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Strong slowing down of the thermalization of solids interacting in the extreme near-eld

(Dated: October 11, 2021) When two solids at dierent temperatures are separated by a vacuum gap they relax toward their equilibrium state by exchanging heat either by radiation, phonon or electron tunneling, depending on their separation distance and on the nature of materials. The interplay between this exchange of energy and its spreading through each solid entirely drives the relaxation dynamics. Here we highlight a signicant slowing down of this process in the extreme near-eld regime at distances where the heat ux exchanged between the two solids is comparable or even dominates over the ux carried by conduction inside each solid. This mechanism, leading to a strong eective increase of the system thermal inertia, should play an important role in the temporal evolution of thermal state of interacting solids systems at nanometric and subnanometric scales.

The relaxation of bodies in mutal interaction which are initially prepared in two dierent thermal states is an important problem in physics both on a fundamental [110] and practical point of view [1117]. When these bodies are separated by a vacuum gap this relaxation is mediated by radiative heat exchange or by tunneling of heat carriers (phonons, electrons, excitons...). Usually the system evolves toward a state of equipartition of energy and uniform temperature by maximizing its entropy [START_REF] Kubo | Statistical Physics II: Nonequilibrium Statistical Mechanics[END_REF]. This corresponds to an evolution of all particles inside the system toward the same average energy through various interaction mechanisms even if their initial energies are very dierent. This evolution is well described for classical systems by the Boltzmnan equation for the probability density of particles, over all their possible states in the phase space.

In this Letter we investigate the relaxation dynamics of systems exchanging heat in a strong-interaction regime. To explore this thermalization process we consider two solids out of thermal equilibrium which exchange heat through a nanometric or subnanometric vacuum gap in the transition domain between the radiative and the conductive regime [1921] also called extreme near-eld regime. In this range of separation distance energy exchange competes or even dominates [START_REF] Messina | Strongly coupled near-eld radiative and conductive heat transfer between planar bodies[END_REF][START_REF] Reina | Conductionradiation coupling between two closely-separated solids[END_REF] with respect to the conductive heat transport within the bodies themselves. In this regime of strong interaction we demonstrate that counterintuitively the relaxation time of the system is dramatically extended compared to a weak-coupling situation and demonstrate that the relaxation time of the system towards thermal equilibrium is dramatically extended.

To address this problem let us consider two identical solid lms as sketched in Fig. 1. When the heat transport inside these lms is governed by a simple diusion process the spatio-temporal evolution of the lms temperature can be obtained by solving the energy balance equation where ρ denotes the mass density of the lms, C their specic heat capacity, κ their thermal conductivity and P j→k (z, t) the power density received locally by one lm from the opposite one, This power density, as expected, depends implicitly on the entire temperature proles T k (z, t) at each time t. It is clear that the time evolution of the temperature depends on the interplay between the inner transport mechanism and the heat exchange between the two lms. When the ux carried by conduction within the lms dominates with respect to the ux exchanged between the two lms, the temperature proles stay uniform at any time within each lm and then the two temperatures obey the following equation

ρC ∂T k (z, t) ∂t = -∇ • [κ∇T k (z, t)] + P j→k (z, t), (1) 
ρC dT k dt = P j→k [T j (t), T k (t)], (2) 
where now P j→k [T j (t), T k (t)] corresponds to the total power (per unit volume) transferred from lm j to lm k, function of the two temperatures T j and T k at time t. Close to thermal equilibrium the right hand side of this equation can be expressed in terms of the radiative thermal conductance

G = lim ∆T →0 φ j→k [T k (t) + ∆T, T k (t)] ∆T , (3) 
where φ j→k is the net ux (per surface unit) received by the lm k. This allows us to recast Eq. ( 2) under the form

ρCL dT k dt = -G[T k (t) -T j (t)]. (4) 
If we assume (see Fig. 1) that body 2 is in contact with a thermostat at constant temperature T 2 , the only temperature varying in time is T 1 , which simply evolves as

T 1 (t) = T 1 (0) exp(-t/τ ). (5) 
where T 1 (0) is the initial value of the temperature of slab 1, and τ = ρCL/G denotes the relaxation time. Hence we see that one way to slow down the thermalization process consists in reducing the coupling strength between the two lms, encoded in the conductance G. In the following, we show that a strong slowing down of relaxation process can also be observed in some situations when the energy exchange between the two lms is strongly coupled to the conduction mechanism within each one of them.

To demonstrate this result let us rst consider the relaxation of two polar lms separated by a gap of nanometric thickness. At such separation distance the lms interact only by radiation through the tunneling of evanescent photons [START_REF] Polder | Theory of Radiative Heat Transfer between Closely Spaced Bodies[END_REF]. The radiative power density P j→k r dissipated in the lm k at point z and associated with the sources in the other body can be calculated from the average monochromatic ux of the Poynting vector at this point

S k (z, ω) = 2 Re E k (z, ω) × H k * (z, ω) as P j→k r (z) = - ∞ 0 dω ∇ • S k (z, ω) , (6) 
where . denotes the statistical averaging. According to uctuational-electrodynamics theory [START_REF] Rytov | Principles of Statistical Radiophysics[END_REF], for isotropic media and neglecting non-local eects, the Poynting vector reads

S k n (z, ω) = i ω 2 c 2 η njl × sources dz (z , ω)Θ[T (z ), ω]G EE j,l G HE * n,l , (7) 
where the integral extends over all sources points. In Eq. ( 7), η njl denotes the njl component of Levi-Civita

tensor , Θ(T, ω) = ω/[e ω k B T -1]
is the mean energy of a Planck oscillator at temperature T , the imaginary part of the permittivity in the emitting body while

G EE = G EE (z, z
) and G HE = G HE (z, z ) are the full electric-electric and electric-magnetic dyadic Green tensors [START_REF] Toma² | Green function for multilayers: Light scattering in planar cavities[END_REF] at frequency ω, taking into account all scattering events within the system between the emitter and the point where energy is dissipated.

As recently established [START_REF] Reina | Conductionradiation coupling between two closely-separated solids[END_REF] the radiative power dissipated through a polar lm from its surface is typically reduced by one order of magnitude through a distance of few nanometers from the vacuum gap, so that the radiative transfer can reasonably be assumed to be purely surfacic. In this case, by assuming the thermal conductivity independent of the position and the temperature, and by introducing the auxiliary functions F k (z, t) = T k (z, t) -T 2 , the energy balance equation can be recast into the form

ρCL ∂F k (z, t) ∂t = -κ L ∂ 2 F k (z, t) ∂z 2 + G r F k (z, t), (8) 
where in this scenario the conductance between the two lms reduces to the radiative conductance G r dened as

G r = ∞ 0 dω 2π dΘ dT (ω, T ) p ∞ 0 dk 2π k T p (ω, k , d), ( 9 
)
where κ is the modulus of the component of the wavector parallel to the exchange surface and p is the state of polarization. Here T p (ω, k , d) denotes the energy transmission coecient for the mode (ω, k ) in polarization p between the lms, which can be expressed in terms of reection and transmission coecients r ip and t ip of the two slabs as [START_REF] Polder | Theory of Radiative Heat Transfer between Closely Spaced Bodies[END_REF] T

p (ω, k , d) =    (1-|r1p| 2 -|t1p| 2 )(1-|r2p| 2 -|t2p| 2 ) |Dp| 2 , ck < ω, 4 Im(r1p)Im(r2p)e -2|kz |d |Dp| 2 , ck > ω, (10) 
k z being the z component of the wavevector and D p = 1-r 1p r 2p e 2ikzd the Fabry-Pérot factor of the cavity.

As for the initial conditions, we impose F 1 (z, 0) = ∆T and F 2 (z, 0) = 0, which correspond to the fact the initial temperature proles in the two slabs are uniform [T 1 (z, 0) = T 2 + ∆T and T 2 (z, 0) = T 2 ]. Concerning the boundary conditions, we set F 2 (L + d, t) = 0 xing the temperature at T 2 for the edge of the right slab in contact with the thermostat, while ∂ z F 1 (-L, t) = 0 imposing a vanishing ux at each instant at the left end of the rst slab (adiabatic boundary condition). Notice that this condition is based on the fact that the interactions in the far-eld regime with the bath are negligible when the distance d between the slabs is in the near-eld regime. Moreover, we impose the two further boundary conditions 

∂ z F 1 (0, t) = -G r /κ[F 1 (0, t) -F 2 (d, t)] and ∂ z F 2 (d, t) = -G r /κ[F 1 (0, t) -
kg•m -3 , CSiC = 600 J•kg -1 •K -1 , ρSiO 2 = 2650 kg•m -3 , CSiO 2 = 680 J•kg -1 •K -1 , κSiC = 120 W•m -1 •K -1 and κSiO 2 = 1.2 W•m -1 •K -1 .
partial dierential equations (8) reads

F 1 (z, t) = 8∆T ∞ n=1 sin x n cos 2 x n 4x n + sin(4x n ) × cos x n (z + L) L exp - x 2 n κ ρCL 2 t , F 2 (z, t) = -8∆T ∞ n=1 sin 2 x n cos x n 4x n + sin(4x n ) × sin x n z L exp - x 2 n κ ρCL 2 t , (11) 
where x n are the solutions of the transcendental equation x tan 2x = G r L/κ. We can associate each term with a partial relaxation time τ n = ρCL 2 /(x 2 n κ). It can be easily shown that x 1 < x n and thus τ 1 > τ n for all n ≥ 2, so that the rst term in these series is the dominant one for large t. The ratio GL/κ quanties the relative importance of the radiative and conductive transport [for two silicon carbide (SiC) lms this ratio is 1.1, while it grows up to 312.5 for two silica (SiO 2 ) lms]. The appearance of the ratio GL/κ as a key parameters allows us to anticipate a reduction of the eect when reducing the slab thickness L or when increasing the separation distance d (coupling strength) between them (see Supplemental Material [27]).

When the heat transport by conduction is much more ecient than the transport by radiation, the temperature within each lm is almost uniform at any time. In this case the solution of Eq. ( 8) is similar to that of Eq. ( 4) and the temperature prole is the same as the one predicted by the Polder and van Hove (PvH) theory of radiative heat transfer between perfectly conducting solids. However, the situation radically changes when the magnitude of radiative heat transfer is comparable or even larger than the heat transfer by conduction within the lms. In Fig. 2 we compare the time evolution of the mean temperature T 1 (t) = (1/L) T 1 (z, t)dz inside the left (hot) slab obtained by solving Eq. ( 1) by means of a nite-dierence method [27] to the predictions from the PvH theory for SiC and SiO 2 lms. It can be noticed that the deviation between the two temperatures proles is more pronounced for two SiO 2 slabs compared to SiC slabs. As anticipated previously, this is due to the fact that the thermal conductivities of SiC and SiO 2 samples are strongly dierent. The relatively small conductivity of SiO 2 leads to a strong deviation from the PvH predictions. Moreover, as shown in the inset of Fig. 2, we see that the time evolution of T 1 -T 2 is exponentially decaying as predicted by the analytical solution [START_REF] Guha | Near-Field Radiative Cooling of Nanostructures[END_REF] and the decay rate of the temperature corresponds to the relaxation time τ 1 . Notice also that the comparaison in the inset of the solution of Eq. ( 8) with the exact solution of Eq. ( 1) obtained using a nite-dierence method demontrates that the near-eld radiative transfer is indeed a surface phenomenon. As shown in the inset of Fig. 2, the relaxation dynamics is more than one order of magnitude slower when the near-eld heat transfer is comparable to the conductive transfer inside the lms, showing that the coupling acts as an additional source of thermal inertia. Actually, at the macroscopic level the coupling mechanism tends to increase the thermal inertia of the system by decreasing its eective diusivity D n = x 2 n κ/(ρC). At a more microscopic level, the power dissipated by photons inside the atomic lattice is comparable or even larger than the one dissipated by phonons, leading so to a longer relaxation time.

As far as the temperature prole is concerned, we see in Fig. 3 that it diers from the uniform prole especially when the radiative transfer dominates with respect to the conductive transport, as in the conguration of coupled SiO 2 lms. As we can see, a non-negligible temperature prole appears through the slab because of the diusion process in both materials. Althougth the heat spreads inside the lms by conduction, the temperature proles are, of course, not linear because of the interplay between the diusion process and the near-eld heat transfer. For SiC lms we also show (dashed lines) the value T PvH of the (uniform) temperature predicted by the PvH model at the same moments, while for SiO 2 this comparison has been omitted since in this case the two relaxation processes take place at two very dierent time scales, as shown in Fig. 2. Indeed in this case, after only 0.2 ms the hot lm is already thermalized according to the pre- dictions of PvH theory, while a hundred-fold larger time is required when the near-eld radiative heat exchange is competing with the diusion process.

So far we limited ourselves to a transfer between the two solids mediated by photon tunneling. We now consider the thermalization process in the case of two metallic lms interacting through electrons tunneling. In fact, it has been recently shown [START_REF] Messina | Heat transfer between two metals through subnanometric vacuum gaps[END_REF] that in this scenario the ux carried by electrons at subnanometric distances surpasses by several orders of magnitude the ux carried by photons and can therefore surpass the conductive (phononic) ux inside the metals. The electronic thermal conductance due to electron tunneling can be easily calculated using the eective potential barrier associated with the vacuum gap between the two metals. For two identical metals without bias voltage applied through the system the eective potential is a simple rectangular barrier and the transmission probability T (E z , d) at distance d of electrons of normal energy E z through this barrier reads [START_REF] Cohen-Tannoudji | Atom-photon interactions[END_REF] T

(E z , d) = 4E z (E z -V ) 4E z (E z -V ) + V 2 sin 2 k 2z (E z , V )d , (12) 
where k 2z (E z , V ) = 2m e (E z -V )/ denotes the normal components of wavector inside the gap (m e being the electron mass) and the barrier height is written here as V (d) = V eV (d) + E F , E F being the Fermi en- ergy (E F = 5.53 eV for gold) and V eV a distant depen- dent function for which the data taken from [START_REF] Kiejna | Potential barrier for the metal-vacuum-metal tunneling electrons[END_REF] have been tted from DFT calculations with the log-scale law

V eV (d) = V 0 ln(1 + d/1Å) (V 0 = 1.25 eV for gold). It fol- lows that the heat ux carried by electrons by tunneling eect can be calculated by summing over all energies E z in the direction normal to the surface. This allows us to dene the electronic heat conductance as

G e = ∞ 0 dE z E z ∂N (E z , T ) ∂T T (E z , d), (13) 
where

N (E z , T )dE z , with N (E z , T ) = mek B T 2π 2 3 ln[1 + exp(-(E z -E F )/k B T )],
denotes the number of electrons in the metal at temperature T with a normal energy between E z and E z + dE z across a unit area per unit time.

This conductance can reach values about six orders of magnitude larger than G r for gold lms at separation distances of few Angstroms [START_REF] Messina | Heat transfer between two metals through subnanometric vacuum gaps[END_REF]. In the presence of electron tunneling, the energy-balance equation (8) remains valid, provided that the permutation G r ↔ G e is made. For two gold lms, the ratio G e L/κ equals 2.1, 306.5 and 871 for separation distances d = 5Å, d = 2Å and d = 1Å, respectively. This suggests a strong effect of coupling mechanism on the relaxation dynamics.

In Fig. 4 we compare the time evolution of the average temperature prole for the hot lm in a system of two gold lms with and without coupling between heat conduction and heat transfer by electron tunneling. Unlike polar lms interacting by radiation, here the relaxation process toward thermal equilibrium is much faster by two orders of magnitude. But more interesting is the impact of coupling on the relaxation time. At a distance d = 5Å (G e L/κ = 2.1) this dierence between the scenarios with and without coupling is relatively modest and the coupling slows down the thermalization process by approximatly a factor 2. On the other hand, at closer separation distances this slowdown becomes remarkable, reaching about three orders of magnitude. Notice that for these distances the temporal evolutions of the average temperatures are almost indistinguishable (red and black solid curves) since the x n in the solution [START_REF] Guha | Near-Field Radiative Cooling of Nanostructures[END_REF] of the energybalance equation ( 8) are really close to the asymptotic value (i.e. large value of G e L/κ).

In conclusion we have demonstrated a strong impact of the interplay between the heat transfer in extreme near-eld regime between two solids and the heat spreading mechanism by conduction inside these media. When the thermal conductance of heat exchange through the separation gap is comparable or dominates over the conductance associated with the diusive process inside the solids, the thermalization of these media is strongly slowed down. In this case the relaxation time can be larger even by several orders of magnitude than in the classical situation where conduction is the dominant mechanism. This eect should play an important role in the elds of active thermal management at nanoscale, pyroelectric energy conversion in extreme near-eld regime, nanoscale heat-engines or for the Boolean treatment of information with heat at nanoscale. In this preliminary work we were limited to the study of the relaxation process by assuming the optical response of materials is local. In further works the role of the nonlocal behavior of this response on the relaxation dynamics will have to be studied. 
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 1 Figure 1. Sketch of system. Two solid lms out of thermal equilibrium having temperatures T1(z, t) and T2(z, t) are separated by a vacuum gap of thickness d. They relax by exchanging heat either by radiation, phonon or electron tunneling depending on the separation distance and the nature of the materials. This transmitted energy is spreaded out through the lms thanks to a diusion process.

  F 2 (d, t)] ensuring the ux continuity between the two slabs. The solution of the
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 2 Figure 2. Time evolution of the average temperature of the hot lm in a system made of two coupled polar lms of thickness L = 100 µm separated by a vacuum gap of thickness d = 1 nm. The black (red) solid curve shows the evolution for SiO2 (SiC) coupled lms. The black (red) dashed curves show the evolution predicted by the PvH theory (perfectly conducting solids). The intial temperature of the cold lm is T2 = 300 K and the initial temperature dierence is ∆T = 100 K. The mass density, the specic heat and the thermal conductivity of SiC and SiO2 are ρSiC = 3200 kg•m -3, CSiC = 600 J•kg -1 •K -1 , ρSiO 2 = 2650 kg•m -3 , CSiO 2 = 680 J•kg -1 •K -1 , κSiC = 120 W•m -1 •K -1 and κSiO 2 = 1.2 W•m -1 •K -1 .
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 3 Figure 3. Temperature prole as a function of time in the hot lm of a system made of two coupled polar lms of thickness L = 100 µm. The dashed lines correspond to the temperature predicted by the PvH theory. (a) SiC lms separated by a 1 nm-thick vacuum gap. (b) Same conguration with SiO2 lms.
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 4 Figure 4. Time evolution of the average temperature of the hot lm in a system made of two coupled gold lms of thickness L = 100 µm at subnanometric distances and comparison with the temperature evolution (dashed curves) without coupling. The intial temperature of the cold lm is T2 = 120 K and the initial temperature dierence is ∆T = 160 K. The gold mass density is ρ = 19300 kg•m -3 and its specic heat capacity is C = 128 J•kg -1 •K -1 .
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