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Notation For vector and tensors, we choose the following notation:

‖x‖2 = ‖x‖2 = xix
i︸ ︷︷ ︸

indicial notation

= x.x︸ ︷︷ ︸
tensor notation

= x>x︸ ︷︷ ︸
vector notation

(1)

1 Introduction
�e modelling of crack propagation touches on a wide variety of areas of interest within mechanics, ranging from a geological scale

(Okubo et al., 2019) to the very �ne details of composite materials (Ashouri Vajari et al., 2013). While linear elastic fracture mechanics

(LEFM), pioneered by Gri�th (1921), accurately describes signi�cant aspects of crack behaviour, it su�ers from the presence of a stress

singularity at the crack tip, rendering the model non-physical in the “fracture process zone”, the region surrounding the crack tip.

In order to model situations where individual cracks have a large e�ect on the overall structural behaviour of a system such as frag-

mentation or dynamic crack branching problems, researchers make use of cohesive zone models (see seminal articles such as Nguyen

and Wu (2018), Xu and Needleman (1994), and Zhang et al. (2007)). Cohesive zone models regularise the LEFM stress singularity at

the crack tip by expressing a relationship between the displacement jump across a developing crack surface and the traction that the

surface can support. �e total area under the traction-displacement curve represents the classical fracture energy of LEFM (Gri�th,

1921). In cohesive zone models the evolution of this interface is described in terms of a cohesion variable β ∈ [0, 1], where β = 1
indicates a perfectly intact interface, and β = 0 a completely broken interface.

Direct experimental observation of the fracture process zone is extremely di�cult, due to their typically small size (depending on

the material, as small as the order of 10nm (Azab et al., 2020)) and rapid motion. Very few direct observations have been made (Célarié
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et al., 2003; Guilloteau et al., 1996), although recent work studying the cohesive zones of frictional cracks (Berman et al., 2020) o�ers

a promising path towards further direct observations. Due to this di�culty of direct observation, the properties of the cohesive zone

are typically inferred via experimental observations at a larger scale. It should be noted that the particular values of the inferred

parameters such as total fracture energy Gc, critical traction σc and critical length δc depend on the exact form of the cohesive zone

model chosen (Azab et al., 2020). Some inference as to the appropriate form of the model may be drawn by comparing back-analyses

of experiments via cohesive zone models with those conducted using other crack analysis techniques such as the coupled criterion

(Doitrand et al., 2019).

While the particular form of cohesive zone models is arbitrary and limited only by the modeller’s imagination, in a broad sense

they may all be categorised as one of two �avours, intrinsic and extrinsic models. Intrinsic models include an initially elastic response,

with an initial strengthening of the cohesive zone as a function of the displacement jump, before weakening due to the decohesion

process (Falk et al., 2001). As a consequence, there is an additional length parameter, the hardening length δh, where the cohesive

traction obtains its maximum value (Kubair and Geubelle, 2003). Intrinsic cohesive elements are inserted between the mesh elements

before simulation, leading to straightforward computational parallelisation (Nguyen, 2014). However, the elasticity present in the in-

trinsic model has the e�ect of modifying the overall elasticity of the structure, with this e�ect becoming more signi�cant with a greater

number of cohesive elements. �us, intrinsic models introduce an unwanted mesh-dependency to the problem (Falk et al., 2001). �e

problem of induced arti�cial compliance can be reduced by increasing the initial hardening slope of the cohesive law. However, in

dynamic analyses, this sti�ness increase results in severe restrictions on the stable time-step size, rendering the method essentially

unsuitable (Nguyen, 2014). �e presence of interface elasticity also allows for the possibility of interpenetration and physically mean-

ingless negative displacement jumps if the two sides of the interface are pushed together (Acary and Monerie, 2006). Finally, we also

note the conceptual impossibility of measuring interface sti�ness across a crack face before the crack exists, meaning that any sti�ness

assigned in an intrinsic model must necessarily be arbitrary and not representative of a true physical property.

On the other hand, extrinsic models are initially rigid and hence immediately start to decohere as the displacement jump increases

(Kubair and Geubelle, 2003; Seagraves and Radovitzky, 2010). �ese models do not e�ect the elasticity of the bulk, however, typically

they are inserted adaptively on-the-�y into �nite element meshes (Zhou and Molinari, 2004a), as pre-inserting the elements leads

to very large computational overheads due to each node requiring duplicates. Historically the on-the-�y insertion has meant that

extrinsic models were di�cult to parallelise (Carter et al., 2000), but modern techniques have been developed that have overcome the

previous di�culties (Espinha et al., 2013). �e absence of arti�cial sti�ness in the extrinsic formulation renders it suitable for use in

dynamic analyses due to the absence of arti�cial compliance e�ects (Camacho and Ortiz, 1996; Murphy and Ivankovic, 2005; Seagraves

and Radovitzky, 2010), but care must be taken to ensure that the system exhibits time-continuous behaviour (Papoulia et al., 2003; Sam

et al., 2005). While extrinsic models do not have the pathological mesh-dependency of intrinsic models, the large number of elements

required to fully resolve the cohesive zone for arbitrary crack paths has been impractical, meaning that simulations are typically not

fully converged. �is issue can be at least partially addressed by modelling cohesive zone strength via a Weibull distribution (Zhou

and Molinari, 2004a; Zhou and Molinari, 2004b). �e use of more sophisticated �nite element techniques such as those based on the

partition of unity (Bybordiani and Dias-da-Costa, 2021), Hybrid Equilibrium Elements (Parrinello, 2020; Parrinello and Borino, 2020),

or Discontinuous Galerkin (Nguyen, 2014; Versino et al., 2015) constitutes a promising path towards truly mesh-independent results.

However, we must also pay close a�ention to the unload-reload behaviour of models, particularly in cases of non-monotonic load-

ing e.g. repeated impacts or complex stress wave pa�erns, where cohesive elements may incur only partial decohesion before being

subjected to unloading and reloading. By considering the mathematical structure detailed in Kubair and Geubelle (2003), where by

shi�ing the values of model parameters both intrinsic and extrinsic models may be obtained from the same formula, we may de�ne

the notion of a “shi�ed intrinsic model”, where the extrinsic model retains an underlying intrinsic mathematical structure. Typically

extrinsic models indicate that a�er the cohesion has decreased, the unload-reload behaviour is elastic until decohesion recommences

(Bybordiani and Dias-da-Costa, 2021; Camacho and Ortiz, 1996; Parrinello, 2020; Parrinello and Borino, 2020; Sam et al., 2005). Mod-

els exhibiting this behaviour constitute shi�ed intrinsic models where the e�ective critical traction σc,e and hardening length δh are

shi�ed away from their initial values (σc and 0 respectively) as the cohesion β evolves. For this family of models, the unload-reload

elasticity can be approximated by E ≈ tan

(
β
π

2

)
. It is clear that for very small amounts of decohesion with β ≈ 1, the elasticity

of the interface is arbitrarily large and the problems of arti�cial compliance inherent to intrinsic models may also arise in extrinsic

models if they have the shi�ed intrinsic model structure.

�us, we may conclude that an extrinsic model is the most appropriate to model crack behaviour, but special care must be taken

to avoid unphysical behaviour at the interface in both the initial loading phase, and for cases of unloading and reloading. To this end,

we turn to the �eld of contact mechanics, in particular the seminal work of Moreau (Moreau, 1970, 1974, 1986), who developed the

mathematical framework of non-smooth mechanics. By appropriately specifying the potential of energy and the pseudo-potential of

dissipation within the framework of Convex Analysis, rigorous thermodynamic formulations for a range of materials may be devel-

oped (Houlsby, 2019; Marigo, 1981). In particular, this family of models has been extended to cohesive zone modelling in a series of

seminal works by Frémond (Frémond, 1988, 2002, 2012a,b), which provides a natural framework in which we present our models.

Novelty of the contribution and outline of the article: �e novelty of our work is that we present the formulation of an extrinsic

model that cleanly separates the e�ects of dynamic contact with those of the cohesive zone, exploiting the framework of non-smooth
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mechanics. �e model does not have the shi�ed intrinsic model structure, and so avoids the associated problematic unload-reload

behaviour. Importantly, we are able to write the model in terms of a linear complementarity problem (LCP) that may be solved

monolithically, allowing us to exploit the e�cient algorithms that have been developed for this class of problems. Finally, we apply

the model to some pertinent example systems and compare the results with those obtained by other workers.

2 Formulation of extrinsic cohesive models with contact

2.1 State variables, powers and principle of virtual power
Let us consider a body de�ned by Ω ∈ IRd, d ∈ J1, 3K. �e vector x de�nes the current position and X the initial position, u(x)
the displacement and v(x) = u̇(x) the velocity. �e de�nition of the displacement jump is the interface is not trivial in practice. In

this work, we consider that, initially, the material is undamaged. At a point x ∈ Ω, x ∈ IRd
, the displacement u(x) and the velocity

v(x) are continuously di�erentiable functions of x. If a crack occurs and an interface is created, two material points xl and xr are

de�ned by spli�ing the bodies assuming that they correspond to the material point X initially. We choose to denote xl by x. �e

displacement jump is de�ned by the di�erence in the position of the material point that was at X initially, with respect to x and xr ,
that is Ju(x, xr)K = u(xr)−u(x). We also assume that we are able to de�ne an orthonormal local frame at any point x of the interface

de�ned by (x,N, T ) where N ∈ IRd
is the normal unit vector from x towards xr and the vector [T1, T2] ∈ IRd×d−1

completes the

frame. In this work, we consider only the normal displacement (jump), de�ned by u
N
(x, xr) = Ju(x, xl)KN ∈ IR. �e relative velocity

(jump in space) is de�ned as v
N

= u̇
N
. Before the creation of the interface, we assume that u

N
and v

N
vanish whatever the arbitrary

de�nition of the local frame since u and v are continuous.

To describe the state of the cohesion we introduce the cohesion variable β(x) ∈ [0, 1], using the notation introduced by Frémond

for describing the intensity of cohesion, or the proportion of active bonds. For a point x on the interface, the power of the cohesion

for a surface Γ is de�ned by

Pcoh =

∫
Γ

β̇Adx (2)

introducing A which is the dual force (driving force) associated to β. In the same way, the power of contact is given by

Pcon =

∫
Γ

v>
N
r

N
dx (3)

introducing r
N

as the normal reaction force related to the stress σ(x) at the interface by r
N

= −σ ·N .

For the material in Ω, the power of the external, internal and inertial forces are respectively given by

Pext =

∫
Ω

v>f dx−
∫

ΓN

v>T dx−
∫

Γ

β̇F dx, (4)

Pint = −
∫

Ω

σ : ε̇ dx+

∫
Γ

v>
N
r

N
dx+

∫
Γ

β̇Adx, (5)

Pacc =

∫
Ω

ρv>v̇ dx. (6)

where f is the body force in Ω, T is the surface traction on ΓN (i.e. where the Neumann boundary condition is applied on the surface),

F is an external force that does work on the cohesion (such as may arise from thermal or chemical e�ects) that is taken as identically

zero in this work, ε is the strain in Ω, ρ is the density and v̇ is the acceleration.

�e principle of virtual power states that for any virtual velocities v̄, ˙̄ε and
˙̄β, we have

P̄acc = P̄ext + P̄int,∫
Ω

ρv̄>v̇ dx =

∫
Ω

v̄>f dx−
∫

ΓN

v̄>T dx−
∫

Γ

˙̄βF dx−
∫

Ω

σ : ˙̄ε dx+

∫
Γ

v̄>
N
r

N
dx+

∫
Γ

˙̄βAdx (7)

For a rigorous mathematical se�ing of this principle, we refer to Frémond (1988). Using su�cient smoothness assumptions on the

�elds, this leads by localization to the set of equations describing the equilibrium and boundary conditions of the system:
∇ · σ + f = ρv̇, in Ω

A = F = 0, on Γ

T = σ ·N, on ΓN
r

N
= −σ ·N on Γ.

(8)
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2.2 A non-smooth thermo-mechanics potential in the normal direction
Free energy and reversible state laws. �e free energy of the system is the sum of the free energy in the bulk with that of the

surface, that is∫
Ω

Ψe(ε) dx+

∫
Γ

Ψs(uN
, β) dx (9)

where Ψe and Ψs are the volume and surface free energies. In this work, we assume all strain is elastic. Firstly, the stresses may be

obtained by assuming a classical linear elastic potential for the bulk:

Ψe(ε) =
1

2
ε : E : ε, (10)

σ(ε) =
∂Ψe(ε)

∂ε
= E : ε, (11)

where E is a fourth order sti�ness tensor. �e stress-like variables are similarly derived from the surface potential by{
−rr

N
∈ ∂uN

Ψs(uN
, β),

−Ar ∈ ∂βΨs(uN
, β),

(12)

where rr
N

stands for the reversible part of the normal reaction force, and ∂u
N

and ∂β indicate the subdi�erentials with respect to u
N

and β of a convex but non-smooth potential. �e �rst assumption in our model is that the displacement is constrained to be positive,

u
N
> 0, which is enforced as a unilateral constraint, and the cohesion variable constraints are 0 6 β 6 1. �is yields the possible

form of the surface free energy

Ψs(uN
, β) = ψ(u

N
, β) + IIR+

(u
N
) + I[0,1](β), (13)

where IC is the indicator function of a convex set C . To obtain an extrinsic CZM, the tangent sti�ness of the model when u
N
> 0

must vanish. In other words, the derivative of ψ(u
N
, β) with respect to u

N
must be constant, i.e.

∂2ψ

∂u
N

2
= 0. �e simplest choice for

the free energy is:

Ψs(uN
, β) = βσcuN

+ wf(β) + IIR+
(u

N
) + I[0,1](β), (14)

where

• σc > 0 is the critical traction,

• w > 0 is the surface free energy which is released by decohesion, and

• f(β) is a function that enables us to parametrise the evolution of β in the decohesion process.

�e state laws are deduced by applying (12) to (14):{
−(rr

N
+ βσc) ∈ ∂IIR+

(u
N
),

−(Ar + σcuN
+ wf ′(β)) ∈ ∂I[0,1](β).

(15)

�e �rst law in (15) is a shi�ed Signorini condition by the value of the cohesive force de�ned by rc
N
(β) = βσc. �is can be wri�en in

terms of a complementarity relation:

0 6 rr
N

+ rc
N
(β) ⊥ u

N
> 0. (16)

�e surface free energy Ψs is not a convex function of its arguments (u
N
, β) since the determinant of its Hessian matrix is equal to

−σc2. Nevertheless Ψs is convex with to respect to u
N

since it is linear. By choosing f ′(β) > 0, the convexity with respect to β is

ensured. �e smooth part of the free energy in (14) is composed of two terms. �e �rst term βσcuN
is homogeneous to a potential

energy given by the cohesive force βσc in the displacement �eld u
N
. �e second term wf(β) is the surface free energy released by

decohesion for a given β. Some further modelling assumptions may also be speci�ed on the function f . For an intact interface (β = 1),

we may assume that f(1) = 0 such that the released free energy vanishes. For a broken interface (β = 0), we may assume that the

cohesive free energy w has completely been released then f(0) = 1. Furthermore, we may also assume a monotone release for the

cohesion free energy with β, that f ′(β) 6 0. �is choice is consistent with the convexity of f if the minimum is a�ained for β = 1.

In the following, these assumptions will be satis�ed by the triangle law we propose.
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Dissipation pseudo-potential and irreversible processes. To de�ne the irreversibility of the process of decohesion in a way

consistent with the second law of thermodynamics, the dissipation function, de�ned for an isothermal process as

D = −Pint −
∫

Ω

Ψ̇ dx (17)

must be non-negative. �e computation of the time derivative of the non-smooth and non-convex potential requires some care.

Assuming Ψ̇ is convex in u
N

and in β separately, a result in Frémond (2002, Appendix A.1.9) provides us with the following inequality:

Ψ̇s(uN
, β) 6 −rr

N
u̇

N
−Arβ̇, (18)

for any rr
N

and β̇ that satis�es the inclusions (15)
1

. Substituting this inequality in the de�nition of the dissipation yields,

D >
∫

Ω

σ : ε̇ dx−
∫

Γ

(
v>

N
r

N
+ β̇A

)
dx−

∫
Ω

∂Ψe(ε)

∂ε
ε̇dx+

∫
Γ

rr
N
u̇

N
+Arβ̇ dx. (19)

In (19), the terms integrated over Ω cancel out. We then obtain

D >
∫

Γ

−v>
N
r

N
− β̇A+ v>

N
rr

N
+ β̇Ar dx. (20)

Since we want to ensure that D > 0, we will assume that

−v>
N
r

N
− β̇A+ v>

N
rr

N
+ β̇Ar > 0, or equivalently, − v>

N
rir

N
− β̇Air > 0, (21)

using the standard decomposition r
N

= rr
N

+ rir
N

and A = Ar + Air
for the irreversible parts of the stress–like variables. A standard

way to ensure this inequality is to postulate the existence of a proper closed convex pseudo-potential
2

of dissipation Φ(v
N
, β̇) such

that the dissipation process is governed by{
−rir

N
∈ ∂vN

Φ(v
N
, β̇),

−Air ∈ ∂β̇Φ(v
N
, β̇).

(22)

Let us assume that the dissipation process is only governed by the rate of β. We can choose for the pseudo potential of dissipation

Φ(v
N
, β̇) = IIR−(β̇). (23)

�is model of dissipation only imposes that the evolution of β must decrease with time, i.e., β̇ 6 0. �e dissipative laws are thus{
−rir

N
= 0,

−Air ∈ ∂IIR−(β̇).
(24)

Equivalently, the last line of (24) can be wri�en as

β̇ ∈ ∂IIR+
(−Air). (25)

In this form, we can easily interpret that Air
is the force that drives the evolution of β̇. Given that in (8), A = 0, we must have

Ar = −Air
, and thus

β̇ ∈ ∂IIR+
(Ar). (26)

Remark 1. �e choice of the pseudo potential (23) results in a model that is rate independent. A rate dependency can be easily added here
by considering a model that is non-linear in the rates of the dissipative variables, such as

Φ(vN, β̇) =
c

p+ 1
(−β̇)p+1 + IIR−(β̇), (27)

where the coe�cient c is a viscosity and p a given parameter for the nonlinear viscosity (Acary and Monerie, 2006).

Complete extrinsic cohesive zone model. Noting that r
N

= rr
N

, the complete model of the interface is given by
β̇ ∈ ∂IIR+

(Ar),

−(r
N

+ βσc) ∈ ∂IIR+
(u

N
),

−(wf ′(β) + σcuN
+Ar) ∈ ∂I[0,1](β).

(28)

We highlight that as rir
N

= 0 and (26) implies one of β̇ or Ar
is always zero, (21) is also zero. While the process of decohesion and

surface creation is irreversible, it is also non-dissipative.

1
�e functions uN(t) and β(t) are assumed to be absolutely continuous, and hence they have a derivative almost everywhere, but not necessarily at any points.

However, the inequality (18) can be obtained for the le� and right time derivatives.

2
a closed convex function is a convex function that is lower-semi continuous, or equivalently its epigraph is a closed convex set
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Variational inequality and complementarity problem. �e system can be formulated as an evolution variational inequality by

−F (β̇, β, u
N
, r

N
, Ar) ∈ NIR+×[0,1]×IR+



u

N

β

Ar


 , with F (β̇, β, u

N
, r

N
, Ar) =


−β̇

r
N

+ βσc

wf ′(β) + σcuN
+Ar

 . (29)

Introducing slack variables µ, λ, and ν, this system can also be formalised using normal cones to convex sets as β̇ = −λ, wf ′(β) + σcuN
+Ar = µ, r

N
+ βσc = ν,

−ν ∈ NIR+(u
N
), −µ ∈ N[0,1](β), −λ ∈ NIR+(Ar).

(30)

Using the de�nition of a normal to a convex set de�ned by simple bounds, this model can be wri�en with complementarity conditions

as a Mixed Complementarity Systems (MCS) β̇ = −λ, wf ′(β) + σcuN
+Ar = µ, r

N
+ βσc = ν, µ = µ+ − µ−,

0 6 ν ⊥ u
N
> 0, 0 6 µ+ ⊥ β > 0, 0 6 µ− ⊥ 1− β > 0, 0 6 λ ⊥ Ar > 0.

(31)

2.3 A linear evolution of the cohesion: triangle law.
We now specify the exact form of the surface potential. We require that when the surface doesn’t exist, i.e. u

N
= 0 and β = 1, Ψs = 0,

and that when the surface is fully decohered, i.e. β = 0, Ψs = w. We assume that this decohesion is complete at a critical length

δc > 0. Choosingw =
σcδc

2
,

f(β) = (β − 1)2,
(32)

ful�lls the required conditions for the energy while ensuring that the potential remains convex in β. While β ∈ [0, 1] and β̇ < 0, the

second term in (31) gives β = 1− u
N

δc
. �e linear evolution of β, obtained as a consequence of (32), is depicted in Figure 1.

β

Ψs(0, β)

u
N

β

1

w

(a)

δc

1

(b)

Figure 1: (a) �e shape of the surface potential Ψs with respect to β. (b) �e consequent linear evolution of β with u
N
.

�e model (30) is now speci�ed for a triangle law by β̇ = −λ, σc(δc(β − 1) + u
N
) +Ar = µ, r

N
+ βσc = ν,

−ν ∈ NIR+(u
N
), −µ ∈ N[0,1](β), −λ ∈ NIR+(Ar).

(33)

Since β̇ is constrained to be non-positive, a smooth evolution of β starting with the initial value β = 1 will result in β being less

than 1. We will show that in this case the µ− condition wri�en in (31) is redundant and can be dropped from the formulation. Let us

assume that β = 1 and µ− > 0. As β > 0, µ+ = 0 and µ = −µ−. �e second equation of (30) is then

σcuN
+Ar = −µ−. (34)

As Ar
and u

N
are both constrained to be positive, (34) implies that µ− 6 0, which contradicts our assumption. We conclude that

µ− vanishes. �us, the condition is redundant and is dropped from the model in the following, allowing us to write µ = µ+ and

−µ ∈ NIR+
(β).

�is model in (33) can be wri�en as a Mixed Linear Complementarity Systems (MLCS) given by β̇ = −λ, σc(δc(β − 1) + u
N
) +Ar = µ, r

N
+ βσc = ν,

0 6 ν ⊥ u
N
> 0, 0 6 µ ⊥ β > 0, 0 6 λ ⊥ Ar > 0.

(35)
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Analytical expressions for an experiment with a given driven displacement Let us assume for a while that u
N

is a given

function of time t given by the following piecewise linear function:

u
N
(t) =


1
2 t for 0 6 t 6 1.0,

1.0− 1
2 t for 1.0 6 t 6 2.0,

−1.0 + 1
2 t for 2.0 6 t,

(36)

and we choose δc = 1 and σc =
1

2
. �e time integration of the model described in (35) leads to the following piecewise linear response.

We assume that the evolution is continuous.

• First loading phase 0 6 t 6 1.0
Since u

N
(t) > 0 for t > 0, the reaction force is r

N
= −βσc. Let us assume that β(t) > 0 for t ∈ [0, T1). We deduce that

µ(t) = 0. Let us note that Ar(t0) = −σc(δc(β0− 1) +u
N
(0)) = 0. Let us assume that λ(t) = 0, t ∈ [0, ε], ε > 0 or equivalently

β̇(t) = 0, t ∈ [0, ε], ε > 0. In that case, we get Ȧr(t) = −σcu̇N
(t) < 0 and then Ar(ε) < 0, for ε > 0 which is impossible. Let

us try with β̇(t) < 0, then Ar(t) = 0 and β(t) = 1 − u
N
(t)

δc
and β̇(t) = − u̇N

(t)

δc
< 0. Since β(1) = 1 − 1

2δc
=

1

2
> 0, this is

the only consistent solution for t ∈ [0, 1].

• Unloading phase 1 6 t 6 2
Let us assume that β(t) > 0 for t ∈ [T1, T2) and µ(t) = 0. Let us assume that λ(t) = 0, t ∈ [0, ε], ε > 0 or equivalently

β̇ = 0. In that case, we get Ȧr(t) = −σcu̇N
(t) > 0 and then Ar(t) =

1

4
(t− 1) > 0. �is solution satis�es the complementarity

condition up to t = 2.

• Second loading phase 2 6 t
Let us assume that β(t) > 0 for t ∈ [T1, T2) and µ(t) = 0. Let us assume that λ(t) = 0, t ∈ [0, ε], ε > 0 or equivalently β̇ = 0.

In that case, we get Ȧr(t) = −σcu̇N
(t) < 0 and thenAr(t) = −1

2
σc(t−2) +Ar(2) = −1

4
((t−3)) which is positive for t < 3.0.

For t > 3.0, the only possible solution of the complementarity leads to β̇(t) = − u̇N
(t)

δc
< 0 and Ar(t) = 0. �e cohesion

variable β is then β(t) = −1

2
(t−3)+

1

2
which is positive for t < 4. For t > 4, the solution is β(t) = 0 and µ(t) =

1

2
(u

N
(t)−1)

�e solution of this experiment is depicted in Figure 2 with σc =
1

2
and δc = 1.

Remark 2. Let us note that we need to derive the second term of (35) to get a closed form solution. �is means that the evolution variational
inequality is of relative degree at least 1.
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Figure 2: Illustration of the extrinsic cohesize law with a linear evolution of cohesion. We depict both the analytical solution derived

above, and a numerical solution obtained by integrating a discretised form given in Section �. (a) �e displacement u
N

as a function

of time t. (b) �e cohesion β as a function of time t. (c) �e cohesion β as a function of displacement u
N
. (d) �e thermodynamic

driving force Ar
as a function of time. (e) �e slack variable µ as a function of time t. (f) �e slack variable λ as a function of time t.

We observe in Figure 2 that the model behaves correctly, with β only changing as the crack opens u̇
N
> 0, and no change in β

during reloading until u
N

exceeds its previous maximum value. Once the interface cohesion is fully eliminated we observe no further

change in β.

Remark 3. Other types of smoother cohesion evolution behaviours are possible, for examples laws modelled a�er that proposed in Michel
and Suquet (1994).

3 Nonsmooth elasto–dynamics of �nite dimensional systems

3.1 Finite dimensional systems via space discretisation
Let us consider a �nite-dimensional model of a elastic linear mechanical system, potentially a�er a space discretisation by FEM. Let

us note by u ∈ IRn
the displacements of the system and v = u̇ the velocity. Starting from the principle of virtual power (7), the

equilibrium equation can be wri�en as

Mv̇ +K u = F ; u̇ = v (37)

where M ∈ IRn×n
is the mass matrix, assumed to be symmetric positive de�nite, K ∈ IRn×n

is the structural sti�ness matrix and

F ∈ IRn
is the external applied force.

Let us now add that the cohesive zone is applied on a �nite set of cohesive contact points labelled by α ∈ J1,mK. In the case of

small perturbations, the local displacements at contact u
N

= col(uα
N
, α ∈ J1,mK) are related to the displacements u by a linear

relation wri�en as

u
N

= Hu+ b (38)

8



where H ∈ IRm×n
and b ∈ IRm

. Collecting all variables at contact in the same way (x = col(xα, α ∈ J1,mK)), the equilibrium

equations of the system are given by
Mv̇ +Ku = F +H>r

N
, u̇ = v, β̇ = −λ,

u
N

= Hu+ b, rc
N

= σcSβ,

wf ′(β) + σcuN
+Ar = µ, r

N
+ rc

N
= ν,

−ν ∈ NIR+(u
N
), −µ ∈ NIR+(β), −λ ∈ NIR+(Ar).

(39)

where S ∈ IRm×m
is a diagonal matrix that contains the tributary area of each cohesive zone node a�er space discretisation of the

interface. For the sake of simplicity, we assume that σc, w and f do not depend on α, but this can be straightforwardly extended.

3.2 Non-smooth dynamics and impacts
In the presence of unilateral contacts, solutions of �nite-dimensional dynamical systems with a regular mass matrix (with �nite

masses associated with all degrees of freedom) exhibit jumps in velocities. In this context, the non-smooth dynamics must be carefully

treated to obtain a consistent time-discretisation (Moreau, 1999). To this end, the equations of motion of a discrete (�nite-dimensional)

mechanical system, and the relation with contact variables are wri�en in terms of di�erential measures by M dv +Kudt = F dt+H> di
N
,

u̇ = v,
(40)

where dv is the di�erential measure associated with the velocity v, assumed to be a bounded value function, di
N

is the measure of the

reaction at the contact.

For the cohesive zone model, several further assumptions are made:

• We assume that the reaction due to cohesion force rc
N

is bounded. In other words, the corresponding impulse does not contain

atoms (Dirac measures);

• We assume that β and A are absolutely continuous functions of time. Since the evolution of the cohesion variable is governed

to the displacement u
N

that is assumed to be absolutely continuous in time, we assume the same regularity for β and A.

�e reaction at the contact can be then decomposed into the “contact impulse” dp, and the contribution of the cohesive forces by

di
N

= dp
N
− σcSβ dt (41)

When the interface is completely broken, we want to retrieve a contact law with impact. We choose in this work Moreau’s impact

law

0 6 dp
N
⊥ v+

N
+ ev−

N
> 0, if u

N
6 0, else dp

N
= 0, (42)

where e is the Newton coe�cient of restitution. In terms of normal cone inclusion, this is equivalent to

−dp
N
∈ NT (uN)(v

+
N

+ ev−
N

), or equivalently,− (di
N

+ σcSβ dt) ∈ NT (uN)(v
+
N

+ ev−
N

), (43)

Remark 4. �e inclusion −dpN ∈ NT (uN)(v
+
N + ev−N ) deals with the impact and the constraints at the velocity level. When uN(t) = 0,

this inclusion imposes that v+
N (t) > 0 and then uN(t+ ε) > 0 for ε > 0. �is results is formalized in Moreau’s viability lemma (Moreau,

1999). �e inequality uN > 0 is not explicitly wri�en since it is satis�ed if (42) is satis�ed and uN(t0) > 0.

�us, we can write the full set of equations for the system as

M dv +Kudt = F dt+H>(dp
N
− σcSβ dt), u̇ = v, β̇ = −λ,

u
N

= Hu+ b, v
N

= Hv, wf ′(β) + σcuN
+Ar = µ,

−µ ∈ NIR+(β),

−λ ∈ NIR+
(Ar),

−dp
N
∈ NTR+(u

N
)
(v+

N
+ ev−

N
),

(44)
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In complementarity terms, we write the model as

M dv +Ku dt = F dt+H>S(dp
N
− σcSβ dt),

u̇ = v,

β̇ = −λ,
u

N
= Hu+ b,

v
N

= Hv,

wf ′(β) + σcuN
+Ar = µ,

0 6 µ ⊥ β > 0,

0 6 Ar ⊥ λ > 0,

0 6 dp
N
⊥ v+

N
+ ev−

N
> 0, if u

N
6 0, else dp

N
= 0.

(45)

�e formulation of the dynamics of the problem with impact and a cohesize zone model is rather di�erent from what is proposed in

Acary and Monerie (2006). In (44), the cohesion impulse measure −σcSβ dt is assumed to have only a density with respect to the

Lebesgue measure. Furthermore, it is decoupled from the contact impulse measure dp
N

in the formulation of the constitutive laws of

the interface. In other words, the cohesive reaction force is driven by u
N

and the contact impulse measure by v+
N

+ ev−
N

.

4 Numerical time integration

4.1 Principles of the time integration scheme
�e time-integration scheme is based on the same principle as the Moreau-Jean scheme (Jean and Moreau, 1992; Moreau, 1999) for

contact dynamics. For the impulsive terms, the measure of the time interval (k, k + 1] is kept as a primary unknown:

p
N,k,k+1 ≈ dp

N
((k, k + 1]) =

∫
(k,k+1]

dp
N
, i

N,k,k+1 ≈ di
N
((k, k + 1]) =

∫
(k,k+1]

di
N
, (46)

All the continuous or bounded value terms are approximated with a θ-method as∫ tk+1

tk

x(t) dt ≈ hxk+θ (47)

using the notation xk+θ = θxk + (1− θ)xk+1 with θ ∈ [0, 1]. For the cohesive reaction force that is assumed to be bounded, we have∫
(k,k+1]

di
N

=

∫
(k,k+1]

dp
N
−
∫ tk+1

tk

σcSβ dt (48)

that is approximated by

i
N,k,k+1 = p

N,k,k+1 − hσcSβk+θ (49)

Following this principle, the time-stepping scheme is wri�en as follows:

M(vk+1 − vk) + hKuk+θ = hFk+θ +H>S(−hβk+θσc + p
N,k,k+1),

uk+1 = uk + hvk+θ,

βk+1 − βk = −hλk+1,

u
N,k+1 = Huk+1 + bk+1,

v
N,k+1 = Hvk+1,

wf ′(βk+1) + σcuN,k+1 +Ar
k+1 = µk+1,

0 6 βk+1 ⊥ µk+1 > 0,

0 6 Ar
k+1 ⊥ λk+1 > 0,

0 6 p
N,k,k+1 ⊥ vN,k+1 + ev

N,k > 0, if ũn,k 6 0

(50)

A conditional statement determining whether contact occurs is de�ned by an approximation of the displacement usually de�ned as :

ũn,k = u
N,k +

h

2
v

N,k, (51)

�e problem (50) amounts to solving a special type of �nite–dimensional variational inequality at each time-step, namely a Mixed

Complementarity System.
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Discrete LCP for the triangular law. �e only nonlinear term in the formulation of the complementarity system is due to f ′. In

the following, we show that if f ′ is linear, the problem (50) reduces to a Linear Complementarity System LCP(L, s) de�ned by{
w = Lz + q

0 6 w ⊥ z > 0
(52)

Substituting in the triangle law in (50), we �nally obtain the discretisation:

M(vk+1 − vk) + hKuk+θ = hFk+θ +H>S(−hβk+θσc + p
N,k,k+1),

uk+1 = uk + hvk+θ,

βk+1 − βk = −hλk+1,

u
N,k+1 = Huk+1 + bk+1,

v
N,k+1 = Hvk+1,

σcδc(βk+1 − 1) + σcuN,k+1 +Ar
k+1 = µk+1,

0 6 βk+1 ⊥ µk+1 > 0,

0 6 Ar
k+1 ⊥ λk+1 > 0,

0 6 p
N,k,k+1 ⊥ vN,k+1 + ev

N,k > 0

(53)

Now, if we expand the �rst line with the appropriate θ-method substitutions, we arrive at

M(vk+1 − vk) + hK
(
uk + hθ

[
(1− θ)vk + θvk+1

])
= h

[
(1− θ)Fk + θFk+1

]
+H>

(
−h
(
θβk+1 + (1− θ)βk

)
Sσc + p

N,k,k+1

)
(54)

We denote the augmented mass matrix as M̂ = M + h2θ2K and the free impulse (without the contribution of the cohesive zone

model) îk,k+1 = Mvk − hK
(
uk + hθ(1− θ)vk

)
+ h

[
(1− θ)Fk + θFk+1

]
. �us, the velocities can be determined by

vk+1 = M̂−1

[
îk,k+1 +H>

[
−h
(
θβk+1 + (1− θ)βk

)
Sσc + p

N,k,k+1

)]
. (55)

When necessary, we apply the boundary condition enforcement technique in §A, so that we modify the augmented mass matrix M̂
and the free impulse î to take into account Dirichlet boundary condition.

In the case where the contact conditional statement is ful�lled, we can formulate an LCP with three variable pairs, (A, λ), (β, µ)
and (v+

N
+ ev−

N
, p

N
), noting that the unusual formulation of the third variable pair is required by the complementarity condition. In

the most general case of multiple cohesive zones with boundary conditions enforced, the LCP(L, q) with

L =


0 −I 0

I σcδcI − h2θ2σc
2WS −hθσcWS

0 hθσcWS W

 , with W = HM̂−1H>

q =


βk

−σcδc (βk − 1)− σc
(
u

N,k + h

[
(1− θ)v

N,k + θHM̂−1
(
îk,k+1 − h(1− θ)σcH>Sβk

)])
HM̂−1

(
îk,k+1 − h(1− θ)σcH>Sβk

)
+ ev

N,k

 , (56)

is solved for the following variable

w =


βk+1

Ar
k+1

v
N,k+1 + ev

N,k

 , z =


µk+1

hλk+1

p
N,k,k+1

 , (57)

where 0 represents a matrix of zeroes, 1 represents a vector of ones, I is the identity matrix, and all of the cohesive zone variables

should be understood as vectors. �e choice of hλk+1 as an unknown of the LCP, rather than λk+1, is made to ensure L does not

degenerate in the limit h → 0. It is possible to straightforwardly generalise to each cohesive zone possessing its own values of the

material parameters, in which case the material parameters can be treated as vectors.

4.2 Well-posedness of the discrete LCP
Proposition 1. For a su�ciently small time step h > 0, such that σcδcI − h2θ2σc

2WS is positive de�nite, the LCP(L, q) de�ned by
(56) has a solution. �e solution is unique for βk+1 and λk+1 and vN,k+1. For βk > 0, the solution is also unique for Ar

k+1 and µk+1.
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We start by proving that L is a semi-positive de�nite matrix for su�ciently small h. Proving this property for L amounts to

proving that

1

2
(L+ L>) given by

1

2
(L+ L>) =


0 0 0

0 σcδcI − h2θ2σc
2WS 0

0 0 W

 , (58)

is also a semi-de�nite matrix. SinceM is a positive de�nite matrix, the matrixW = HM̂−1H> is a semi-positive de�nite matrix. Since

σcδcI is a positive de�nite matrix, σcδcI−h2θ2σc
2HM̂−1H>S is also a positive de�nite matrix for su�ciently small h. �erefore, we

can conclude that L is a semi-de�nite positive matrix. From �eorem 3.1.2 in Co�le et al. (2009), if the LCP(L, s), with a semi-de�nite

positive matrix, is feasible, then it is solvable. �e feasibility conditions for a LCP are given by

Lz + q > 0 and z > 0, (59)

and in the case of LCP(L, q), we get
z1 > 0, z2 > 0, z3 > 0,

−z2 + βk > 0,

z1 +
[
σcδcI − h2θ2σc

2WS
]
z2 − hθσcWSz3 + q2 > 0,

hθσcWz2 +Wz3 + q3 > 0.

(60)

Rearranging the inequality, we obtain
0 6 z2 6 βk,

z1 > −
[
σcδcI − h2θ2σc

2W
]
z2 + hθσcWSz3 − q2, z1 > 0,

Wz3 > −q3 − hθσcWz2, z3 > 0.

(61)

Since βk > 0, the �rst inequality is feasible for z2. Let us search for a feasible point z? such that z?2 = 0. We must check that the

following inequalities are feasible for z?1 and z?3 :{
z?1 > hθσcWSz3 − q2, z

?
1 > 0,

Wz?3 + q3 > 0, z?3 > 0.
(62)

Let us consider that z?3 is the solution of the following quadratic program

minz
1
2z
T
3 Wz3 + zT3 q3,

z3 > 0.
(63)

Since W is a symmetric semi-de�nite positive matrix, such a point z?3 exists and satis�es the optimality condition

Wz?3 + q3 > 0, z?3 > 0, (Wz?3 + q3)>z?3 = 0. (64)

Finally, let us choose z?1 = max(0, hθσcWSz?3 − q2), we have proved that the point z = col(z?1 , 0, z
?
3) is a feasible point of the

inequalities (60). �e LCP(L, q) is feasible and thus solvable.

For the uniqueness of the solution, we use the characterization of the solutions of LCP(L, q), denoted by SOL(L, q), when L is

a semi-positive de�nite matrix (Co�le et al., 2009, �eorem 3.1.7) as a polyhedral set de�ned by

SOL(L, q) = {z | z > 0, Lz + q > 0, q>(z − z̄) = 0, (L+ L>)(z − z̄) = 0}, (65)

where z̄ is an arbitrary solution. In our case, the condition (L+ L>)(z − z̄) = 0 yields{[
σcδcI − h2θ2σc

2WS
]

(z2 − z̄2) = 0,

W (z3 − z̄3) = 0.
(66)

Since σcδcI −h2θ2σc
2WS has full-rank a su�ciently small h, we get that z2, and hence hλk+1 is unique. Since βk+1 = βk −hλk+1,

βk+1 is also unique. From w3 − w̄3 = hθσcWS(z2 − z̄2) + W (z3 − z̄3) = 0, we conclude that w3 is unique and therefore v
N,k+1 is

also unique. Furthermore, (z3 − z̄3) is in the kernel of H>, so we have also H>(z3 − z̄3) = 0.

From the condition, q>(z − z̄) = 0, we obtain

βk(z1 − z̄1) +

[
HM̂−1

(
îk,k+1 − h(1− θ)σcH>Sβk

)
+ ev

N,k

]T
(z3 − z̄3) = 0, (67)
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since z2 − z̄2 = 0. Since v
N,k = Hvk , we have the following simpli�cation[

M̂−1
(
îk,k+1 − h(1− θ)σcH>Sβk

)
+ evk

]>
H>(z3 − z̄3) = 0, (68)

since H>(z3 − z̄3) = 0 and then

βk(z1 − z̄1) = 0. (69)

For βk > 0, z1, hence µk+1 is unique. Using that the linear relations Ar
k+1 = µk+1 − σcδc(βk+1 − 1) + σcuN,k+1 and u

N,k+1 =
u

N,k + hv
N,k+θ , we conclude that Ar

k+1 is unique if βk > 0.

Corollary 1. �e solution of the problem (53) exists and is unique for the variables (vk+1, uk+1, βk+1, λk+1) for a su�ciently small time
step h.

�e uniqueness of βk+1 comes from Proposition 1. For the uniqueness of vk+1, let us consider two solutions v̂k+1 and v̄k+1, from

(55), we get

v̂k+1 − v̄k+1 = M̂−1

[
H>

[
−h
(
θ(β̂k+1 − β̄k+1) + (1− θ)βk

)
Sσc + (p̂

N,k,k+1 − p̄N,k,k+1)

)]
. (70)

Since p̂
N,k,k+1 − p̄N,k,k+1 is in the kernel of H> and βk+1 − β̄k+1 = 0, we can conclude that vk+1 is unique, and the integration rule

uk+1 = uk + hvk+θ implies the uniqueness of uk+1.

Remark 5. �e condition of the time-step is not a strong condition in practice since it is based on the condition that σcδcI−h2θ2σc
2WS

is positive de�nite in which h only appears as h2. In most �nite elements applications, H is o�en assumed to be full-rank. In that case,
pN,k,k+1 is also unique. �e non-uniqueness of µk+1 andAr

k+1 when βk = 0 comes from the fact that we impose two redundant constraints
related to β > 0 and β̇ 6 0. In practice, this is harmless since it does not in�uence the state variables (vk+1, uk+1, βk+1).

5 Numerical Validations

5.1 �asi-static scalar case with elastic spring
For the sake of illustration, we will consider �rstly a static system. Let us consider the case of an elastic rod bound onto a rigid

substrate with a cohesive zone, as outlined in Acary and Monerie (2006) and Chaboche et al. (2001). First, we consider the structural

sti�ness matrix:

K =

 ES/` −ES/`
−ES/` ES/`

 , (71)

where ` is the rod length, S the rod cross-sectional area (and area of the cohesive zone) and E is the Young’s modulus of the rod.

However, it is clear that this matrix is singular, so we modify it (and the external force F ) following §A, in order to enforce the

boundary conditions and create an invertible matrix K̄ . If we consider (39) in static equilibrium (i.e. where we remove the Mv term

from the equilibrium equation), we obtain an LCP w = Lz + q ⊥ z from the fully implicit discretisation, where

w =


βk+1

Ar
k+1

u
N,k+1

 , L =


0 −1 0

1 σcδc − σc2HK̄−1H>S −σcHK̄−1H>S

0 σcHK̄
−1H>S HK̄−1H>S

 , z =


µk+1

hλk+1

νk+1

 , (72)

q =


βk

−σc
(
δc(βk − 1) +HK̄−1

[
F̄k+1 −H>Sσcβk

]
+ b

)
HK̄−1

(
F̄k+1 −H>Sσcβk

)
+ b

 . (73)

We can then solve this system for the case where the far end of the rod is driven according to the relation

u2(t) =


1
2 t, 0 6 t < 1.0

1.0− 1
2 t, 1.0 6 t < 3.0

−2.0 + 1
2 t, 3.0 6 t

(74)

where extension is taken to be positive, and compression negative. �e solution of the system (72) under driving input (74) with

H =
[
1 0

]
, material parameters σc = 0.5, δc = 1.0, E = 5.0 and ` = 1.0, and 4000 time-steps is given in Figure 3:
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Figure 3: �e solutions of the elastic bar with cohesive zone system. (a) �e nodal displacements u1 and u2 as a function of time t. (b)

�e cohesion β as a function of time t. (c) �e cohesion β as a function of crack opening displacement u
N
. (d) �e driving force Ar

as a function o time t. (e) �e reversible part of the reaction force r
N

and the cohesive force rc
N

as a function of time t. (f) �e rate of

decohesion λ as a function of time t.

However, we must be careful that the behaviour of the system remains well-posed. When we have

σcδc −HK̄−1H>S 6 0, (75)

the system loses uniqueness and multiple solutions are possible. So long as the condition

σcδc >
`

E
, (76)

is ful�lled, the system remains stable and there is a unique solution. Physically the unstable behaviour represents the accumulation

of more elastic strain energy than can be released at the cohesive zone. For the sake of illustration, we simulate the above system, but

with E = 0.5 in Figure 4:
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Figure 4: �e solutions of the elastic bar with cohesive zone system for ill-posed system values. (a) �e nodal displacements u1 and u2

as a function of time t. (b) �e cohesion β as a function of time t. (c) �e cohesion β as a function of crack opening displacement u
N
.

(d) �e driving force Ar
as a function o time t. (e) �e reversible part of the reaction force r

N
and the cohesive force rc

N
as a function

of time t. (f) �e rate of decohesion λ as a function of time t.

We may observe that the loss of uniqueness results in a “solution jump”, where the system moves from completely unbroken to

completely broken in a single time-step. Physically, this occurs because more energy is stored elastically than can be released by

the cohesive zone, resulting in the instantaneous rupture once the critical traction is achieved. It should also be noted that if larger

time-steps are chosen, the value of u
N

at which β goes to zero are subject to “overshoot”, meaning that an additional spurious energy

release occurs.

�is ill-posed system behaviour can be entirely avoided by working in dynamics, so from this point onwards we do so. However,

as Figure 3 demonstrates, the model can be successfully implemented in statics, provided that (76) is always respected.

5.2 Dynamic cohesive zone model with elasticity
5.2.1 Dynamic case with single elastic spring

Now, we consider �rstly the same system as above, but this time in dynamics. We use the system parameters σc = 0.5 MPa, δc = 1.0

mm, e = 0.0, E = 0.5 MPa, l = 1 mm, S = 1 mm
2
, and M =

0.25 0

0 0.25

 g. �ese values result in an ill-posed system in the

static case, but as we demonstrate below, the addition of dynamics regularises the system. We simulate the system for 8 ms using 4000

time-steps and θ = 1, subject to the same driving displacement (74). We observe the system evolution depicted in Figure 5:
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Figure 5: �e solutions of the dynamic CZM system with elasticity, for values that are ill-posed in statics. (a) �e driving force F as a

function of time t. (b) �e displacements u as a function of time t. (c) �e velocities v as a function of time t. (d) �e cohesion β as a

function of time t. (e) �e thermodynamic force Ar
as a function of time t. (f) �e percussion p

N
as a function of time t.

We may observe in Figure 5 that the inertial e�ects result in a smoothly changing value of β with time, as opposed to the instan-

taneous rupture of the equivalent system in statics, thus demonstrating the well-posed nature of the system.

5.2.2 Dynamic Double Cantilever Beam

In order to simulate a double cantilever beam (DCB), we apply the boundary condition enforcement technique in §A. In the case where

we have more than one node with a cohesive zone, the possibility arises that some of the nodes ful�l the contact condition, while

others do not. We simulate the system by �rst constructing the LCP assuming all points are in contact, and then creating submatrix

Lsub and subvector ssub from L and s by removing the entries corresponding to the v
N,k+1 + ev

N,k - p
N,k,k+1 variable pairs for the

nodes not in contact. �e w and z vectors are automatically re-sized, and the corresponding LCP w = Lsubz + ssub is solved. �e

values of the removed variables can then be updated by se�ing the corresponding p
N,k,k+1 = 0 and updating the velocities via (55)

and (50).

It is important to note that the LCP becomes infeasible if βk < 0. While in principle the constraints act to enforce a βk = 0 condition,

in practice due to the �nite numerical precision of the solution at each step, the condition can be violated. In this case, the solution of

the LCP can fail in turn. As such, we take care to set any value of βk+1 6 1× 10−12
to βk+1 = 0, and we remove the corresponding

entries from the LCP for the next time step as described above for the non-contact entries. �e corresponding value of µk+1 that is

also removed from the LCP is calculated instead from the expression in (50). We note that this schema is also e�ective numerically, as

by decreasing the size of the LCP, we speed up its solution.

We simulate only half the system, exploiting the symmetry inherent to the problem. �us, the lower boundary of the system consists

of a series of nodes with cohesive zones a�ached, excepting a section representing an initial crack. It is important to note that where

the Dirichlet boundary intersects with the cohesive zone boundary, the node is removed from the set of cohesive zone nodes, and

its tributary area is allocated to the neighbouring cohesive node. �us, the crack is allowed to propagate over the entire length of

the system, but there is no possibility of the LCP being made infeasible by trying to enforce the Dirichlet boundary condition on a

cohesive zone node.

We simulate a system inspired by that found in Camacho and Ortiz (1996), but using parameters for PMMA. We will simulate a

double cantilever beam with a length of 2 mm, with a pre-existing crack of 0.4 mm length. �e beam is taken to have a thickness of 1

mm. �e bulk material has Young’s modulusE = 2.7×103
MPa, a Poisson’s ratio ν = 0.39 (Doitrand et al., 2021), and a mass density
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ρ = 1.18 × 10−3
g/mm

3
(Doitrand et al., 2019). �e cohesive zone parameters are the critical traction σc = 45 MPa, the fracture

energy Gc = 0.14 N/mm, and the critical distance δc = 0.0062 mm.

F/v

1.6 mm 0.4 mm

0.2 mm

01234

Figure 6: �e symmetry of the DCB allows us to simulate it as a single cantilever beam �xed at the le� end (diagonal hatching), with

cohesive zone nodes a�ached to a rigid substrate along the symmetry plane. A force or velocity is applied at the upper right hand

corner, at the free end. We follow the decohesion at the points labelled 0 through 4.

We simulate the upper half of the DCB shown in Figure 6 using a controlled displacement test, displacing at the rate of 1 mm/s

to a target displacement at the free end of 0.6 mm. We adopt an initial step of h = 1.2 ms, with θ = 0.5. However, this step size

is too large once the crack initiates, meaning that we adopt an adaptive time-stepping scheme such that if the LCP does not resolve

correctly, the step size is halved and the step is a�empted again, repeating until resolution is successful. If ten steps in a row are

successfully completed, the step size is multiplied by 1.5. �is schema ensures su�ciently �ne temporal resolution while maintaining

computational e�ciency. �e results of the simulation are shown in Figure 7:
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Figure 7: �e simulation of a double cantilever beam under velocity control. (a) �e cohesion β as a function of time t at the points

of interest. (b) �e cohesion β as a function of distance from the tip of the initial crack xcrack, at the time that each of the points of

interest goes to zero. (c) �e length L of the crack as a function of time t. (d) �e crack tip velocity L̇ as a function of time t.

�e crack tip velocity is calculated by assuming a linear growth between each spatial point as they crack. We may observe in

Figure 7 that the speed of the decohesion is relatively constant over time, other than for the very �rst point to crack, which takes

substantially longer than the others. Some slowing of the initial decohesion is observable in the curve for β3 in sub�gure (a), as a

result of the in�uence of the geometry of the problem. Similarly, in sub�gure (b), we can see that the size of the fracture process zone

remains essentially constant throughout the cracking process. Sub�gures (c) and (d) demonstrate the relatively steady growth in the

crack length, with an initial sharp increase occuring as the crack establishes before gradually tapering away.

We can also consider the energy-conserving properties of the integration scheme, by plo�ing the changing energetic quantities:
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Figure 8: �e energies of the dynamic double cantilever beam simulation under velocity control.

We can see in Figure 8, that the work input matches exactly with the sum of the strain, kinetic and expended cohesive energies,

indicating that the integration scheme successfully conserves the energy. A comparatively greater share of the work input is used

in the creation of new surface area (i.e. the expended cohesive energy) than in the storage of strain energy, while the kinetic energy

remains negligible (as is to be expected in a slow displacement-controlled simulation).

We also simulate the same system under force control, this time increasing the loading according to F = 10t N until one element

is fully decohered, at which point the force is held constant. �e simulation was terminated when 20 time-steps had passed with no

changes to the value of β at any of the cohesive zone nodes. �e results of the simulation are shown in Figure 9:
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Figure 9: �e simulation of a double cantilever beam under force control. (a) �e cohesion β as a function of time t at the points of

interest. (b) �e cohesion β as a function of distance from the tip of the initial crack xcrack, at the time that each of the points of

interest goes to zero. (c) �e length L of the crack as a function of time t. (d) �e crack tip velocity L̇ as a function of time t.
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In comparing Figure 7 and Figure 9, we may observe that the force-controlled system decoheres much more slowly initially, up

until the point at which the crack begins, where it then travels much more rapidly than the velocity-controlled system, with crack

arrest being achieved by the interaction with the �xed boundary of the system. We note that the decohesion of points 1, 2 and 3 are

more rapid and more concentrated in time than for the velocity controlled system, and that point 4 experiences some decohesion,

whereas it remained intact for the velocity controlled system. Once again, we can also consider the energetic properties of the system:
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Figure 10: �e energies of the dynamic double cantilever beam simulation under force control.

We may observe that the energetic behaviour of this system depicted in Figure 10 is rather di�erent to that of the velocity controlled

system. We observe that the system is truly dynamic, and a signi�cant part of the work input is transformed into kinetic energy. We

also observe that at a certain point, the work input decreases and the system moves towards its equilibrium state, with a certain amount

of surface energy, and exchanges between the strain and kinetic energies. We note that the total system energy is slightly below that

of the total work input once the work input begins to decrease, indicating some numerical dissipation due to our integration scheme.

5.2.3 Rhombus hole simulation

We can also simulate the rhombus hole specimen in Doitrand et al. (2019), applying (56) with the same principles as for the DCB.

�e sample has a width of 40 mm and a height of 60 mm, with a rhombus hole in the centre that has a corner angle of 90◦ and a

half-diagonal length of 4.95 mm. While the simulation in Doitrand et al. (2019) is purely in two dimensions, we consider a three-

dimensional system in plane-stress, and so use a thickness of 1 mm.
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Figure 11: �e double symmetry of the rhombus hole specimen allows us to simulate only the top right quarter. Standard symmetry

conditions (diagonal hatching) are applied to the bo�om boundary, while cohesive zone nodes and a symmetry condition are a�ached

to the le� boundary. A velocity is applied uniformly to all points on the top boundary. �e vertical half diagonal retains a constant

length, but the angle γ is varied to produce di�erent geometries. I changed β to γ to avoid any confusion with the cohesion.

We exploit symmetry so that we need only simulate one quarter (the top-right) of the sample. �e boundary conditions on the

le� and bo�om edges are thus symmetry conditions, with normal displacements restricted to be positive or zero, and tangential

displacements unrestrained. �e right edge and the rhombus hole edge are similarly unrestrained, while the loading is applied as

a Dirichlet condition on the top edge. As the crack is predicted to occur along the le� edge, these nodes are included in the set of

cohesive zone nodes. �e 1 mm length closest to the corner of the rhombus hole is allocated a very �ne mesh, with one node every

0.002 mm, ensuring accurate resolution of the cohesive zone. �e mesh is steadily coarsened to reach a characteristic size of 0.5 mm

at the top of the le� hand edge, while all of the bulk regions that exhibit purely elastic behaviour are allocated a characteristic size of

2 mm. Hence, the mesh is highly re�ned in the region of the crack process, while remaining computationally e�cient. �e mesh is

shown in Figure 12:
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Figure 12: �e mesh of the rhombus hole specimen, and the total displacements of the mesh at the end of the test.
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�e loading protocol is to impose a vertical displacement of a rate of 1 mm/s on the top edge, while also enforcing a no-slip con-

dition, so that the horizontal velocities on the top edge are zero. At the time the �rst node cracks (i.e. β 6 1 × 10−12
), the vertical

loading is stopped and the displacement is held constant. �e simulation continues until 20 time-steps have passed with no changes

in the value of β in any of the cohesive zone nodes.

�e simulation is carried out with the values in Doitrand et al. (2019) representing PMMA, namely a Young’s modulus E = 1600
MPa, a Poisson’s ratio ν = 0.37, a density ρ = 1.19 × 10−3

g/mm
3
, a critical traction σc = 80 MPa, a fracture energy Gc = 0.25

N/mm, and a coe�cient of restitution e = 0.

We can plot the results of the simulation in terms of the crack progression, once more tracking results at the points of interest,

which in this case are the point at which the crack begins (index 0), the point at which the crack arrests (index 4), and the quarter,

half and three-quarter points between them (indices 1, 2, and 3, respectively).
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Figure 13: �e simulation of a rhombus hole specimen. (a) �e cohesion β as a function of time t at the quarter points. (b) �e cohesion

β as a function of distance from the tip of the initial crack xcrack , at the time that each of the quarter points goes to zero. (c) �e

length L of the crack as a function of time t. (d) �e crack tip velocity L̇ as a function of time t.

In this case, we observe several interesting behaviours in Figure 13. Unlike the relatively steady decohesion observed in the DCB,

we observe that the node at the corner of the rhombus hole steadily decoheres over a long period of time, but once it reaches zero

and the crack begins growing, the speed of decohesion is rapid (shown in the inset to (a)). Similarly, when considering the spatial

distribution of the cohesion variable at the time each quarter point is fully decohered, we see that the length of the fracture process

zone is essentially constant, as is the case with the DCB. Unlike the DCB, there is a small period where the crack growth is relatively

small, before a period of rapid growth. �e �nal phase is a steady decrease in crack growth rate, followed by the crack arrest. �e

�nal crack arrest length is 0.564 mm, which compares well with the value of 0.593 obtained by Doitrand et al. (2019).

Once again, we may also study the energetic properties of the solution algorithm that we implement:
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Figure 14: �e energies of the rhombus hole simulation.

We can see that the majority of work accounts for strain energy, and the total energy is simply the sum of the strain and kinetic

energies. �e kinetic energy is negligible, while the expended cohesive energy remains very small relative to the overall work input.

As a �nal point of comparison, we may follow Doitrand et al. (2019), and vary the rhombus hole angle γ while observing the ef-

fect on the crack initiation force Finit and the crack arrest length Larrest.
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Figure 15: �e results of simulations varying the rhombus hole angle γ. (a) �e crack initiation force Finit at which cracking begins.

(b) �e crack arrest length L at which crack propagation stops, in the absence of continued loading.

We may observe in Figure 15 that there is a very good agreement between the results of the simulations in Doitrand et al. (2019), and

the results of our models, with the initiation force decreasing and crack arrest length increasing as the rhombus hole angle increases.

Possible reasons that may account for the minor di�erences may be the e�ects of dimensionality, the initial rigidity present in the

cohesive zone model used by Doitrand et al. (2019) (they allocated an initial sti�ness of 1× 108
MPa/mm), and di�erent meshes used

to simulate the results.

6 Conclusions
In this paper, we �rst used the principle of virtual power to establish the equilibrium and boundary conditions of a body with a

cohesive zone. �en, we postulated a free energy potential for the surface that allowed us to obtain non-smooth state laws of the

system. �ese state laws describe extrinsic cohesive zone models that do not have the “shi�ed intrinsic model” structure, thus guar-

anteeing appropriate physical behaviour under complex dynamic loading. By appropriately specifying a dissipative pseudo-potential,

we obtained a complete generalised constitutive model of the cohesive zone system, and demonstrated that while decohesion is an

irreversible process, it is also non-dissipative. We then speci�ed a particular energetic potential in order to obtain a linear evolution

of the cohesion variable with the displacement jump across the crack.
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By appropriately discretising our system, and working with di�erential measures, we were able to include non-smooth impact dy-

namics within our model. �e discretised system was combined with a θ-method to obtain a time-stepping scheme that could be

formulated as a linear complementarity problem. We then proved that the problem was well posed for a su�ciently small time step,

meaning that a solution exists, and that it is unique for certain variables.

We then implemented the model numerically by solving the complementarity problem at each time step. We demonstrated the

system in statics, �rstly parameter values leading to a well-posed problem, and then with values leading to an ill-posed problem. We

then demonstrated that the same system in dynamics remains well-posed. Finally, we simulated some physical systems of interest by

combining the linear complementarity problem with the �nite element method. Both a double cantilever beam, and a rhombus-hole

sample were satisfactorily resolved, with the numerical scheme demonstrating good integration properties. �e results of the rhombus

hole simulations compared well with those of other authors in the literature.

�is work has demonstrated that applications of convex analysis can lead to physically correct and numerically e�cient models

for crack propagation. Natural extensions of this work are to generalise the model to tangential displacements, adopt other possible

forms of the cohesion evolution law, and to combine crack propagation with other physical phenomena.
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A Boundary conditions in the sti�ness matrix
If we have our system

Kq = F +H>r
N
, (77)

typically K is singular and we can’t invert. We want to create a modi�ed system that takes account of the boundary conditions and

inserts them into the sti�ness matrix to create a modi�ed system

K̄q = F̄ +H>r
N

(78)

Supposing we know a given displacement qi is enforced to be q̄i, which could be due to a Dirichlet boundary condition or a controlled

displacement, we want to create the matrix K̄ so that

K̄ =



K11 . . . 0 . . . K1n

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

0 . . . Kii . . . 0
.
.
.

.
.
.

.

.

.

.
.
.

.

.

.

Kn1 . . . 0 . . . Knn


, (79)

i.e. K̄ = K except for the row and column corresponding to enforced displacement q̄i, where all entries are set to zero other than

Kii.

To compensate for this change in the sti�ness matrix, the removed terms are shi�ed across to a modi�ed force vector F̄ such that

F̄ =



F1 −K1iq̄i
.
.
.

Kiiq̄i
.
.
.

Fn −Kniq̄i


, (80)

thus leaving the system in equilibrium. �e full displacement vector can then be obtained by

q = K̄−1
(
F̄ +H>r

N

)
, (81)

as K̄ is in general non-singular and thus invertible.

To enforce the boundary conditions in dynamics a corresponding operation is carried out on the augmented mass matrix M̂ =
M + h2θ2K to create

¯̂
M =



M̂11 . . . 0 . . . M̂1n

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

0 . . . M̂ii . . . 0
.
.
.

.
.
.

.

.

.

.
.
.

.

.

.

M̂n1 . . . 0 . . . M̂nn


. (82)

�e enforced velocities v̄k are included in the modi�ed free-�ight impulse
¯̂i by

¯̂i =



î1 − M̂1kv̄k
.
.
.

M̂kkv̄k
.
.
.

în − M̂nkv̄k


, (83)

which produces nodal impulses that cause the enforced velocities to be respected.
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