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Abstract 15 
Background. Studies on animal behaviour often involve the quantification of the occurrence and 16 

duration of various activities. When direct observations are challenging (e.g. at night, in a burrow, at 17 

sea), animal-borne devices can be used to remotely record the distribution and behaviour of an 18 

animal (e.g. changing body posture and movement, geographical position) and/or its immediate 19 

surrounding environment (e.g. wet or dry, pressure, temperature, light). Changes in these recorded 20 

variables are related to different activities undertaken by the animal. Here we explored the use of 21 

animal-borne acoustic recorders to automatically infer activities in seabirds. 22 

Results. We deployed acoustic recorders on Cape gannets and analysed sound data from 10 23 

foraging trips. The different activities (flying, floating on water and diving) were associated with 24 

clearly distinguishable acoustic features. We developed a method to automatically identify the 25 

activities of equipped individuals, exclusively from animal-borne acoustic data. A random subset of 26 

4 foraging trips was manually labelled and used to train a classification algorithm (k-nearest 27 

neighbour model). The algorithm correctly classified activities with a global accuracy of 98.46%. 28 

The model was then used to automatically assess the activity-budgets on the remaining non-labelled 29 

data, as an illustrative example. In addition, we conducted a systematic review of studies that have 30 

previously used data from animal-borne devices to automatically classify animal behaviour (n=61 31 

classifications from 54 articles, including our study). The majority of studies (82%) used 32 

accelerometers for studying behavioural states or changes in behaviour, and to a lesser extent… . , 33 

all potentially providing a  good accuracy of classification (>90%). 34 

Conclusion.  This article demonstrates that acoustic data alone can be used to reconstruct activity 35 

budgets with very good accuracy. In addition to the animal’s activity, acoustic devices record the 36 

environment of equipped animals (biophony, geophony, anthropophony) that can be essential to 37 

contextualise the behaviour of animals. They hence provide a valuable alternative to the set of tools 38 

available to assess animals’ behaviours and activities in the wild. 39 

Keywords: bioacoustics, biologging, behaviour, machine learning, seabird, supervised learning, 40 

systematic review.  41 



Background 42 
Studies on animal behaviour often involve the quantification of behavioural patterns [1]. , from an 43 

ethogram to an activity-budget [2]. Knowledge on how individuals allocate their time according to 44 

different activities is important in terms of understanding their flexibility towards changes in the 45 

environment, such as variations in temperature [3,4], habitat [5,6], social systems [7] or prey 46 

availability [8,9]. 47 

Traditionally, the assessment of activity-budgets has required long hours of observations in the field 48 

[10], and have been applied to various species (e.g. in primates [11–13], birds [14,15], deer [16], 49 

rodents [17], fish [18], bats [19], insects [20], seals [21], cetaceans [22]). However, this is not 50 

always practical. For example, when animals are active at night, when they spend time in hidden 51 

enclosed places (e.g. burrow), or when they travel long distances in remote areas (e.g. dense forest, 52 

ocean) direct observations are hindered. In addition, the presence of a human observer can 53 

potentially disturb the animals and impact the integrity of collected information on their behaviours 54 

[23]. Recent technological developments has given rise to devices that can be deployed on animals 55 

(i.e. animal-borne devices) and that can thus remotely record variables that are related to different 56 

activities undertaken by study animals. This has greatly enhanced our understanding of time 57 

allocation in elusive wild populations [24–27]. 58 

Several types of instruments have been used to study animal activity budgets. First, changes in the 59 

geographic location of an animal may inform on its activity. From recording geographical positions 60 

using tracking devices such as radio-tracking, or global positioning systems (GPS), the speed 61 

[28,29], the sinuosity [30,31] or a combination of the two [32] can be derived to infer behavioural 62 

activities. Second, if species are moving through different environments to engage in various 63 

activities, distinctive features of the environments can be recorded and related to activities. For 64 

example, in seabirds, sensors recording the accumulated time spent immersed in water inform on 65 

the time spent floating on the water or diving [33–36]. Similarly, temperature loggers have been 66 

used to estimate the time spent in different environments such as in the water, in the air and on the 67 

land [37,38]. For diving species, detailed information on animals’ diving behaviours can be 68 

obtained from the use of time depth recorders [39–41]. Ultimately, combining data from different 69 

sources, e.g. recordings of the depth, the temperature and the light, have been shown to allow for 70 

robust interpretations of activities undertaken by elusive animals [42].  71 

Third, since the animal’s behaviour is the direct consequence of its coordinated body movement 72 

[43], the body motion and posture of an animal can be monitored and allow researchers to make 73 

inferences about an animal's behaviour. Acceleration sensors have hence often beenused to study 74 

animal behaviour [44]. The further design of bi- [45] and then tri-axial accelerometry [46] allowed 75 



for the more detailed study of animal movement  in three dimensions and increased the number of 76 

different activities that could be recorded and automatically identified [46]. In addition to time-77 

activity budgets, such information is increasingly used to assess energy expenditure during each 78 

activity   [47]. Providing that sufficient knowledge on the species and their movement during 79 

different activities are available to correctly interpret the motion in every axis, accelerometers are 80 

extremely powerful tools to record animals’ activities remotely. As such, they have been widely 81 

used on a great diversity of species (reviewed in [48]). However, accelerometry data is limited in 82 

terms of the environmental information within a given habitat it can yield, with such information 83 

potentially underpinning meaningful interpretation these behaviours. 84 

Animal-borne acoustic devices can record and monitor the vocalization of animals in various 85 

contexts. In addition to these vocalizations, sound recordings can also provide information on the 86 

activities of animals since different activities generate different sounds and background noise. 87 

Hence information on speed of movement (particle flow), different environments (open air, shelter, 88 

water), environmental interactions (browsing, gnawing, digging, scratching, diving, etc.) can 89 

potentially be captured. With the recent advancement of acoustic recording technologies, this 90 

concept has been explored and applied to visually identify flipper strokes of seals [49]  and the 91 

foraging behaviour of deer [50] and bats [51] from spectrograms. Furthermore, the automatic 92 

detection of the behaviours and activities of birds from sound data have previously been 93 

demonstrated [52]. Acoustic recorders have also been used to improve automatic classification of 94 

behaviours from accelerometers [53,54]. 95 

Here, we aimed to first solve the challenge of recording sound data through instrument deployment 96 

on wild free-ranging seabirds, i.e. species that move both in the air and in the water where most 97 

dive to feed on marine resources. Secondly, we developed a procedure based on existing statistical 98 

learning methods to automatically identify the activities of equipped individuals, exclusively from 99 

animal-borne acoustic data, in order to assess their time-activity budgets. Our focussed on the Cape 100 

gannet Morus capensis an endangered seabird endemic to southern Africa [55], as our model 101 

species. They feed mainly on small pelagic fish and their foraging effort, in terms of trip duration 102 

and time spent in different activities, reflects the abundance of their natural prey in the local marine 103 

environment [56–59]. Furthermore, their foraging effort directly influences their breeding 104 

investment and success [60,61]. As a consequence, the monitoring of their foraging activities at sea 105 

is of particular interest in relation to both the local marine ecosystem and the management of this 106 

threatened species. We deployed acoustic recorders on chick-rearing Cape gannets to record their 107 

behaviour at sea (data from 10 adults used in this study). Based on previous work with observations 108 

from bird-borne video cameras [62] we identified three different main activities: floating on the 109 



water, flying, and diving. These activities are associated with different sounds that can be identified 110 

by a trained human ear so that they were manually labelled on a subset of the dataset (data from 111 

four individuals randomly selected representing ~33h of acoustic data).  Thirty five  acoustic 112 

features were then extracted to acoustically describe the activities. A supervised learning algorithm 113 

was trained on the labelled data to automatically identify activities on non-labelled data (total of 114 

~93h of acoustic data). To do this, five types of supervised learning algorithms were tested using the 115 

Classification Learner App (Statistics and Machine Learning Toolbox, Matlab R2019b) and the k-116 

nearest neighbour model was finally chosen for its performance on the diving-class activity (rare 117 

class of high interest). The resulting time-activity budget of foraging Cape gannets, as quantified 118 

from acoustic data exclusively, is presented and compared with results obtained from previous 119 

studies on the same species but using different devices. Furthermore, we conducted a systematic 120 

review on studies that automatically classified activities from animal-borne devices and compared 121 

the performances obtained from the analysis of various types of devices. 122 

Results 123 

Different sounds for different activities 124 

Each activity undertaken by the Cape gannets when foraging at sea was associated with different 125 

sounds recorded by the bird-borne acoustic devices (Figure 1A).  126 

 127 



 
Figure 1. Illustration of (A) the sound spectrogram along with (B) the manual identification and 
labelling of activities and (C,D) the predictions before and after revision. Three main activities 
were defined and included in the budget (flying, diving and floating on the water) and two 
additional transition activities (entering water and taking off) were used exclusively for the 
revision algorithm. These transition activities were used to confirm dive and flying events, and 
then merged into their corresponding main activity. Isolated segments were removed and relabelled 
and predictions were smoothed using a moving median over 6 segments.  
 128 

Different values of acoustic features were measured for each activity (Figure 2), as calculated on 129 

sound-segments of length ~1.4s (corresponding to 214 samples). For example, the sound 130 

spectrogram (Figure 1A) shows that the sound is louder and spans a wider frequency range during 131 

flying compared to diving or when floating on water, and this is measured by their mean RMS and 132 

spectral bandwidth values (see red crosses on Figure 2A and 2B). For all the features though, the 133 

distributions for each activity overlap in some way (Figure 2). 134 



 
Figure 2. Density estimation of a selection of acoustic features for each activity (8 out of 21 
temporal features, 8 out of 14 spectral features). Means and medians are represented by blue and 
black lines, respectively. The red crosses indicate the values for each feature calculated on the data 
sample illustrated on figure 1 (calculated as means on all segments per class).  
 135 

Automatic identification of activities from sound data 136 

Among the five types of supervised learning algorithms that were tested (see methods), the k-137 

nearest neighbour model was finally chosen because its ratio between true and false positives for 138 

the diving class (of highest interest in our study case) was higher than that in other algorithms, still 139 

with a similar global accuracy. 140 



The classification procedure was able to correctly classify the activities of Cape gannets (the 141 

“labelled set”) with a global accuracy of 98.46%. The performances, as measured by the global 142 

confusion matrix and the ROC’s Area Under the Curve (AUC) for each class, varied per activity 143 

(Supplementary Figure 1). The sensitivity was lowest for the class ‘diving” compared to the other 144 

classes (, Figure 3), meaning that over all “diving” segments, 62.3% (908/1457) were correctly 145 

detected (others were wrongly classified as floating or flying) whereas for “flying” and “floating” 146 

segments, >98% of segments were correctly detected (Figure 3). Nonetheless, when diving was 147 

predicted, it was reliable given the high precision value (95.5 %, Figure 3). The classes “floating on 148 

water” and “flying” were predicted with high accuracy, given the high values of both indicators in 149 

all instances (>97 %, Figure 3). Overall, the numbers of false negatives and false positives were 150 

low, as measured by the high value of  “Informedness” at 97.66% (the multi-class equivalent of the 151 

Youden’s index). These results were constant among the four individuals studied, with the 152 

classification performances being similar between individuals (Supplementary Figure 2).  153 

 
Figure 3. Performances of the algorithm (after classification and revision) on the labelled dataset 
(data points correspond to time segments ~1.4s)  summed over all individual bird files (17M, 19M, 
34M, 41M). The confusion matrices (squared 3*3 matrices) shows the number of correctly 
classified events (True Positives, TP) for each class on the diagonal, the number of False Positive 
(FP) per column for each class (except the value on diagonal) and the number of False Negative 
(FN) per line for each class (except the value on diagonal). Performance indices of Precision (TP / 
(TP + FP)) and Sensitivity (TP / (TP + FN)) are shown for each class on the bottom row and right 
column, respectively.  



 154 

When studied in terms of activity budget (meaning that 1.4s segments are grouped into “events” of 155 

the same activity), it appeared that the number of predicted events were over-estimated, although 156 

they were predicted with shorter duration (Figure 3B).  Nonetheless, when studied in terms of time-157 

activity budget, the predicted time spent in each activity was very close to the observed time 158 

(between 0.3% and 1.1% of difference depending on the activity, Table 1). 159 

Table 1. Results of the classification algorithm on the labelled dataset, when aggregated into 
behavioural events. 

 Event class Number of events Mean event length (s) Time budget (%) 

True Diving 243 8.3 1.7 

Floating on water 318 217.4 56.4 

Flying 391 139.0 41.8 

Predicted Diving 278 4.6 1.1 

Floating on water 567 120.2 57.5 

Flying 517 102.8 41.5 
 

 160 

 161 

 162 
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Acoustic-based time-activity budget of a seabird  164 

Applying the algorithm to non-labelled data, we found that when foraging in December 2015 from 165 

Bird Island (Algoa Bay), chick-rearing Cape gannets spent on average  35.1 %, 63.7 %, and 1.2 % 166 

of their time flying, on the water and diving, respectively. Eight of the nine individuals spent most 167 

of their time floating on the water, although this varied largely per individual (range 43.3-80.1% of 168 

time, Figure 5, Table S1). The number of dives estimated per individual also varied greatly between 169 

individuals, from 23 to 174 dives per trip (Figure 4). 170 



 
Figure 4. Time-activity budgets (% of time spent flying in orange, floating on the water in blue and 
diving in red) of nine Cape gannets as predicted from acoustic data exclusively. The black dots 
show the number of predicted dives for each individual (y-axis indicated on the right). 
 171 

Systematic review on automatic classification of activities from animal-172 
borne devices 173 

We extracted information from 61 reviewed classifications (54 articles, including our study), 174 

published between 2000 and the 5th of April 2021, that automatically classified activities using 175 

supervised learning algorithms and based on data from animal-borne devices (Table 2). 176 

Table 2. Information extracted from 61 reviewed classifications (54 articles, including our study). Other 
devices deployed concomitantly to accelerometers: GPS (n=4), gyroscope (n=3), magnetometer (n=1), 
gyroscope + magnetometer (n=5), pressure (n=1), gyroscope + pressure (n=1), magnetometer + acoustic 
(n=1). Species categorisation: terr.=terrestrial, aqua.=aquatic, fly.=flying. Algorithms: RF = Random 
Forest, DT = Decision Tree, SVM = Support Vector Machine, DA = Discriminant Analysis, NN = Neural 
Network, KNN = K-Nearest Neighbour, MM = Markov Model, mix = combination of several algorithms. 
References: [26,32,52–54,63–110]. 



 
 177 

Terrestrial species were by far the most studied species (n=40, Table 2, Figure 5), followed with 178 

aquatic species (n=13) and flying species (n=8). The most commonly used devices were 179 

accelerometers (82% of reviewed studies, Table 2), either alone (n=34 studies) or in association 180 

with other devices (n=16). Acoustic recorders have rarely been used in this context as we found 181 

only three studies that met our criteria for the systematic review. The weight of devices was 182 

reported in only 48 % of the studies and ranged widely for all device categories (Table 2). The 183 

different types of devices varied in terms of sampling frequency, with the GPS devices being the 184 

most limited (up to 1Hz at the highest) while acoustic recorders provided the highest sampling 185 

frequency (>10kHz). In comparison, accelerometers were used over a large range of sampling rates, 186 

from 0.02Hz to 100Hz (Table 2). Although the sampling frequency did not seem to be directly 187 

related to the global accuracy, a higher sampling frequency seemed to allow for a higher number of 188 

activities studied in the activity budget (Supplementary Figure 3). 189 

 190 



 
Figure 5.  Performance of automatic classifications of activity budgets as measured by the global 
accuracy, as a function of the type of devices used in the 61 reviewed classifications (from 54 
articles, including our study). Colours indicate a categorisation of species: n=40 terrestrial species 
(green), n=13 aquatic species (blue), n=8 flying species (orange). GPS=global position systems. 
Accel=Accelerometers. Other devices deployed concomitantly to accelerometers included GPS, 
gyroscope, magnetometer, pressure sensors, and acoustic recorders. References: [26,32,52–54,63–
110]. 
 191 

The number of activities studied in a budget varied greatly among studies, from two to 19 (Table 2), 192 

with a mode at three activities (Figure 6). The highest number of activities (19, Table 2) was 193 

extracted from acoustic recorders, followed with a study based on accelerometers (12 activities). 194 

The global accuracy of classification reported in the reviewed studies varied between 65% and 195 

100% (Table 2) and this did not seem to be related on the size of the different datasets studied 196 

(Supplementary Figure 4). The highest accuracies were obtained from accelerometer data (Figure 5, 197 

6), even though a good accuracy (>90%) could be achieved using data collected from all types of 198 

devices (Figure 5).  Among all articles reviewed, the performance of our classification (98.46%) 199 

based exclusively on acoustic data appeared very high and demonstrated that the activity budget of 200 

wild animals can be recorded and reconstructed exclusively from acoustic data.  201 



 
Figure 6. Performance of automatic classifications of activity budgets as measured by the global 
accuracy, as a function of the number of activities in the budget, extracted from 61 reviewed 
classifications (54 articles, including our study). Symbols indicates the type of animal-borne 
devices used to remotely record the behaviour of study animals and the full red circle indicates the 
values obtained in our study. Number of activities are all integers, but a random horizontal offset 
was added for the figure display to limit overlap of points. GPS=global position systems. Other 
devices deployed concomitantly to accelerometers included GPS, gyroscopes, magnetometer, 
pressure sensors and acoustic recorders.  References: [26,32,52–54,63–110]. 
 202 

Ultimately, the potentially most important difference among the different types of devices in terms 203 

of data yield might be the nature of other types of information provided, in addition to the animal’s 204 

activities themselves (Table 2). Accelerometers have been used to reconstruct the energy budget 205 

associated with different activities; GPS devices provide information on the geographical position 206 

and distribution of the animals; pressure sensors provide information on the diving profiles of 207 

aquatic species. In comparison, acoustic recorders provide information on all the sounds 208 

surrounding an animal: the biophony (including vocalisations from the equipped animal, its 209 

conspecifics, but also heterospecifics), the geophony (all natural but non-biological sounds related 210 

to the habitat), and the anthropophony (human-generated sounds). 211 



Discussion 212 
The different activities undertaken by our study animals were associated with distinguishable sets of  213 

acoustic features. They could then be automatically identified from sound data exclusively, with 214 

very good accuracy (98.5 % global accuracy). Although the performances varied per class (i.e. the 215 

three main activities, floating on water, flying, and diving), the precision was consistently very high 216 

(95.5-99.4 %, n=3 activities) showing that the activities could be predicted with high confidence, 217 

especially if studied as percentage of time spent in each of the activities. Our results compared 218 

favourably to those of other studies using acoustic data to infer behaviour [52–54] and compared 219 

very well to all previously published studies that automatically classified activities based on animal-220 

borne devices (Figure 6). Interestingly, our results based on acoustic data showed a higher 221 

classification performance compared to a previous study classifying the same activities on the same 222 

study species based on speed and turning angles derived from geographical location data (92.3 % 223 

global accuracy, 91.8-94.8 % precision [32]). In addition to high predictive performances, acoustic 224 

devices provide additional information on the surrounding biophony, geophony and anthropophony, 225 

that can be used to contextualize the observed behaviours. They thus appear a valuable alternative 226 

to other devices for the monitoring of animal’s behaviours. 227 

By inferring the behaviour of birds from acoustic data, we were able to estimate the time-activity 228 

budget of breeding Cape gannets during their foraging trips. Our estimations are comparable with 229 

previous studies on the same species, with Cape gannets always spending proportionately more time 230 

on the water than flying: 64% and 35% (this study), 58% and 41% (breeding season 2001-2002 at 231 

Bird Island in Lambert’s Bay, based on three-dimensional accelerometry data [129]), 68% and 31% 232 

(breeding season 2012-2013 at Bird Island in Algoa Bay, based on geographical location data 233 

[130]), respectively. The number of dives predicted in our study was also within similar range 234 

compared to previous studies: 23-174 (this study), 10-110 (breeding season 2012-2013 at Bird 235 

Island in Algoa Bay, based on time-depth recorders, [131]), 12-218 (breeding seasons 2012 and 236 

2014 on Malgas, based on time-depth recorders, [132]).  237 

Various devices are available to remotely record an animals behaviours and activities. Our 238 

systematic review showed that accelerometers are the devices most commonly used for this 239 

purpose, even though a good accuracy of classification can be obtained from a range of devices. 240 

The weight of devices did not appear to be the most limiting factor, since all types of devices can be 241 

found at a small size (<20g, the smallest device being an accelerometer at 2g). Otherwise, the 242 

sampling frequency of the different types of devices might also be an important factor, since our 243 

results suggest that a higher sampling frequency may provide access to a higher number of recorded 244 

activities, and thus a more detailed description of the animal’s behaviours. In this respect, the most 245 



limiting device would be the GPS, and the device with the highest potential would be the acoustic 246 

recorder. Ultimately, if technical aspects can be overcome (e.g. deployment techniques and weight 247 

of devices, data analyses and classification algorithm using recent machine learning techniques), 248 

our systematic review suggested that the most important factor to be considered when choosing a 249 

device for recording an animal’s activities should be access to additional information. Indeed, if all 250 

types of devices can provide a good accuracy of classification on the animal’s activities, they all 251 

record different variables. As a consequence, they each provide additional information on different 252 

aspects related to the animal’s behaviours. Accelerometers record the fine-scale movements of 253 

animals in three dimensions, and thus provide details on movement related activities [48,129,133]. 254 

In addition to behavioural activities, accelerometers can be used to measure the energy expenditures 255 

of animals during different activities and thus allow for reconstructing dynamic energy budget 256 

models [47]. Time-depth recorders are best adapted for aquatic animals by providing detailed 257 

information on their diving behaviour [40,134,135]. In comparison, acoustic recorders do not 258 

measure the displacement or body movement of animals directly, yet our study proved that they can 259 

be used alone to reconstruct the activities of animals with very high accuracy that are comparable to 260 

what is obtained using other devices such as accelerometers. In addition, acoustic recorders 261 

simultaneously record the biophony, geophony and anthropophony in the environment of equipped 262 

animals, and thus provide a large diversity of other information that can be essential to interpret the 263 

animal behaviours in a meaningful way.  The physiology (heart rate) and the breeding behaviour 264 

(hatchling sounds in a burrow) of some species can be recorded remotely using acoustic devices 265 

[136]. The surrounding environment of equipped animals is also recorded and could help 266 

contextualize specific behaviours [52]. The vocalizations of equipped animals allow the study of 267 

variations in social interactions and grouping behaviours in different contexts [137,138]. 268 

Furthermore, multi-species associations can be recorded. For example, in our dataset, we recorded 269 

dolphin whistles underwater during some of the dives performed by equipped Cape gannets (data 270 

not shown). We could imagine that interactions between seabirds and fisheries or human marine 271 

activities could be recorded as well.  Similar information on the surrounding context of animals can 272 

also be obtained using animal-borne video-cameras [139–141], but in comparison, acoustic 273 

recorders are much smaller in size and weight (which can be crucial for deployments on wild 274 

animals), they can record continuously for a much longer duration, and they record sounds from all 275 

directions whereas cameras are limited by their field of view. Ultimately, combining different 276 

recorders may help reconstruct a more comprehensive understanding of animal behaviour in their 277 

natural environment [42,53,54], as long as this is done within compromising the welfare and 278 

behaviour of the study animals [142].  279 



Conclusion 280 
This article demonstrates the use of animal-borne acoustic data alone to automatically infer the 281 

activities of wild elusive animals with high accuracy. In addition to animal activities, acoustic 282 

recorders provide information on the surrounding environment of equipped animals (biophony, 283 

geophony, anthropophony) that can be essential to contextualize and interpret the behaviour of 284 

study animals. They therefore show promise to become a valuable and more regularly used 285 

alternative to the set of devices used to record animal activities remotely. 286 

Materials and methods 287 

Study species 288 

Our study species is the Cape gannet, a seabird endemic to southern Africa [55]. This species has 289 

been recently classified as endangered by the IUCN red list because of a drastic loss of more than 290 

50% of the population over three generations [143]. This has mostly been related to a massive 291 

decrease of their natural feeding resources due to fisheries [132,144,145]. Cape gannets feed mainly 292 

on small pelagic fish, sardines Sardinops sagax and anchovies Engraulis encrasicolus [146]. Their 293 

foraging effort, in terms of trip duration and time spent in different activities, directly reflects the 294 

abundance of their natural prey in the local marine environment [56–59]. The foraging trips of Cape 295 

gannets can thus be used as a proxy for local prey abundance and fish stocks [147], like in many 296 

other seabird species [148,149]. Furthermore, their foraging effort directly influences their breeding 297 

investment and success [60,61]. As a consequence, the monitoring of their foraging activities at sea 298 

is of particular interest in relation to both the local marine ecosystem and the conservation 299 

management of this threatened species. 300 

Data collection 301 

Fieldwork took place on Bird Island (Algoa Bay, South Africa) during December 2015. We 302 

deployed twenty devices (details below) on chick-rearing Cape gannets to record their behaviour 303 

while foraging at sea. Four individuals were randomly selected for manual identification of activity 304 

and model training. The trained model was then applied to automatically predict time-activity-305 

budgets on the data where the entire foraging trip was recorded, which comprised of another six 306 

individuals (trips not recorded in full resulted from progressive water damage).  307 

Deployment procedure. Birds on departure to sea were captured near their nest using a pole with a 308 

hook on the end. Only one parent was captured per nest and devices were attached for one foraging 309 

trip only (usually one to two days), while the partner was on the nest guarding the chick. Nests were 310 

then monitored every hour from sunrise to sunset, and the deployed birds were captured again soon 311 

after their return to the colony and the devices were retrieved. Birds were handled for eight and six 312 



minutes on average for the first and second capture respectively. The handling procedure consisted 313 

of attaching devices (using adhesive tape, Tesa, Germany) and measuring the bird's body mass for 314 

the first capture (average 2580 g, n=10 birds, measured with Pesola, Baar, Switzerland, precision 50 315 

g), and retrieving devices and taking standard measurements (not used in this study) for the second 316 

capture. Acoustic recorders were deployed in combination with a GPS (global positioning system) 317 

device on eight birds (total mass 60 g, 2.3 % of bird body mass), a GPS and a video camera on one 318 

bird (90 g, 3.4 % of the bird body mass), or a time-depth recorders and a video camera on eleven 319 

birds (80 g, 3.1 % of bird body mass). The devices had no significant effect on the duration of 320 

foraging trips, when compared between equipped and non-equipped birds (for details see [138]), so 321 

normal behaviour was assumed. Only the data from the acoustic recorders were used in this study. 322 

Acoustic recorders. Audio recorders (Edic-mini Tiny+ B80, frequency response 100 Hz – 10 kHz ± 323 

3 dB, 65 dB dynamic range, TS-Market Ltd., Russia, fitted with a CR2450 battery, 16.2 g, 324 

autonomy estimated for ~50h at 22kHz in our study, and provided for 190h at 8kHz by the 325 

manufacturer) were set up to record sound in mono at a sampling frequency of 22.05 kHz. They 326 

recorded continuously, hence collecting data during the whole foraging trip of the birds. The main 327 

challenge for collecting such acoustic data was to ensure high quality recordings on board a flying 328 

and diving bird. To limit disturbance from the wind, we placed the audio recorder on the lower back 329 

of the bird, under feathers and facing backwards. In addition, a thin layer of foam was added after 330 

the first deployment to reduce flow and background noise. We sealed the microphones in nitrile 331 

glove materials (amplitude attenuation of 6 dBSPL both in the air and in the water, no modification 332 

of the frequency response, as measured in the laboratory) to keep the devices sufficiently dry when 333 

immersed in the sea water but still ensure good quality sound recordings (avoiding thick waterproof 334 

casing). 335 

Manual identification and label of activities 336 

The activities of Cape gannets when foraging at sea were manually identified on a subset of our 337 

dataset (henceforth referred to as “labelled dataset”). The data retrieved from four deployed Cape 338 

gannets were randomly selected, comprising of ~33 h of recordings. Based on previous work with 339 

observations from bird-borne video cameras [62] we identified three different main activities: 340 

floating on the water, flying, and diving. Those three activities are associated with different sounds 341 

that can clearly be identified by a trained human ear (Figure 1). When the bird is flying, the wind is 342 

usually loud and the wing flapping can sometimes be heard. When the bird is on water the ambient 343 

noise is usually less, sometimes with water splashing sounds. The take-off is distinguishable with 344 

loud flapping at a high rate. Gannets dive in the water at high speed, up to 24m.s-1 [150], so they 345 

enter the water with a loud impact noise, often saturating the amplitude of recording. Coming out of 346 



the water is also usually loud with sounds of rising bubbles. To manually label these data, the 347 

spectrograms of the selected sound data were visually observed and the sound was played 348 

concomitantly using the software Avisoft-SASLab Pro (version 5.2.09, Avisoft Bioacoustics, 349 

Germany). A total of 318 events “floating on the water”, 391 events “flying”  and 243 events 350 

“diving” were identified and labelled. Those labelled data were then used to characterize the 351 

acoustic properties of each activity and to train the classification algorithm (using a cross-validation 352 

procedure, details below). 353 

Characterization of activity from acoustic features 354 

In order to characterize the bird’s activity from the sound recordings, an automatic feature 355 

extraction was applied. For each sound recording, the algorithm followed four steps. First, the 356 

sound data were downsampled at 12kHz. Second, in order to remove low frequency acoustic noise, 357 

the sound recordings were high-passed filtered (above 10Hz) using a second-order Butterworth 358 

filter. Third, the recordings were divided into small sound-segments of ~1.4 s (corresponding to 214 359 

samples). This segment length was chosen to reflect the dynamic of movement of our study species. 360 

In particular, the dives last on average 20s (minimum 6s) and always start with an ‘entering the 361 

water’ that displays very specific sound features (Fig. 2) and lasts 1-2s. A segment length of 214 362 

(corresponding to 1.4s) thus appeared most appropriate. The algorithm was also tested using 363 

segment lengths of 213 (0.68s) and 215 (2.76s) and they led to similar results (not shown). Fourth, a 364 

set of temporal (n= 21) and spectral (n=14) features were extracted from each sound-segment to 365 

acoustically describe the activities. Temporal features included envelope features such as root mean 366 

square (RMS), peak to peak and peak to RMS values (means and standard deviations), and also 367 

signal skewness, kurtosis, entropy, quantiles and zero crossing rate. Spectral features were 368 

computed from the power spectrum (Fast Fourier transform) and included dominant frequency 369 

features (dominant frequency value, magnitude, ratio to the total energy, bandwidth at -10dB, 370 

spectral centroid and spectral flatness (the two latter computed as per [151])) in addition to quartiles 371 

of energy and the ratio of energy above three fixed thresholds (300, 1500, 5000 Hz). All acoustic 372 

features were computed using Matlab R2019b custom scripts. 373 

The three main activities were re-defined into five categories: floating on the water, taking-off 374 

(three first segments of flying when preceded with floating on water), flying, entering water (first 375 

segment of diving when preceded with flying), and diving. The two transition classes were used for 376 

the ‘revision algorithm’ as described in the following section (“Classification procedure”). 377 

Classification procedure 378 

The labelled dataset was used to train and test a classification algorithm following a 5-fold cross-379 



validation procedure. Briefly, this procedure consisted of splitting the dataset into a training set 380 

containing 4/5 of the data to train the algorithm, and testing it on the remaining 1/5. This 381 

partitioning of the data into training and test set was done five times, and performances of the 382 

algorithm on the test sets were averaged over those five replications. 383 

Five types of supervised learning algorithms were tested (Decision trees, Discriminant Analysis, 384 

Support Vector Machines, Nearest neighbour classifiers and ensemble classifiers), with some 385 

providing high classification results (above 90%). Among them, the k-nearest neighbour model was 386 

finally chosen because its ratio between true and false positives for the diving class (of highest 387 

interest in our study case) was higher than that in other algorithms, still with a similar global 388 

accuracy. The k-nearest neighbour algorithm was implemented with five neighbours, Euclidian 389 

distance as distance metric and equal distance weight. 390 

In all tested models, each sound-segment was considered as independent from each other. As a 391 

strong dependence exists (for instance, Cape gannets do not fly just after diving without 392 

transitioning on the water), a ‘revision algorithm’ was applied subsequently to the results of the 393 

classification procedure. First, ‘entering water’ segments were used to confirm a dive event or 394 

deleted if no dive segment was following the entering water segment. A similar procedure was used 395 

with the take-off and flying segments. Then, transition segments were merged into their 396 

corresponding class (entering water was relabelled and merged with its associated diving event, 397 

similarly for take-off merged with flying). Isolated segments (defined as segments of one type 398 

occurring within a 6-segments long window of similar label segments) were removed and relabelled 399 

so that a coherent 6-segments long window of unique event was kept (Figure 1C, 1D). Finally, 400 

predictions were smoothed using a moving median 6 segments-long window (corresponding to 401 

~8.42 s) to further reduce the rapid changes in the class of segments predicted over short duration 402 

and thus improve the prediction of events. 403 

All algorithms were implemented using Matlab R2019b and the Statistics and Machine Learning 404 

toolbox. Four metrics were used to assess the accuracy of prediction: the global accuracy (total 405 

number of segments correctly classified divided by the total number of segments), the sensitivity 406 

(also called recall or true positive rate) which measures the proportion of True Positives that are 407 

correctly classified), the precision (also called positive predictive value) which measures the ratio of 408 

the True Positives over all Positives), and the “Informedness” (the multi-class equivalent of the 409 

Youden’s index) which is a summarised performance measure of sensitivity and precision indices 410 

for all classes. 411 

Precision = TP / (TP + FP) and Sensitivity = TP / (TP + FN), where TP stands for True Positive, FP 412 

for False Positive and FN for False Negative. 413 



 414 

 415 

Application: acoustic-based time-activity budget of Cape gannets 416 

The classification algorithm was applied to unlabelled acoustic data to predict the activities of Cape 417 

gannets when foraging. Only the data with full foraging trips were kept at this stage. These included 418 

six new individuals, plus one individual for which part of the data was labelled and used in the 419 

trained model. The activity of birds was then predicted on a total of ~93 h of acoustic recordings. 420 

The time-activity budgets (based on the number and duration of events) of unlabelled trips were 421 

computed by grouping successive segments (1.4sec) of similar activity into ‘events’ (see for 422 

example Figure 1D). For instance, a 7-second period of diving, corresponding to 5 continuous time-423 

segments labelled as diving, was considered as one diving ‘event’. 424 

Systematic review 425 

To place our study into perspective and discuss the use of acoustic recorders among the different 426 

devices available for remotely recording and inferring behaviour, we conducted a systematic review 427 

on articles that automatically classified activities from animal-borne devices. We searched for 428 

articles in a systematic, repeatable way, using the ISI Web of Science Core Collection database. Our 429 

search included articles in English from 2000 to 2021, and was based on the following keywords: 430 

(((((((((TS= ((“time budget*” OR "time-budget*" OR “activity budget*” OR "activity-budget*" OR 431 

“time-activity budget*” OR “state budget*” OR “behavio*ral state*” OR “behavio*r-time budget*” 432 

OR “behavio*r* classif*” OR “behavio*r discrimination” OR "behavio*r* categor*" OR "scene-433 

classif*")  AND  (recorder* OR device* OR tag* OR biologging OR bio-logging OR logger* OR 434 

datalogger* OR biologger* OR bio-logger* OR collar* OR sensor* OR "animal-borne" OR 435 

"animal borne")  AND  (behavio*r*)  AND  (classif* OR accuracy OR “machine-learning” OR 436 

“machine learning” OR “supervised learning” OR “feature learning” OR "infer* 437 

behavio*r*")  )))))))))) 438 

On the 5th of April 2021 this query resulted in a list of 202 articles. These articles were first checked 439 

for relevance to our scope: use of animal-borne devices on non-human animals to record and infer 440 

activity-budgets, training of an automatic classification (supervised learning algorithm) on data with 441 

direct observation (visual or video recorded) and with a quantification of algorithm performance. 442 

This resulted in a final list of 54 articles from which information was extracted. If several 443 

classifications were performed in an article (data from different devices, or classification on 444 

different animal’s activities), one line of data was extracted for each classification. The information 445 

extracted included: the species studied, a categorisation of the species (flying, terrestrial, aquatic), 446 



the number of individuals equipped, the devices attached on animals (all devices, the ones used to 447 

infer activities, the ones used to train and validate classification), the weight of devices (as a mass 448 

and as a percentage of the animal’s body mass), the size of the data set (as a number of data points), 449 

the sampling frequency, the number of activities, the list of activities, the algorithms used, the 450 

global accuracy obtained, other performances (when provided), the percentage of data used for 451 

training, the use (or not) of a cross-validation procedure. The entire data table can be found in the 452 

supplementary table 2 from which we extracted information provided in the main text. We 453 

identified five categories of devices used: accelerometers alone, accelerometers combined with 454 

other devices, GPS devices, acoustic recorders, and pressure sensors. We then compared the global 455 

accuracy obtained by the different studies, as a function of the type of devices used to infer 456 

activities and the number of activities in the budget. We acknowledge that the measure of global 457 

accuracy is limited and does not inform fully on a classification performance. In particular, this 458 

measure does not inform on the performance for the different behaviours and can hide a poor 459 

performance on rare behaviours (which are often of higher interest in biology and ecology). 460 

However, the measure of global accuracy is the most standard performance measure used, and was 461 

the only one that we could extract from (almost) all reviewed articles to allow comparison. 462 
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Supplementary information 486 

 
Supplementary Figure 1. Classification performance of the algorithm used in the study, showing 

(A) the global confusion matrix (on labelled data) and (B) the receiver operating characteristic 

curves for the diving, floating on water and flying classes, respectively. dv = diving, ent_wat = 

entering water, wat = floating on water, takeoff = taking off, fly = flying. 

 487 



 
Supplementary Figure 2. Performances of the algorithm (after classification and revision) on the 
training data set, for each individual bird file (17M, 19M, 34M, 41M). The confusion matrices 
(squared 3*3 matrices) are shown together with the true positive rates (bottom row) and the positive 
predictive values (right column). 
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Supplementary Figure 3. (A) Performance of automatic classifications as measured by the global 



accuracy and (B) number of activities in the budget, as a function of the sampling frequency at 
which data were recorded, in the 61 reviewed classifications (from 54 articles, including our 
study). References: [26,32,52–54,63–110]. 
 489 

 
Supplementary Figure 4. Performance of automatic classifications as measured by the global 
accuracy, as a function of the size of datasets in the 61 reviewed classifications (from 54 articles, 
including our study). References: [26,32,52–54,63–110]. 
 490 

 491 

Supplementary Table 1. Number, duration and proportion of time spent in each activity (diving, 
floating on water and flying), for each of the 9 Cape gannets with full trips recorded. Individual 
41M (used in model training) is not included here as the trip was only partially recorded. 
Individual 17M was manually labelled on a part of the entire trip. 

Classification Individual ID Event class Number of events Mean event length (s) Time budget (%) 

Both 17M Diving 149 7 1.3 

Floating 224 245 74.2 

Flying 186 98 24.5 

Manual 19M Diving 48 5 0.9 

Floating 108 149 56.9 



Flying 115 104 42.2 

34M Diving 43 11 1.5 

Floating 52 275 43.4 

Flying 70 259 55.1 

Automatic 38M Diving 111 4 1.8 

Floating 236 55 55.9 

Flying 189 52 42.7 

42M Diving 116 4 1.6 

Floating 541 33 59.1 

Flying 502 24 39.9 

43M Diving 124 4 1.4 

Floating 303 85 70.9 
Flying 224 45 28.1 

46M Diving 128 5 0.7 

Floating 371 142 59.4 

Flying 315 113 40.1 

47M Diving 23 4 0.6 

Floating 189 57 79.0 

Flying 171 16 20.5 

48M Diving 174 4 0.7 

Floating 1286 54 80.1 

Flying 1182 14 19.6 
 

 
 492 
Supplementary Table 2. Systematic review on published articles that automatically classified 
activities based on animal-borne devices. 
Uploaded as a separate file. 
 493 
 494 
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