact, irreversibility) using non-smooth and non-di�erentiable functions.

To situate our work with respect to the variational approach to fracture, we note that our di�erences mainly lie in the method-

ology, which leads to rather di�erent properties for the numerical scheme. In our work, we start from a consistent mechanical

model and use the laws of thermodynamics in a non-smooth se�ing. �is leads to variational inequalities or complementarity

problems that can accommodate a wide variety of models, but these problem formulations are not necessarily equivalent to the

optimality conditions of an optimisation problem. In other words, the variational inequality is not necessarily the optimality

condition of a minimisation problem. In some structured cases, variational inequalities and complementarity problems can be
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recast into (possibly convex) optimisation problems, but their mechanical interpretation may be di�cult. To place our frame-

work in a minimisation se�ing that can play the role of a mechanical principle, further investigations are needed, which are

beyond the scope of the paper.

To complete this brief review of the literature, the closest work to our approach is developed in Doyen et al. (2013), where

an extrinsic cohesive zone model in dynamics with unilateral constraints is proposed. Two models of irreversilibity are used.

One is similar to the Camacho and Ortiz (1996) model and the other to the Talon and Curnier (2003) model. Using an explicit

evaluation of some interface variables, they are able to show that the discrete problem is well-posed at each time-step given

some mild assumptions on the time-step and the mesh size. Discrete energy balances are also provided, but they are not di-

rectly related to the fracture energy. �e method has been extended in Crump et al. (2017) in the context of the extended �nite

element method to enable the developments of cracks not only at the boundary of the mesh elements, and in Marazzato (2020)

in the context of a variational discrete element method. However, the proposed scheme does not take into account the possible

appearance of percussions due to velocity jumps. �is la�er discrete property is important when dealing with �nite masses

(e.g rigid bodies, the discrete element method, slender structures or space-discretised structures). �e aim of our paper is to

bridge this gap.

Novelty of the contribution and outline of the article: �e novelty of our work is that we present the formulation of an

extrinsic cohesive zone model that provides us with:

1. a formulation based on non-smooth thermo-mechanics principles that take into account the e�ects of inertia and the

inequality constraints on state variables and their time derivatives (unilateral contact, irreversibility) with a simple load-

ing/unloading behaviour related to the irreversibility of the process which does not have the issues of the shi�ed intrinsic

model structure or the problem of in�nite sti�ness (§2), and

2. a formulation of the non-smooth dynamics in a �nite-dimensional se�ing in terms of di�erential measures that takes into

account the e�ect of inertia and the possibility of discontinuities in the velocity and the associated percussion together

with an impact law (§3),

and a numerical procedure in §4 that features the following properties:

1. an implicit time-stepping scheme consistent with the non-smooth dynamics based on the Moreau–Jean scheme, that

respects the energy balance in discrete time, and which provides us with a stable scheme with quite large time-steps,

2. a complementarity problem formulation for the space and time discretised problem with a proof of well-posedness (ex-

istence and uniqueness of solutions) that solves all of the constraints in an implicit manner; in that way, the extrinsic

cohesive model is satis�ed at each time-step while avoiding the solution jumps that occur in quasi-statics when the

cohesive model is not regularised by viscous or second gradient techniques, and

3. a formulation as a monolithic complementarity problem allowing us to exploit the e�cient algorithms that have been

developed for this class of problems in the mathematical programming literature.

Finally, we demonstrate the interest of the approach in §5 by applying the model to some pertinent example systems and

compare the results with those obtained by other workers.

2 Formulation of extrinsic cohesive models with contact
In this section, we de�ne the state variables of the system, obtain the equilibrium and boundary conditions via the principle of

virtual power, specify the constitutive model, and demonstrate its behaviour with an analytic example.

2.1 State variables, powers and principle of virtual power
We start by de�ning our system. Let us consider a body de�ned by Ω ∈ IRd, d ∈ J1, 3K. �e vector x de�nes the current

position and X the initial position, u(x) the displacement and v(x) = u̇(x) the velocity. �e de�nition of the displacement

jump at the interface is not trivial in practice. In this work, we consider that, initially, the material is undamaged. At a point

x ∈ Ω,x ∈ IRd
, the displacement u(x) and the velocity v(x) are continuously di�erentiable functions of x. If a crack occurs

and an interface is created, two material points xl and xr are de�ned by spli�ing the bodies assuming that they correspond to

the material pointX initially. We choose to denote xl by x. �e displacement jump is de�ned by the di�erence in the position

of the material point that was at X initially, with respect to x and xr , that is Ju(x,xr)K = u(xr) − u(x). We also assume

that we are able to de�ne an orthonormal local frame at any point x of the interface de�ned by (x,n, t) where n ∈ IRd
is the

normal unit vector from x towards xr and the vector t = [t1, t2] ∈ IRd×d−1
completes the frame. In this work, we consider

only the normal displacement (jump), de�ned by u
N
(x,xr) = Ju(x,xr)K · n ∈ IR. �e relative velocity (jump in space) is

de�ned as v
N

= u̇
N
. Before the creation of the interface, we assume that u

N
and v

N
vanish whatever the arbitrary de�nition of

the local frame since u and v are continuous.
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To describe the state of the cohesion we introduce the cohesion variable β(x) ∈ [0, 1], using the notation introduced by

Frémond for describing the intensity of cohesion, or the proportion of active bonds. For a point x on the interface, the power

of the cohesion for a surface Γ is de�ned by

Pcoh =

∫
Γ

β̇Adx (2)

introducing A which is the dual force (driving force) associated to β. In the same way, the power of contact is given by

Pcon =

∫
Γ

v
N
r

N
dx (3)

introducing r
N

as the normal reaction force related to the stress σ(x) at the interface by r
N

= −σ · n · n.

For the material in Ω, the power of the external, internal and inertial forces are respectively given by

Pext =

∫
Ω

vf dx−
∫

ΓN

vτ dx−
∫

Γ

β̇Θ dx, (4)

Pint = −
∫

Ω

σ : ε̇ dx+

∫
Γ

v
N
r

N
dx+

∫
Γ

β̇Adx, (5)

Pacc =

∫
Ω

ρvv̇ dx. (6)

where f is the body force in Ω, τ is the surface traction on ΓN (i.e. where the Neumann boundary condition is applied on

the surface), Θ is an external force that does work on the cohesion (such as may arise from thermal or chemical e�ects) that is

taken as identically zero in this work, ε is the strain in Ω, ρ is the density and v̇ is the acceleration.

�e principle of virtual power states that for any virtual velocities v̄, ˙̄ε and
˙̄β, we have

P̄acc = P̄ext + P̄int,∫
Ω

ρv̄v̇ dx =

∫
Ω

v̄f dx−
∫

ΓN

v̄τ dx−
∫

Γ

˙̄βΘ dx−
∫

Ω

σ : ˙̄ε dx+

∫
Γ

v̄
N
r

N
dx+

∫
Γ

˙̄βAdx (7)

For a rigorous mathematical se�ing of this principle, we refer to Frémond (1988). Using su�cient smoothness assumptions on

the �elds, this leads by localisation to the set of equations describing the equilibrium and boundary conditions of the system:
∇ · σ + f = ρv̇, in Ω

A = Θ = 0, on Γ

τ = σ · n, on ΓN
r

N
= −σ · n · n on Γ.

(8)

2.2 A non-smooth thermo-mechanics potential in the normal direction
Now, we specify our constitutive model via the appropriate speci�cation of an energy potential, and a dissipation pseudo-

potential. We will also show that the system can be wri�en in terms of complementarity relations, and use this to derive an

expression for the energy balance.

Free energy and reversible state laws. �e free energy Ψ of the system is the sum of the free energy in the bulk with that

of the surface, that is

Ψ =

∫
Ω

Ψe(ε) dx+

∫
Γ

Ψs(uN
, β) dx (9)

where Ψe and Ψs are the volume and surface free energies. In this work, we assume all strain is elastic. Firstly, the stresses

may be obtained by assuming a classical linear elastic potential for the bulk:

Ψe(ε) =
1

2
ε : E : ε, (10)

σ(ε) =
∂Ψe(ε)

∂ε
= E : ε, (11)

where E is a fourth order sti�ness tensor. �e stress-like variables are similarly derived from the surface potential by{
−rr

N
∈ ∂uN

Ψs(uN
, β),

−Ar ∈ ∂βΨs(uN
, β),

(12)
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where rr
N

stands for the reversible part of the normal reaction force, and ∂u
N

and ∂β indicate the subdi�erentials with respect

to u
N

and β of a convex but non-smooth potential. �e �rst assumption in our model is that the displacement is constrained

to be positive, u
N
> 0, which is enforced as a unilateral constraint, and the cohesion variable constraints are 0 6 β 6 1. �is

yields the possible form of the surface free energy

Ψs(uN
, β) = ψ(u

N
, β) + IIR+

(u
N
) + I[0,1](β), (13)

where IC is the indicator function of a convex set C . To obtain an extrinsic CZM, the tangent sti�ness of the model when

u
N
> 0 must vanish. In other words, the derivative of ψ(u

N
, β) with respect to u

N
must be constant, i.e.

∂2ψ

∂u
N

2
= 0. �e simplest

choice for the free energy is:

Ψs(uN
, β) = βσcuN

+ wf(β) + IIR+(u
N
) + I[0,1](β), (14)

where

• σc > 0 is the critical traction,

• w > 0 is the surface free energy which is released by decohesion, and

• f(β) is a function that enables us to parametrise the evolution of β in the decohesion process.

�e state laws are deduced by applying (12) to (14):{
−(rr

N
+ βσc) ∈ ∂IIR+

(u
N
),

−(Ar + σcuN
+ wf ′(β)) ∈ ∂I[0,1](β).

(15)

�e �rst law in (15) is a shi�ed Signorini condition by the value of the cohesive force de�ned by rc
N
(β) = βσc. �is can be

wri�en in terms of a complementarity relation:

0 6 rr
N

+ rc
N
(β) ⊥ u

N
> 0. (16)

�e surface free energy Ψs is not a convex function of its arguments (u
N
, β) since the determinant of its Hessian matrix is equal

to −σc2. Nevertheless Ψs is convex with respect to u
N

since it is linear. By choosing f ′(β) > 0, the convexity with respect

to β is ensured. �e smooth part of the free energy in (14) is composed of two terms. �e �rst term βσcuN
is homogeneous

to a potential energy given by the cohesive force βσc in the displacement �eld u
N
. �e second term wf(β) is the surface free

energy released by decohesion for a given β. Some further modelling assumptions may also be speci�ed on the function f .

For an intact interface (β = 1), we may assume that f(1) = 0 such that the released free energy vanishes. For a broken

interface (β = 0), we may assume that the cohesive free energy w has completely been released then f(0) = 1. Furthermore,

we may also assume a monotone release for the cohesion free energy with β, that f ′(β) 6 0. �is choice is consistent with the

convexity of f if the minimum is a�ained for β = 1. In the following, these assumptions will be satis�ed by the triangle law

we propose.

Dissipation pseudo-potential and irreversible processes. To de�ne the irreversibility of the process of decohesion in a

way consistent with the second law of thermodynamics, the dissipation function, de�ned for an isothermal process as

D = −Pint −
∫

Ω

Ψ̇e(ε) dx−
∫

Γ

Ψ̇s(uN
, β), (17)

must be non-negative. �e computation of the time derivative of the non-smooth and non-convex potential requires some care.

�e functions u
N
(t) and β(t) are assumed to be absolutely continuous, and hence they have a derivative almost everywhere

but not necessarily at any given point. Since absolutely continuous functions are of bounded variations, their le� and right

derivatives exist. Assuming Ψ̇s is convex in u
N

and in β separately, and Ψ̇s(uN
, β) is also an absolutely continuous function for

u
N
> 0, β ∈ [0, 1], a result in Frémond (2002, Appendix A.1.9) provides us with the following inequality:

Ψ̇s(uN
, β) 6 −rr

N
u̇

N
−Arβ̇, (18)

for any rr
N

and β̇ that satis�es the inclusions (15).
1

Substituting this inequality in the de�nition of the dissipation yields,

D >
∫

Ω

σ : ε̇ dx−
∫

Γ

(
v

N
r

N
+ β̇A

)
dx−

∫
Ω

∂Ψe(ε)

∂ε
ε̇ dx+

∫
Γ

(
rr

N
u̇

N
+Arβ̇

)
dx. (19)

In (19), the terms integrated over Ω cancel out. We then obtain

D >
∫

Γ

(
−v

N
r

N
− β̇A+ u̇

N
rr

N
+ β̇Ar

)
dx. (20)

1
To avoid complicated notation, we do not mention le� or right derivatives.
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Since we want to ensure that D > 0, we will assume that

−v
N
r

N
− β̇A+ v

N
rr

N
+ β̇Ar > 0, or equivalently, − v

N
rir

N
− β̇Air > 0, (21)

using the standard decomposition r
N

= rr
N

+ rir
N

and A = Ar + Air
for the irreversible parts of the stress-like variables. A

standard way to ensure this inequality is to postulate the existence of a proper closed convex pseudo-potential
2

of dissipation

Φ(v
N
, β̇) such that the dissipation process is governed by{
−rir

N
∈ ∂vN

Φ(v
N
, β̇),

−Air ∈ ∂β̇Φ(v
N
, β̇).

(22)

Let us assume that the dissipation process is only governed by the rate of β. We can choose for the pseudo-potential of

dissipation

Φ(v
N
, β̇) = IIR−(β̇). (23)

�is model of dissipation only imposes that the evolution of β must decrease with time, i.e., β̇ 6 0. �e dissipative laws are

thus {
−rir

N
= 0,

−Air ∈ ∂IIR−(β̇).
(24)

Equivalently, the last line of (24) can be wri�en as

β̇ ∈ ∂IIR+(−Air). (25)

In this form, we can easily interpret that Air
is the force that drives the evolution of β̇. Given that in (8), A = 0, we must have

Ar = −Air
, and thus

β̇ ∈ ∂IIR+(Ar). (26)

Remark 1. �e choice of the pseudo-potential (23) results in a model that is rate independent. A rate dependency can be easily
added here by considering a model that is non-linear in the rates of the dissipative variables, such as

Φ(vN, β̇) =
c

p+ 1
(−β̇)p+1 + IIR−(β̇), (27)

where the coe�cient c is a viscosity and p a given parameter for the non-linear viscosity (Acary and Monerie, 2006).

Complete extrinsic cohesive zone model. Noting that r
N

= rr
N

, the complete model of the interface is given by
β̇ ∈ ∂IIR+

(Ar),

−(r
N

+ βσc) ∈ ∂IIR+
(u

N
),

−(wf ′(β) + σcuN
+Ar) ∈ ∂I[0,1](β).

(28)

We highlight that as rir
N

= 0 and (26) implies one of β̇ or Ar
is always zero, (21) is also zero. While the process of decohesion

and surface creation is irreversible, it is also non-dissipative in the sense that −v
N
rir

N
− β̇Air = 0.

Variational inequality and complementarity problem. �e system can be formulated as an evolution variational in-

equality by

−F (β̇, β, u
N
, r

N
, Ar) ∈ NIR+×IR+×[0,1]



Ar

u
N

β


 , with F (β̇, β, u

N
, r

N
, Ar) =


−β̇

r
N

+ βσc

wf ′(β) + σcuN
+Ar

 . (29)

Introducing slack variables µ, λ, and ν, this system can also be formalised using normal cones to convex sets as β̇ = −λ, wf ′(β) + σcuN
+Ar = µ, r

N
+ βσc = ν,

−ν ∈ NIR+
(u

N
), −µ ∈ N[0,1](β), −λ ∈ NIR+

(Ar).
(30)

Using the de�nition of a normal cone to a convex set de�ned by simple bounds, this model can be wri�en with complementarity

conditions as a Mixed Complementarity Systems (MCS): β̇ = −λ, wf ′(β) + σcuN
+Ar = µ, r

N
+ βσc = ν, µ = µ+ − µ−,

0 6 ν ⊥ u
N
> 0, 0 6 µ+ ⊥ β > 0, 0 6 µ− ⊥ 1− β > 0, 0 6 λ ⊥ Ar > 0.

(31)

2
a closed convex function is a convex function that is lower-semi continuous, or equivalently its epigraph is a closed convex set
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Energy Balance With the chosen constitutive laws, the power of internal forces can be wri�en as

Pint = −
∫

Ω

ε : E : ε̇ dx+

∫
Γ

r
N
v

N
dx+

∫
Γ

Aβ̇ dx,

= − d

dt

(∫
Ω

ε : E : εdx

)
+

∫
Γ

(
r

N
u̇

N
+Aβ̇

)
dx,

= −U̇ + Ps,int, (32)

whereU is the potential elastic strain energy, andPs,int the power of surface internal forces de�ned byPs,int =

∫
Γ

(
r

N
u̇

N
+Aβ̇

)
dx.

Using the constitutive laws (30), we have

0 = v
N
rir

N
+ β̇Air,

= v
N
r

N
+ β̇A− v

N
(ν − βσc)− β̇(µ− σcuN

− wf ′(β)). (33)

Since−ν ∈ NIR+(u
N
) and−µ ∈ N[0,1](β), we have νv

N
= 0 and µβ̇ = 0 almost everywhere, the expression (33) can simpli�ed

to

0 = v
N
r

N
+ β̇A+ v

N
βσc + β̇(σcuN

− wf ′(β)),

= v
N
r

N
+ β̇A+ v

N

∂ψ

∂u
N

+ β̇
∂ψ

∂β
,

= v
N
r

N
+ β̇A+ ψ̇. (34)

We deduce that the power of surface internal forces is equal, almost everywhere, to the change of the smooth part of the free

energy

Ps,int = −
∫

Γ

ψ̇ dx =

∫
Γ

βσcvN
dx. (35)

Using the principle of virtual power for the actual velocities of the system, the energy balance, K̇ = Pext + Pint is almost

everywhere

K̇ + U̇ +

∫
Γ

ψ̇ dx = Pext, (36)

where K is the kinetic energy. �e �rst law of thermodynamics in an isothermal se�ing results in the energy balance K̇+ Ė =
Pext, where E is the internal energy. A simple identi�cation shows that

Ė = −Pint =

∫
Γ

ψ̇ dx+ U̇ (37)

Since Ψs = ψ for all admissible u
N
, β, we obtain that the fracture energy is given by

G =

∫ ∫
Γ

βσcvN
dxdt = −

∫ ∫
Γ

ψ̇ dxdt = −
∫ ∫

Γ

Ψ̇s dxdt (38)

�e following incremental energy balance can be then wri�en as

∆K + ∆U + ∆G =

∫ t2

t1

Pext dt, and ∆E = ∆U + ∆G. (39)

Remark 2. For an evolution from an intact interface with uN = 0, β = 1 to a broken interface β = 0 on Γ, we get from (38) that

∆G =

∫
Γ

w dx.

2.3 A linear evolution of the cohesion: triangle law.
We now specify the exact form of the surface potential. We require that when the surface doesn’t exist, i.e. u

N
= 0 and β = 1,

Ψs = 0, and that when the surface is fully decohered, i.e. β = 0, Ψs = w. We assume that this decohesion is complete at a

critical length δc > 0. Choosingw =
σcδc

2
,

f(β) = (β − 1)2,
(40)
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ful�ls the required conditions for the energy while ensuring that the potential remains convex in β. While β ∈ [0, 1] and β̇ < 0,

the second term in (31) gives β = 1− u
N

δc
. Substituting the traction-cohesion law into the free energy, we get:

Ψs(uN
) = σcuN

− σcuN

2

2δc
+ IIR+

(u
N
) + I[0,1]

(
1− u

N

δc

)
(41)

�e linear evolution of β, obtained as a consequence of (40), is depicted in Figure 1.

β

Ψs(0, β)

u
N

β

1

w

(a)

δc

1

(b)

u
N

Ψs(uN
)

δc

w

(c)

Figure 1: (a) �e shape of the surface potential Ψs with respect to β. (b) �e consequent linear evolution of β with u
N
. (c) �e

shape of the surface potential Ψs with respect to u
N
, where the initial slope is equivalent to the value of σc, and the �nal value

is w.

�e model (30) is now speci�ed for a triangle law by β̇ = −λ, σc(δc(β − 1) + u
N
) +Ar = µ, r

N
+ βσc = ν,

−ν ∈ NIR+
(u

N
), −µ ∈ N[0,1](β), −λ ∈ NIR+

(Ar).
(42)

Since β̇ is constrained to be non-positive, a smooth evolution of β starting with the initial value β = 1 will result in β being less

than 1. We will show that in this case the µ− condition wri�en in (31) is redundant and can be dropped from the formulation.

Let us assume that β = 1 and µ− > 0. As β > 0, µ+ = 0 and µ = −µ−. �e second equation of (30) is then

σcuN
+Ar = −µ−. (43)

AsAr
and u

N
are both constrained to be positive, (43) implies that µ− 6 0, which contradicts our assumption. We conclude that

µ− vanishes. �us, the condition is redundant and is dropped from the model in the following, allowing us to write µ = µ+

and −µ ∈ NIR+
(β).

�is model in (42) can be wri�en as a Mixed Linear Complementarity Systems (MLCS) given by β̇ = −λ, σc(δc(β − 1) + u
N
) +Ar = µ, r

N
+ βσc = ν,

0 6 ν ⊥ u
N
> 0, 0 6 µ ⊥ β > 0, 0 6 λ ⊥ Ar > 0.

(44)

Analytical expressions for an experiment with a given driven displacement Let us assume for a while that u
N

is a

given function of time t given by the following piecewise linear function:

u
N
(t) =


1
2 t for 0 6 t 6 1.0,

1.0− 1
2 t for 1.0 6 t 6 2.0,

−1.0 + 1
2 t for 2.0 6 t,

(45)

and we choose δc = 1 and σc =
1

2
. �e time integration of the model described in (44) leads to the following piecewise linear

response. We assume that the evolution is continuous.

• First loading phase 0 6 t 6 1.0
Since u

N
(t) > 0 for t > 0, the reaction force is r

N
= −βσc. Let us assume that β(t) > 0 for t ∈ [0, T1). We deduce

that µ(t) = 0. Let us note that Ar(t0) = −σc(δc(β0 − 1) + u
N
(0)) = 0. Let us assume that λ(t) = 0, t ∈ [0, ε], ε > 0

or equivalently β̇(t) = 0, t ∈ [0, ε], ε > 0. In that case, we get Ȧr(t) = −σcu̇N
(t) < 0 and then Ar(ε) < 0, for ε > 0

which is impossible. Let us try with β̇(t) < 0, then Ar(t) = 0 and β(t) = 1 − u
N
(t)

δc
and β̇(t) = − u̇N

(t)

δc
< 0. Since

β(1) = 1− 1

2δc
=

1

2
> 0, this is the only consistent solution for t ∈ [0, 1].
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• Unloading phase 1 6 t 6 2
Let us assume that β(t) > 0 for t ∈ [1, 2) and µ(t) = 0. Let us assume that λ(t) = 0, t ∈ [0, ε], ε > 0 or equivalently

β̇ = 0. In that case, we get Ȧr(t) = −σcu̇N
(t) > 0 and then Ar(t) =

1

4
(t − 1) > 0. �is solution satis�es the

complementarity condition up to t = 2.

• Second loading phase 2 6 t
Let us assume that β(t) > 0 for t ∈ [T1, T2) and µ(t) = 0. Let us assume that λ(t) = 0, t ∈ [0, ε], ε > 0 or equivalently

β̇ = 0. In that case, we get Ȧr(t) = −σcu̇N
(t) < 0 and then Ar(t) = −1

2
σc(t − 2) + Ar(2) = −1

4
((t − 3)) which is

positive for t < 3.0. For t > 3.0, the only possible solution of the complementarity leads to β̇(t) = − u̇N
(t)

δc
< 0 and

Ar(t) = 0. �e cohesion variable β is then β(t) = −1

2
(t− 3) +

1

2
which is positive for t < 4. For t > 4, the solution is

β(t) = 0 and µ(t) =
1

2
(u

N
(t)− 1)

�e solution of this experiment is depicted in Figure 2.

Remark 3. Let us note that we need to derive the second term of (44) to get a closed form solution. �is means that the evolution
variational inequality is of relative degree at least 1.
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λ
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s−
1
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Figure 2: Illustration of the extrinsic cohesize law with a linear evolution of cohesion. (a) �e displacement u
N

as a function of

time t. (b) �e cohesion β as a function of time t. (c) �e cohesion β as a function of displacement u
N
. (d) �e thermodynamic

driving force Ar
as a function of time. (e) �e slack variable µ as a function of time t. (f) �e slack variable λ as a function of

time t.

We observe in Figure 2 that the model behaves correctly, with β only changing as the crack opens u̇
N
> 0, and no change

in β during reloading until u
N

exceeds its previous maximum value. Once the interface cohesion is fully eliminated we observe

no further change in β.

Remark 4. Other types of smoother cohesion evolution behaviours are possible, for examples laws modelled a�er that proposed in
Michel and Suquet (1994).

Remark 5. We note in particular that other unloading behaviours are possible within the non-smooth mechanics framework.
Rather than the horizontal unload-reload behaviour exhibited in our model, Talon and Curnier (2003) propose a model where the
unload-reload behaviour is vertical. �is behaviour arises as they treat adhesion as a phenomenon featuring thin �laments that

10



immediately crumple under unloading, and thus cannot exert any force whatsoever. However, we view cohesion as the material
providing a force that acts to close the crack, and unloading changes nothing about the underlying material state that would cause
this force to change. We note that these two views are not mutually exclusive, as they model subtly di�erent phenomena (adhesion
vs cohesion).

3 Non-smooth elasto-dynamics of �nite-dimensional systems
We now extend our model to consider bodies with �nite numbers of degrees of freedom, to which are a�ached masses, sti�-

nesses and external forces. �ese degrees of freedom may or may not be associated with cohesive zones. We also consider the

dynamic interaction of multiple bodies via the formulation of an impact law for the system.

3.1 Finite-dimensional systems via space-discretisation
Let us consider a �nite-dimensional model of an elastic linear mechanical system, potentially a�er a space-discretisation by

the �nite element method. Let us note by u ∈ IRn
the displacements of the system and v = u̇ the velocity. Starting from the

principle of virtual power (7), the equilibrium equation can be wri�en as

Mv̇ +K u = F ; u̇ = v (46)

where M ∈ IRn×n
is the mass matrix, assumed to be symmetric positive de�nite, K ∈ IRn×n

is the structural symmetric

semi-de�nite positive sti�ness matrix and F ∈ IRn
is the external applied force.

Let us now add that the cohesive zone is applied on a �nite set of cohesive contact points labelled by α ∈ J1,mK. In the

case of small perturbations, the local displacements at contact u
N

= col(uα
N
, α ∈ J1,mK) are related to the displacements u by

a linear relation wri�en as

u
N

= Hu+ b (47)

whereH ∈ IRm×n
and b ∈ IRm

. Collecting all variables at contact in the same way (x = col(xα, α ∈ J1,mK)), the equilibrium

equations of the system are given by
Mv̇ +Ku = F +H>Sr

N
, u̇ = v, β̇ = −λ,

u
N

= Hu+ b, rc
N

= βσc,

wf ′(β) + σcuN
+Ar = µ, r

N
+ rc

N
= ν,

−ν ∈ NIR+
(u

N
), −µ ∈ NIR+

(β), −λ ∈ NIR+
(Ar).

(48)

where S ∈ IRm×m
is a diagonal matrix that contains the tributary area of each cohesive zone node a�er space-discretisation

of the interface. For the sake of simplicity, we assume that σc, w and f do not depend on α, but this can be straightforwardly

extended.

3.2 Non-smooth dynamics and impacts
In the presence of unilateral contacts, solutions of �nite-dimensional dynamical systems with a regular mass matrix (with �nite

masses associated with all degrees of freedom) exhibit jumps in velocities. In this context, the non-smooth dynamics must be

carefully treated to obtain a consistent time-discretisation (Moreau, 1999). To this end, the equations of motion of a discrete

(�nite-dimensional) mechanical system, and the relation with contact variables are wri�en in terms of di�erential measures by M dv +Kudt = F dt+H> di
N
,

u̇ = v,
(49)

where dv is the di�erential measure associated with the velocity v, assumed to be a bounded value function, di
N

is the measure

of the reaction at the contact.

For the cohesive zone model, several further assumptions are made:

• We assume that the reaction due to cohesion force rc
N

is bounded. In other words, the corresponding impulse does not

contain atoms (Dirac measures);

• We assume that β and Ar
are absolutely continuous functions of time. Since the evolution of the cohesion variable is

governed by the displacement u
N

that is assumed to be absolutely continuous in time, we assume the same regularity for

β and Ar
.
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�e reaction at the contact can be then decomposed into the “contact impulse” dp, and the contribution of the cohesive forces

by

di
N

= S dp
N
− Sσcβ dt (50)

When the interface is completely broken, we want to retrieve a contact law with impact. We choose in this work Moreau’s

impact law

0 6 dp
N
⊥ v+

N
+ ev−

N
> 0, if u

N
6 0, else dp

N
= 0, (51)

where e is the Newton coe�cient of restitution. In terms of normal cone inclusion, this is equivalent to

−dp
N
∈ NTR+ (uN)(v

+
N

+ ev−
N

), or equivalently,− (di
N

+ Sσcβ dt) ∈ NTR+ (uN)(v
+
N

+ ev−
N

), (52)

Remark 6. �e inclusion − dpN ∈ NTR+ (uN)(v
+
N + ev−N ) deals with the impact and the constraints at the velocity level. When

uN(t) = 0, this inclusion imposes that v+
N (t) > 0 and then uN(t+ ε) > 0 for ε > 0. �is result is formalised in Moreau’s viability

lemma (Moreau, 1999). �e inequality uN > 0 is not explicitly wri�en since it is satis�ed if (51) is satis�ed and uN(t0) > 0.

�us, we can write the full set of equations for the system as

M dv +Kudt = F dt+H>(S dp
N
− Sσcβ dt), u̇ = v, β̇ = −λ,

u
N

= Hu+ b, v
N

= Hv, wf ′(β) + σcuN
+Ar = µ,

−µ ∈ NIR+
(β),

−λ ∈ NIR+(Ar),

−dp
N
∈ NTR+(u

N
)
(v+

N
+ ev−

N
).

(53)

In complementarity terms, we write the model as

M dv +Kudt = F dt+H>(S dp
N
− Sσcβ dt),

u̇ = v,

β̇ = −λ,
u

N
= Hu+ b,

v
N

= Hv,

wf ′(β) + σcuN
+Ar = µ,

0 6 µ ⊥ β > 0,

0 6 Ar ⊥ λ > 0,

0 6 dp
N
⊥ v+

N
+ ev−

N
> 0, if u

N
6 0, else dp

N
= 0.

(54)

�e formulation of the dynamics of the problem with impact and a cohesive zone model is rather di�erent from what is proposed

in Acary and Monerie (2006). In (53), the cohesion impulse measure−σcSβ dt is assumed to have only a density with respect to

the Lebesgue measure. Furthermore, it is decoupled from the contact impulse measure dp
N

in the formulation of the constitutive

laws of the interface. In other words, the cohesive reaction force is driven by u
N

and the contact impulse measure by v+
N

+ ev−
N

.

4 Numerical time integration
We now specify the time-discretisation of the system, and show that it can be rearranged to a linear complementarity problem.

We then demonstrate that this problem is well-posed, and that the resulting discrete energy balance is dissipative.

4.1 Principles of the time integration scheme
�e time-integration scheme is based on the same principle as the Moreau–Jean scheme (Acary and Brogliato, 2008; Jean, 1999;

Jean and Moreau, 1992; Moreau, 1999) for contact dynamics. For the impulsive terms, the measure of the time interval (k, k+1]
is kept as a primary unknown:

p
N,k,k+1 ≈ dp

N
((k, k + 1]) =

∫
(k,k+1]

dp
N

and i
N,k,k+1 ≈ di

N
((k, k + 1]) =

∫
(k,k+1]

di
N
. (55)

All the continuous or bounded value terms are approximated with a θ-method by∫ tk+1

tk

x(t) dt ≈ hxk+θ, (56)
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using the notation xk+θ = θxk + (1− θ)xk+1 with θ ∈ [0, 1]. For the cohesive reaction force that is assumed to be bounded,

we have∫
(k,k+1]

di
N

= S

∫
(k,k+1]

dp
N
− S

∫ tk+1

tk

σcβ dt, (57)

that is approximated by

i
N,k,k+1 = Sp

N,k,k+1 − hσcSβk+θ. (58)

�e last equation of (54) is discretised as follows:

0 6 p
N,k,k+1 ⊥ vN,k+1 + ev

N,k > 0, if ũ
N,k 6 0, else p

N,k,k+1 = 0, (59)

where a conditional statement determining whether contact occurs is de�ned by an approximation of the displacement usually

de�ned as :

ũn,k = u
N,k +

h

2
v

N,k. (60)

In the following, we consider the index set Ik = {α, ũα
N,k 6 0} and the following compact notation p

N,k,k+1 = col(pα
N,k,k+1, α ∈

Ik), v
N,k+1 = col(vα

N,k+1, α ∈ Ik), H̄ = row(HIα•, α ∈ Ik) = HIα•. Following this principle, the time-stepping scheme is

wri�en as follows:

M(vk+1 − vk) + hKuk+θ = hFk+θ − hσcH>Sβk+θ + H̄>Sp
N,k,k+1,

uk+1 = uk + hvk+θ,

βk+1 − βk = −hλk+1,

u
N,k+1 = Huk+1 + bk+1,

v
N,k+1 = H̄vk+1,

wf ′(βk+1) + σcuN,k+1 +Ar
k+1 = µk+1,

0 6 βk+1 ⊥ µk+1 > 0,

0 6 Ar
k+1 ⊥ λk+1 > 0,

0 6 p
N,k,k+1 ⊥ vN,k+1 + ev

N,k > 0

(61)

�e problem (61) amounts to solving a special type of �nite-dimensional variational inequality at each time-step, namely a

Mixed Complementarity Problem.

Discrete LCP for the triangular law. �e only non-linear term in the formulation of the complementarity system is due

to f ′. In the following, we show that if f ′ is linear, the problem (61) reduces to a Linear Complementarity System LCP(L, q)
de�ned by{

w = Lz + q

0 6 w ⊥ z > 0
(62)

Substituting in the triangle law in (61), we �nally obtain the discretisation:

M(vk+1 − vk) + hKuk+θ = hFk+θ − hσcH>Sβk+θ + H̄>Sp
N,k,k+1,

uk+1 = uk + hvk+θ,

βk+1 − βk = −hλk+1,

u
N,k+1 = Huk+1 + bk+1,

v
N,k+1 = H̄vk+1,

σcδc(βk+1 − 1) + σcuN,k+1 +Ar
k+1 = µk+1,

0 6 βk+1 ⊥ µk+1 > 0,

0 6 Ar
k+1 ⊥ λk+1 > 0,

0 6 p
N,k,k+1 ⊥ vN,k+1 + ev

N,k > 0

(63)

Now, if we expand the �rst line with the appropriate θ-method substitutions, we arrive at

M(vk+1 − vk) + hK
(
uk + hθ

[
(1− θ)vk + θvk+1

])
=h
[
(1− θ)Fk + θFk+1

]
− hσcH>S

[
(1− θ)βk + θβk+1

]
+ H̄>Sp

N,k,k+1. (64)
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We denote the augmented mass matrix as M̂ = M + h2θ2K and the free impulse (without the contribution of the cohesive

zone model) îk,k+1 = Mvk − hK
(
uk + hθ(1− θ)vk

)
+ h

[
(1− θ)Fk + θFk+1

]
. �us, the velocities can be determined by

vk+1 = M̂−1
[̂
ik,k+1 − hσcH>S

[
(1− θ)βk + θβk+1

]
+ H̄>Sp

N,k,k+1

]
, (65)

and then

v
N,k+1 = H̄M̂−1îk,k+1 − hσcH̄M̂−1H>S

[
(1− θ)βk + θβk+1

]
+ H̄M̂−1H̄>Sp

N,k,k+1,

= H̄M̂−1îk,k+1 + hσcV S (θhλk+1 − βk) +WSp
N,k,k+1, (66)

where W = H̄M̂−1H̄> is the Delassus matrix reduced to active contacts and V = H̄M̂−1H>. When necessary, we modify

the augmented mass matrix M̂ and the free impulse î to take into account Dirichlet boundary conditions. In the same way as

the velocity, we expandAr
k+1 = µk+1−σcδc(βk+1−1)−σcuN,k+1 where 1 represents a vector of ones, using the expression

of u
N,k+1 for all cohesive points:

u
N,k+1 = u

N,k + h(1− θ)Hvk + hθHvk+1 + bk+1,

= u
N,k + h(1− θ)Hvk + hθHM̂−1

[̂
ik,k+1 + hσcH

>S (θhλk+1 − βk) + H̄>Sp
N,k,k+1

]
+ bk+1,

= h2θ2σcUShλk+1 + hθV >Sp
N,k,k+1 + u

N,k + h(1− θ)Hvk + hθHM̂−1îk,k+1 − h2θσcUSβk + bk+1, (67)

where U = HM̂−1H> is the complete Delassus matrix. We obtain

Ar
k+1 = µk+1 + σc(δcI − h2θ2σcUS)hλk+1 − hθσcV >SpN,k,k+1

− σc
(
δc(βk − 1) + u

N,k + h(1− θ)Hvk + hθHM̂−1îk,k+1 − h2θσcUSβk + bk+1

)
. (68)

We can now formulate an LCP with three variable pairs, (A, hλ), (β, µ) and

(
v+

N
+ ev−

N
, p

N

)
, noting that the unusual formu-

lation of the third variable pair is required by the complementarity condition. In the most general case of multiple cohesive

zones with boundary conditions enforced, the LCP(L, q) is de�ned by

L =


0 −I 0

I σc(δcI − h2θ2σcUS) −hθσcV >S
0 hθσcV S WS

 ,

q =


βk

−σc
(
δc(βk − 1) + u

N,k + h(1− θ)Hvk + hθHM̂−1îk,k+1 − h2θσcUSβk + bk+1

)
H̄M̂−1îk,k+1 − hσcV Sβk + ev

N,k

 (69)

where 0 represents a matrix of zeroes, and I is the identity matrix. �e LCP is solved for the following complementarity

variables:

w =


βk+1

Ar
k+1

v
N,k+1 + ev

N,k

 , z =


µk+1

hλk+1

p
N,k,k+1

 , (70)

where all of the cohesive zone variables should be understood as vectors. It is possible to straightforwardly generalise to each

cohesive zone possessing its own values of the material parameters, in which case the material parameters can be treated as

vectors.

Remark 7. �e choice of hλk+1 as an unknown of the LCP, rather than λk+1, is made to ensure that L does not degenerate in the
limit as h→ 0. �is is related to the fact that λ, and hence β̇ may jump at a given instant (see Figure 2).

4.2 Well-posedness of the discrete LCP
We wish to demonstrate that the system (69) exhibits correct behaviour for su�ciently small time-steps, i.e. that it has a

unique solution for the state variables, and hence will reliably resolve the system numerically without introducing spurious

and unphysical solution jumps. Let us start by formulating the main assumption:

Assumption 1. �e time step h is chosen such that δcI − h2θ2σcUS is positive de�nite.

Now, we prove a proposition that the system is well-posed:
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Proposition 1. Under Assumption 1, the LCP(L, q) de�ned by (69) has a solution. �e solution is unique for βk+1 and λk+1 and
vN,k+1. For βk > 0, the solution is also unique for Ar

k+1 and µk+1.

We start by proving that L is a semi-positive de�nite matrix for h satisfying Assumption 1. Proving this property for L

amounts to proving that

1

2

(
L+ L>

)
given by

1

2

(
L+ L>

)
=


0 0 0

0 σc(δcI − h2θ2σcUS) 0

0 0 WS

 , (71)

is also a positive semi-de�nite matrix. Since M is a positive de�nite matrix, the matrices W and U are semi-positive de�nite

matrices. �erefore, we can conclude that L is a semi-de�nite positive matrix. From �eorem 3.1.2 in Co�le et al. (2009), if the

LCP(L, q), with a semi-de�nite positive matrix L, is feasible, then it is solvable. �e feasibility conditions for a LCP are given

by

Lz + q > 0 and z > 0, (72)

and in the case of LCP(L, q),
z1 > 0, z2 > 0, z3 > 0,

−z2 + βk > 0,

z1 + σc
(
δcI − h2θ2σc

2US
)
z2 − hθσcSV >z3 + q2 > 0,

hθσcV Sz2 +WSz3 + q3 > 0.

(73)

Rearranging the inequalities, we obtain
0 6 z2 6 βk,

z1 > 0, z1 > −σc
(
δcI − h2θ2σcUS

)
z2 + hθσcSV

>z3 − q2,

z3 > 0,WSz3 > −hθσcV Sz2 − q3.

(74)

Since βk > 0, the �rst inequality is feasible for z2. Let us search for a feasible point z? such that z?2 = 0. We must check that

the following inequalities are feasible for z?1 and z?3 :{
z?1 > hθσcSV

>z?3 − q2, z
?
1 > 0,

WSz?3 + q3 > 0, z?3 > 0.
(75)

Let us consider the following convex quadratic program:

minz3
1
2z
>
3 WSz3 + z>3 q3,

z3 > 0.
(76)

A solution z?3 of (76) exists and satis�es the optimality conditions:

w?3 = WSz?3 + q3 > 0, z?3 > 0, w?3
>z?3 = 0 (77)

Finally, let us choose z?1 = max(0, hθσcSV
>z?3 − q2), which satis�es the relevant inequalities. We have proved that the point

z = col(z?1 , 0, z
?
3) is a feasible point of the inequalities (73). �e LCP(L, q) is feasible and thus solvable.

For the uniqueness of the solution, we use the characterisation of the solutions of LCP(L, q), denoted by SOL(L, q), when L
is a semi-positive de�nite matrix (Co�le et al., 2009, �eorem 3.1.7) as a polyhedral set de�ned by

SOL(L, q) =

{
z | z > 0, Lz + q > 0, q>(z − z̄) = 0,

(
L+ L>

)
(z − z̄) = 0

}
, (78)

where z̄ is an arbitrary solution. In our case, the condition

(
L+ L>

)
(z − z̄) = 0 yields{

σc
(
δcI − h2θ2σcUS

)
(z2 − z̄2) = 0,

WS(z3 − z̄3) = 0.
(79)

Under Assumption 1, δcI − h2θ2σcUS has full-rank. We get that z2, and hence hλk+1 is unique. Since βk+1 = βk − hλk+1,

βk+1 is also unique. From w3 − w̄3 = hθσcV S(z2 − z̄2) + WS(z3 − z̄3) = 0, we conclude that w3 is unique and therefore
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v
N,k+1 is also unique. Furthermore, (z3 − z̄3) is in the kernel of W and then of H̄>, so we have also H̄>(z3 − z̄3) = 0.

From the condition, q>(z − z̄) = 0, we obtain

βk(z1 − z̄1) +

(
H̄M̂−1

(
îk,k+1 − hH>Sσcβk

)
+ ev

N,k

)>
(z3 − z̄3) = 0, (80)

since z2 − z̄2 = 0. Since v
N,k = H̄vk , we have the following simpli�cation:(

M̂−1
(
îk,k+1 − h(1− θ)σcH>Sβk

)
+ evk

)>
H̄>(z3 − z̄3) = 0, (81)

since H̄>(z3 − z̄3) = 0, and then

βk(z1 − z̄1) = 0. (82)

For βk > 0, z1, hence µk+1 is unique. Using that the linear relations Ar
k+1 = µk+1 − σcδc(βk+1 − 1) + σcuN,k+1 and

u
N,k+1 = u

N,k + hv
N,k+θ , we conclude that Ar

k+1 is unique if βk > 0.

Corollary 1. Under Assumption 1, the solution of the problem (63) exists and is unique for the variables (vk+1, uk+1, βk+1, λk+1)
for a su�ciently small time step h.

�e uniqueness ofβk+1 comes from Proposition 1. For the uniqueness of vk+1, let us consider two solutions v̂k+1, β̂k+1, p̂N,k,k+1

and v̄k+1, β̄k+1, p̄N,k,k+1, from (65), we get

v̂k+1 − v̄k+1 = M̂−1

[
−hH>

(
θ(β̂k+1 − β̄k+1) + (1− θ)βk

)
Sσc + H̄>S(p̂

N,k,k+1 − p̄N,k,k+1)

]
. (83)

Since p̂
N,k,k+1− p̄N,k,k+1 is in the kernel of H̄> and β̂k+1− β̄k+1 = 0, we can conclude that vk+1 is unique, and the integration

rule uk+1 = uk + hvk+θ implies the uniqueness of uk+1.

Corollary 2 (Convex optimisation problem). Under Assumption 1, the LCP(L, q) is equivalent to the following convex quadratic
problem:

minhλk+1,pN,k,k+1,µk+1

1
2

 hλk+1

pN,k,k+1

> σc(δcI − h2θ2σcUS) 0

0 WS

 hλk+1

pN,k,k+1

+ q>


µk+1

hλk+1

pN,k,k+1


subject to µk+1 > 0, hλk+1 > 0, pN,k,k+1 > 0,

−hλk+1 + q1 > 0,

µk+1 + σc
(
δcI − h2θ2σcUS

)
hλk+1 − hθσcV >SpN,k,k+1 + q2 > 0,

hθσcV Shλk+1 +WSpN,k,k+1 + q3 > 0,

(84)

�e following remarks and comments can be made:

• �e condition on the size of the time-step is not an onerous condition in practice since it is based on the condition that

δcI−h2θ2σcUS is positive de�nite in which h only appears as h2
. In most �nite elements applications, H is assumed to

be full-rank. In that case, p
N,k,k+1 is also unique. �e possible non-uniqueness of µk+1 and Ar

k+1 when βk = 0 comes

from the fact that we impose two redundant constraints βk+1 > 0 and βk+1 6 0 related to β > 0 and β̇ 6 0. In practice,

this is harmless since it does not in�uence the state variables (vk+1, uk+1, βk+1).

• It is important to note that the LCP becomes infeasible if βk < 0. While in principle the constraints act to enforce

a βk = 0 condition, in practice due to the �nite numerical precision of the solution at each step, the condition can be

violated. In this case, the solution of the LCP can fail in turn. As such, when the value of βk is near the machine accuracy,

we set βk+1 to 0 and µk+1 is given by the equation (68). We reduce the corresponding contact to a simple unilateral

contact with impact LCP solving only for v
N,k+1, pN,k,k+1. We note that this schema is also e�ective numerically, as by

decreasing the size of the LCP, we speed up its solution.

• �e convex minimisation problem has no straightforward mechanical meaning. A future goal would be to express a

convex minimisation problem in the spirit of the variational approach to fracture (Bourdin et al., 2008). �is is beyond

the scope of the paper and le� to further investigations.

• In practice, the LCP(L, q) can be solved by pivoting techniques for LCPs (such as Lemke’s algorithm) or other methods

such as interior point methods, taking advantage of the convex minimisation problem (Nocedal and Wright, 1999; Wright,

1996) (see also Acary and Brogliato (2008, Chapter 9) in the context of non-smooth mechanics).
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4.3 Discrete energy balance
In this section, we show that the discrete energy balance is satis�ed by the proposed time-stepping scheme. Starting from the

energy balance in the non-impulsive case in (36), we need to adapt the de�nition of the energy balance when impacts occur, as

can be the case with �nite masses. Starting from the equation of motion given in (49) and multiplying by

1

2
(v+ + v−), we get

1

2

(
v+ + v−

)>
M dv+

1

2

(
v+ + v−

)>
Kudt =

1

2

(
v+ + v−

)>
F dt+

1

2

(
v+ + v−

)>
H>S dp

N
−1

2

(
v+ + v−

)>
H>σcSβ dt,

(85)

Since v+ dt = v− dt = v dt and M and K are symmetric matrices, we obtain

d

(
1

2
v>Mv

)
+ d

(
1

2
u>Ku

)
= F>v dt− (Hv)>σcSβ dt+

1

2

[
H
(
v+ + v−

)]>
S dp

N
. (86)

With the standard de�nition of the kinetic energy K and strain potential energy U in the space-discretised case, we obtain

dK+ dU = F>v dt− (Hv)>σcSβ dt+
1

2

[
H
(
v+ + v−

)]>
S dp

N
= v>F dt− v>

N
σcSβ dt+

1

2

(
v+

N
+ v−

N

)>
S dp

N
. (87)

With the space-discretised version of the fracture energy given in (38)

G =

∫
v

N

>σcSβ dt, (88)

we obtain the equivalent energy balance for the space-discretised system:

dK + dU + dG = v>F dt+
1

2

(
v+

N
+ v−

N

)>
S dp

N
. (89)

By integrating this la�er relation over a time interval (t1, t2] and de�ning the total energy of the system as T = K + U + G,

we obtain the incremental energy balance:

∆T = T+(t2)− T−(t1) = Wext +Wimpact, (90)

where the work of external forces and impact are given by

Wext =

∫ t2

t1

v>F dt, and Wimpact =

∫
(t1,t2]

1

2

(
v+

N
+ v−

N

)>
S dp

N
. (91)

Using the constitutive law for the impact equation (52), it is shown (Acary, 2016) that as the work of impact dissipates energy,

then

∆T = T+(t2)− T−(t1)−Wext = Wimpact 6 0. (92)

Let us now show that an equivalent incremental energy balance is also satis�ed by the time-stepping method. Following the

same method as in Acary (2016), we derive the following incremental energy balance for the θ-method:

∆K + ∆U =

(
1

2
− θ
)[
‖vk+1 − vk‖2M + ‖(uk+1 − uk)‖2K

]
+ hv>k+θFk+θ − hv>N,k+θσcSβk+θ + v>

N,k+θSpN,k,k+1, (93)

where ‖v‖2M = v>Mv and ‖u‖2K = u>Ku. Let us de�ne the discrete approximation of the work done by the external forces

and the impact term within the step by

Wext,k+1 = hv>k+θFk+θ ≈
∫ tk+1

tk

Fv dt, and Wimpact,k+1 = v>
N,k+θSpN,k,k+1, (94)

and the discrete approximation of the fracture work by

∆Gk,k+1 = hv>
N,k+θσcSβk+θ ≈

∫ tk+1

tk

v>
N
σcSβ dt. (95)

We have the following estimate for the variation of the total mechanical energy for

1

2
< θ 6 1:

∆(K + U) + ∆Gk,k+1 −Wext,k+1 <Wimpact,k+1. (96)
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Furthermore, it can be shown (see Acary (2016) for details) that the discretisation of the Moreau impact law (52) yields

Wimpact,k+1 6 0 if θ 6
1

1 + e
, (97)

and then, we obtain

∆(K + U) + ∆Gk,k+1 −Wext,k+1 <Wimpact,k+1 6 0. (98)

For θ =
1

2
, and then for any value of e ∈ [0, 1], the incremental energy balance can be re�ned to

∆(K + U) + ∆Gk,k+1 −Wext,k+1 = Wimpact,k+1 6 0. (99)

Comparing to the energy balance (39), we conclude that the incremental discrete energy balance, provided by the time-stepping

scheme, ensures the practical stability of the scheme by not spuriously adding energy into the system.

5 Numerical validations
We implement our discretised system in Python, and we solve the LCP using the Siconos so�ware (Acary et al., 2019), and

use the robust Lemke (Lemke and Howson, Jr., 1964) algorithm to resolve the system. While other (possibly faster) algorithm

choices are available, Lemke guarantees that the correct solution to the LCP will be found, within numerical precision.

5.1 �asi-static scalar case with elastic spring
For the sake of illustration, we will consider �rstly a static system. Let us consider the case of an elastic rod bound onto a rigid

substrate with a cohesive zone, as outlined in Acary and Monerie (2006) and Chaboche et al. (2001), and depicted in Figure 3:

1 2 u/F

Figure 3: Two nodes joined by a spring. Node 1 features a cohesive zone bound onto a rigid substrate, while the driving

displacement or force is applied to node 2.

First, we consider the structural sti�ness matrix:

K =

 ES/` −ES/`
−ES/` ES/`

 , (100)

where ` is the rod length, S the rod cross-sectional area (and area of the cohesive zone) and E is the Young’s modulus of the

rod. However, it is clear that this matrix is singular, so we modify it (and the external force F ) in order to enforce the boundary

conditions and create an invertible matrix K̄ . If we consider (48) in static equilibrium (i.e. where we remove the Mv term

from the equilibrium equation), we can conduct some simple re-arrangements to obtain an LCP for the general case of multiple

cohesive zones, 0 leqw = Lz+ q ⊥ z > 0. �e discretisation otherwise follows (61), other than there being no θ-method used,

as the velocities do not enter into the formulation. �us, we have a fully implicit discretisation, giving the LCP

w =


βk+1

Ar
k+1

u
N,k+1

 , L =


0 −I 0

I σcδcI − σc2HK̄−1H>S −σcHK̄−1H>S

0 σcHK̄
−1H>S HK̄−1H>S

 , z =


µk+1

hλk+1

νk+1

 , (101)

q =


βk

−σc
(
δc(βk − 1) +HK̄−1

(
F̄k+1 − σcH>Sβk

)
+ bk+1

)
HK̄−1

(
F̄k+1 − σcH>Sβk

)
+ bk+1

 . (102)

We can then solve this system for the case where the far end of the rod is driven according to the relation

u2(t) =


1
2 t, 0 6 t < 1.0

1.0− 1
2 t, 1.0 6 t < 3.0

−2.0 + 1
2 t, 3.0 6 t

(103)
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where extension is taken to be positive, and compression negative. �e solution of the system (101) under driving input (103)

with H =
[
1 0

]
, material parameters σc = 0.5 MPa, δc = 1.0 mm, E = 5.0 MPa and ` = 1.0 mm, simulated for 8 ms with

4000 time-steps is given in Figure 4:
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Figure 4: �e solutions of the elastic bar with cohesive zone system. (a) �e nodal displacements u1 and u2 as a function of

time t. (b) �e cohesion β as a function of time t. (c) �e cohesion β as a function of crack opening displacement u
N
. (d) �e

driving force Ar
as a function of time t. (e) �e reversible part of the reaction force r

N
and the cohesive force rc

N
as a function

of time t. (f) �e rate of decohesion λ as a function of time t.

However, we must be careful that the behaviour of the system remains well-posed. When σcδcI−HK̄−1H>S is no longer

positive de�nite, the system loses uniqueness and multiple solutions are possible. So long as the condition

σcδc >
`

E
, (104)

is ful�lled, the system remains stable and there is a unique solution. Physically the unstable behaviour represents the accumula-

tion of more elastic strain energy than can be released at the cohesive zone. Geometrically, the so�ening slope of the triangular

law is greater than the elastic sti�ness of the system, resulting in both constitutive laws only being satis�ed at u
N
> δc (see

Chaboche et al. (2001) for further details). For the sake of illustration, we simulate the above system, but with E = 0.5 in

Figure 5:
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Figure 5: �e solutions of the elastic bar with cohesive zone system for ill-posed system values. (a) �e nodal displacements

u1 and u2 as a function of time t. (b) �e cohesion β as a function of time t. (c) �e cohesion β as a function of crack opening

displacement u
N
. (d) �e driving forceAr

as a function of time t. (e) �e reversible part of the reaction force r
N

and the cohesive

force rc
N

as a function of time t. (f) �e rate of decohesion λ as a function of time t.

We may observe that the loss of uniqueness results in a “solution jump”, where the system moves from completely unbro-

ken to completely broken in a single time-step. More energy is stored elastically than can be released by the cohesive zone,

resulting in the instantaneous rupture once the critical traction is achieved. It should also be noted that if larger time-steps are

chosen, the value of u
N

at which β goes to zero is subject to “overshoot”, meaning that an additional spurious energy release

occurs.

�is ill-posed system behaviour can be entirely avoided by working in dynamics, so from this point onwards we do so. However,

as Figure 4 demonstrates, the model can be successfully implemented in statics, provided that (104) is always respected.

5.2 Dynamic cohesive zone model with elasticity
5.2.1 Dynamic case with single elastic spring

Now, we consider the same system as above, but this time in dynamics. We use the system parameters σc = 0.5 MPa, δc = 1.0

mm, e = 0.0, E = 0.5 MPa, l = 1 mm, S = 1 mm
2
, and M =

0.25 0

0 0.25

 g. �ese values result in an ill-posed system in

the static case, but as we demonstrate below, the addition of dynamics regularises the system. We simulate the system for 8 ms

using 4000 time-steps and θ = 1, subject to the same driving displacement (103). We observe the system evolution depicted in

Figure 6:
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Figure 6: �e solutions of the dynamic CZM system with elasticity, for values that are ill-posed in statics. (a) �e displacements

u as a function of time t. (b) �e velocities v as a function of time t. (c) �e cohesion β as a function of time t. (d) �e

thermodynamic driving force Ar
as a function of time t. (e) �e percussion p

N
as a function of time t. (f) �e cohesion β as a

function of crack opening displacement u
N
.

We may observe in Figure 6 that the inertial e�ects result in a smoothly changing value of β with time, as opposed to the

instantaneous rupture of the equivalent system in statics, thus demonstrating the well-posed nature of the system.

In order to demonstrate the e�ect of including percussions in the formulation, we may simulate the same system of a spring

a�ached to a cohesive zone, but with di�erent parameters and subject to a di�erent driving force. We use the system parame-

ters σc = 1.0 MPa, δc = 1.0 mm, e = 0.0, E = 10 MPa, l = 1 mm, S = 1 mm
2
, and M =

2.5 0

0 2.5

 g. �e system is subject

to the driving force in Newtons:

F = 1.5σc exp (0.25t) sin (πt) . (105)

We observe the system evolution depicted in Figure 7:
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Figure 7: �e solutions of the dynamic CZM system with elasticity. (a) �e displacements u as a function of time t. (b) �e

velocities v as a function of time t. (c) �e cohesion β as a function of time t. (d) �e thermodynamic force Ar
as a function of

time t. (e) �e percussion p
N

as a function of time t. (f) �e cohesion β as a function of crack opening displacement u
N
.

5.2.2 Dynamic double cantilever beam

F/v

1.6 mm 0.4 mm

0.2 mm

01234

Figure 8: �e symmetry of the double cantilever beam allows us to simulate it as a single cantilever beam �xed at the le� end

(diagonal hatching), with cohesive zone nodes a�ached to a rigid substrate along the symmetry plane (cross hatching). A force

or velocity is applied at the upper right hand corner, at the free end. We follow the decohesion at the points labelled 0 through

4.

We simulate a double cantilever beam (DCB) shown in Figure 8 inspired by that found in Camacho and Ortiz (1996), but using

parameters for polymethyl methacrylate (PMMA). We simulate a DCB with a length of 2 mm, with a pre-existing crack of 0.4

mm length. �e beam is taken to have a thickness of 1 mm. �e beam is meshed using Gmsh 4.8.3 (Geuzaine and Remacle,

2009). �e bulk material has Young’s modulus E = 2.7 × 103
MPa, a Poisson’s ratio ν = 0.39 (Doitrand et al., 2021b), and

a mass density ρ = 1.18 × 10−3
g/mm

3
(Doitrand et al., 2019). We use the consistent mass matrix in our �nite element dis-

cretisation. �e cohesive zone parameters are the critical traction σc = 45 MPa, the fracture energy Gc = 0.14 N/mm, and the

critical distance δc = 0.0062 mm, while the coe�cient of restitution e = 0.

We simulate only half the system, exploiting the symmetry inherent to the problem. �us, the lower boundary of the sys-

tem consists of a series of nodes with cohesive zones a�ached, excepting a section representing an initial crack. It is important

to note that where the Dirichlet boundary intersects with the cohesive zone boundary, the node is removed from the set of

cohesive zone nodes, and its tributary area is allocated to the neighbouring cohesive node. �us, the crack is allowed to prop-

agate over the entire length of the system, but there is no possibility of the LCP being made infeasible by trying to enforce the

Dirichlet boundary condition on a cohesive zone node. �e mesh is shown in Figure 9:
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Figure 9: �e mesh of the double cantilever beam, and the total displacements of the mesh at the end of the test, measured by

the norm of the displacements at each node.

We simulate the upper half of the DCB using a controlled displacement test, displacing at the rate of 1 mm/ms to a target

displacement at the free end of 0.6 mm. We set θ = 0.5, and adopt a large initial time-step of h = 0.0015 ms, so that the

loading stage before the crack initiates is not overly time-consuming. Once the crack initiates, we enforce a smaller time-step

of h = 2.5× 10−4
ms, ensuring that the LCP remains well-posed. In principle, we also allow adaptive time-stepping (dividing

the time-step in half) in the event that the LCP does not resolve correctly, however, this condition is never activated during the

simulation. We insist on the fact that this time step is relatively large compared to simulations performed with intrinsic models

which require small time steps due to the initial sti�ness of the system. �e results of the simulation are shown in Figure 10:
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Figure 10: �e simulation of a double cantilever beam under velocity control. (a) �e cohesion β as a function of time t at the

points of interest. (b) �e cohesion β as a function of distance from the tip of the initial crack xcrack, at the times that the

cohesion of each of the points of interest goes to zero. (c) �e length L of the crack as a function of time t. (d) �e crack tip

velocity L̇ normalised by the Rayleigh wave speed cR, as a function of time t.

�e Rayleigh wave cR speed is calculated by

cR =

√
E

2ρ(1 + ν)

0.886 + 1.14ν

1 + ν
, (106)
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which is a good approximation to the solution of the Rayleigh wave function (Freund, 1998). We apply a Savitzky-Golay �lter

(Savitzky and Golay, 1964) to the crack length in order to smooth the signal slightly. A window of 13 time-steps and a �rst-order

polynomial is observed to reduce the noise su�ciently so that the underlying velocity trend is legible. �e crack tip velocity is

then calculated by assuming a linear growth rate between each spatial point as they crack. We may observe in Figure 10 that

the speed of the decohesion gradually declines over time, other than for the very �rst point to crack, which takes substantially

longer than the others. Some slowing of the initial decohesion is observable in the curve for β3 in sub�gure (a), as a result of

the in�uence of the geometry of the problem. Similarly, in sub�gure (b), we can see that the size of the fracture process zone

remains essentially constant throughout the cracking process. Sub�gures (c) and (d) demonstrate the relatively steady growth

in the crack length, with an initial sharp increase occurring as the crack establishes before gradually tapering away. We also

note that the crack velocity is very small relative to the mode I theoretical limit of cR, due to both geometrical e�ects and the

low velocity at which the displacement is controlled.

We can also consider the energy-conserving properties of the integration scheme, by plo�ing the changing energetic quantities:
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Figure 11: �e energies of the dynamic double cantilever beam simulation under velocity control.

We can see in Figure 11, that the work input matches exactly with the sum of the strain, kinetic and expended cohesive

energies, indicating that the integration scheme successfully conserves the energy. A comparatively greater share of the work

input is used in the creation of new surface area than in the storage of strain energy, while the kinetic energy remains negligible

(as is to be expected in a slow displacement-controlled simulation).

We also simulate the same system under force control, this time increasing the loading (in Newtons) according to F = 10t until

one element is fully decohered, at which point the force is held constant. �e results of the simulation are shown in Figure 12:
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Figure 12: �e simulation of a double cantilever beam under force control. (a) �e cohesion β as a function of time t at the

points of interest. (b) �e cohesion β as a function of distance from the tip of the initial crack xcrack, at the time that the

cohesion of each of the points of interest goes to zero. (c) �e length L of the crack as a function of time t. (d) �e crack tip

velocity L̇ normalised by the Rayleigh wave speed cR, as a function of time t.

Once again, we apply a Savitzky-Golay �lter with a window size of 13 time-steps and a �rst order polynomial on the

crack length L, to reduce the noise when calculating L̇. In comparing Figure 10 and Figure 12, we may observe that the force-

controlled system decoheres much more slowly initially, up until the point at which the crack begins, where it then travels much

more rapidly than the velocity-controlled system, with crack arrest being achieved by the interaction with the �xed boundary

of the system. �is geometry, as well as the small applied force, once again results in the crack being slow in comparison with

the theoretical limit of cR, although it is an order of magnitude faster than the speed of the crack under velocity control. We

note that the decohesion of points 1, 2 and 3 are more rapid and more concentrated in time than for the velocity controlled

system, and that point 4 experiences some decohesion, whereas it remained intact for the velocity controlled system. Once

again, we can also consider the energetic properties of the system:
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Figure 13: �e energies of the dynamic double cantilever beam simulation under force control.

We may observe that the energetic behaviour of this system depicted in Figure 13 is rather di�erent to that of the velocity

controlled system. We observe that the system is truly dynamic, and a signi�cant part of the work input is transformed into

kinetic energy. We also observe that at a certain point, the work input decreases and the system moves towards its equilibrium

state, with a certain amount of surface energy, and exchanges between the strain and kinetic energies. We note that total

system energy matches exactly the total work input, indicating that the numerical schema successfully conserves energy in a

simulation with more dynamic e�ects.

5.2.3 Rhombus hole specimen

We can also simulate the rhombus hole specimen in Doitrand et al. (2019), applying (69) with the same principles as for the

DCB. �e sample has a width of 40 mm and a height of 60 mm, with a rhombus hole in the centre that has a corner angle of 90◦

and a half-diagonal length of 4.95 mm. While the simulation in Doitrand et al. (2019) is purely in two dimensions, we consider

a three-dimensional system in plane-stress, and so use a thickness of 1 mm.
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Figure 14: �e double symmetry of the rhombus hole specimen allows us to simulate only the top right quarter. Standard

symmetry conditions (diagonal hatching) are applied to the bo�om boundary, while cohesive zone nodes and a symmetry

condition are a�ached to the le� boundary (cross hatching). A velocity is applied uniformly to all points on the top boundary.

�e vertical half diagonal retains a constant length, but the angle γ is varied to produce di�erent geometries.

We exploit symmetry so that we need only simulate one quarter (the top-right) of the sample. �e boundary conditions

on the le� and bo�om edges are thus symmetry conditions, with normal displacements restricted to be positive or zero, and

tangential displacements unrestrained. �e right edge and the rhombus hole edge are similarly unrestrained, while the loading

is applied as a Dirichlet condition on the top edge. As the crack is predicted to occur along the le� edge, these nodes are

included in the set of cohesive zone nodes. �e 1 mm length closest to the corner of the rhombus hole is allocated a very �ne

mesh, with one node every 0.002 mm, ensuring accurate resolution of the cohesive zone. �e mesh is steadily coarsened to

reach a characteristic size of 0.5 mm at the top of the le� hand edge, while all of the bulk regions that exhibit purely elastic

behaviour are allocated a characteristic size of 2 mm. Hence, the mesh is highly re�ned in the region of the crack process, while

remaining computationally e�cient. �e mesh is shown in Figure 15:
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Figure 15: �e mesh of the rhombus hole specimen, and the total displacements of the mesh at the end of the test, measured

by the norm of the displacements at each node.
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�e loading protocol is to impose a vertical displacement of a rate of 1 mm/s on the top edge, while also enforcing a no-slip

condition, so that the horizontal velocities on the top edge are zero. At the time the �rst node cracks (i.e. β 6 1 × 10−12
),

the vertical loading is stopped and the displacement is held constant. �e simulation continues until 20 time-steps have passed

with no changes in the value of β in any of the cohesive zone nodes.

�e simulation is carried out with the values in Doitrand et al. (2019) representing PMMA, namely a Young’s modulusE = 1600
MPa, a Poisson’s ratio ν = 0.37, a density ρ = 1.19×10−3

g/mm
3
, a critical traction σc = 80 MPa, a fracture energyGc = 0.25

N/mm, and a coe�cient of restitution e = 0. Once again, a consistent mass matrix is used.

We can plot the results of the simulation in terms of the crack progression, once more tracking results at the points of in-

terest, which in this case are the point at which the crack begins (index 0), the point at which the crack arrests (index 4), and

the quarter, half and three-quarter points between them (indices 1, 2, and 3, respectively).
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Figure 16: �e simulation of a rhombus hole specimen. (a) �e cohesion β as a function of time t at the quarter points. (b)

�e cohesion β as a function of distance from the tip of the initial crack xcrack , at the time that the cohesion of each of the

quarter points goes to zero. (c) �e length L of the crack as a function of time t. (d) �e crack tip velocity L̇, normalised by the

Rayleigh wave speed cR, as a function of time t.

Once again, we have applied a Savitzky-Golay �lter of window size 13 time-steps, and polynomial order 1 to the crack

length, to obtain a smoother crack velocity. In this case, we observe several interesting behaviours in Figure 16. Unlike the rel-

atively steady decohesion observed in the DCB, we observe that the node at the corner of the rhombus hole steadily decoheres

over a long period of time, but once it reaches zero and the crack begins growing, the speed of decohesion is rapid (shown in

the inset to (a)). Similarly, when considering the spatial distribution of the cohesion variable at the time each quarter point is

fully decohered, we see that the length of the fracture process zone is essentially constant, as is the case with the DCB. Initially,

the crack rapidly accelerates, followed by a small period of relatively constant velocity. �e �nal phase is a steady decrease in

crack growth rate, followed by the crack arrest. �e �nal crack arrest length is 0.448 mm, which compares well with the value

of 0.593 obtained by Doitrand et al. (2019).

Once again, we may also study the energetic properties of the solution algorithm that we implement:

28



0 100 200 300 400 500 600 700

t (ms)

0

20

40

60

80

100

120

140

E
n

er
gy

(N
·m

m
)

Strain energy

Kinetic energy

Surface energy

Total work

Total energy

Figure 17: �e energies of the rhombus hole simulation.

We can see that the the strain energy accounts for the majority of the work input, while the kinetic energy and surface

energy are both negligible.

As a �nal point of comparison, we may follow Doitrand et al. (2019), and vary the rhombus hole angle γ while observing

the e�ect on the crack initiation force Finit and the crack arrest length Larrest. Some changes to the pa�erns of mesh re�ne-

ment were made in the interests of computational e�ciency, with a re�ned mesh being retained at the corner and in the region

of the expected crack arrest point, but being less re�ned in between.
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Figure 18: �e results of simulations varying the rhombus hole angle γ. (a) �e crack initiation force Finit at which cracking

begins. (b) �e crack arrest length L at which crack propagation stops, in the absence of continued loading.

We may observe in Figure 18 that there is a very good agreement between the results of the simulations in Doitrand et al.

(2019), and the results of our models, with the initiation force decreasing and crack arrest length increasing as the rhombus

hole angle increases. Possible reasons that may account for the minor di�erences may be the e�ects of dimensionality, the

initial rigidity present in the CZM used by Doitrand et al. (2019) (they allocated an initial sti�ness of 1 × 108
MPa/mm), and

di�erent meshes used to simulate the results. We note also that our results are achieved with substantially larger minimum

time-steps (1× 10−4
ms in our case, against 1.5× 10−6

ms for Doitrand et al. (2019)). Doitrand et al. (2019) also conducted a

sensitivity analysis for the sti�ness of the CZM using the 90◦ rhombus hole mesh, with the minimum time-step size ranging

from 1 × 10−4
ms for a sti�ness of 1 × 106

MPa/mm, down to 2.4 × 10−7
ms for a sti�ness of 1 × 1010

MPa/mm. It is clear

that our implementation of an extrinsic CZM is substantially more numerically e�cient than a typical intrinsic CZM, in some

cases by orders of magnitude.

6 Conclusions
In this paper, we �rst used the principle of virtual power to establish the equilibrium and boundary conditions of a body with

a cohesive zone. �en, we postulated a free energy potential for the surface that allowed us to obtain non-smooth state laws of
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the system. �ese state laws describe extrinsic cohesive zone models that do not have the “shi�ed intrinsic model” structure,

thus guaranteeing appropriate physical behaviour under complex dynamic loading. By appropriately specifying a dissipative

pseudo-potential, we obtained a complete generalised constitutive model of the cohesive zone system for normal crack opening,

and demonstrated that while in this model decohesion is an irreversible process, it is also non-dissipative. We then speci�ed a

particular energetic potential in order to obtain a linear evolution of the cohesion variable with the displacement jump across

the crack.

By appropriately discretising our system, and working with di�erential measures, we were able to include non-smooth im-

pact dynamics within our model. �e discretised system was combined with a θ-method to obtain a time-stepping scheme that

could be formulated as a linear complementarity problem. We then proved that the problem was well-posed for a su�ciently

small time step, meaning that a solution exists, and that it is unique for certain variables. Moreover, it has been shown that the

scheme has very good properties of conservation of energy balances.

We then implemented the model numerically by solving the complementarity problem at each time step. We demonstrated

the system in statics, �rstly parameter values leading to a well-posed problem, and then with values leading to an ill-posed

problem. We then demonstrated that the same system in dynamics remains well-posed. Finally, we simulated some physical

systems of interest by combining the linear complementarity problem with the �nite element method. Both a double cantilever

beam, and a rhombus hole sample were satisfactorily resolved, with the numerical scheme demonstrating good integration

properties. �e results of the rhombus hole simulations compared well with those of other authors in the literature, and were

achieved with much larger time-steps.

�is work has demonstrated that applications of convex analysis can lead to physically correct and numerically e�cient mod-

els for crack propagation. In this work, we decided to remain in a frictionless linear se�ing and to consider only a normal

decohesion process to avoid excessive complexity in the presentation, but natural extensions of this work are to generalise the

model to tangential displacements, adopt other possible forms of the cohesion evolution law, and to combine crack propagation

with other physical phenomena.
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