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Abstract

Predicting the crowding level in train stations or the passenger load
in trains can be useful to enrich the information available to passengers
and improve train regulation processes or service quality levels. The main
issue to handle when forecasting passenger flows is the structural variabil-
ity of the related time series induced by the irregularity of train schedule
and the influence of several contextual factors, such as calendar informa-
tion and the characteristics of the served station. Forecasts depend on
different contextual variables that generally have a spatial component, a
temporal component, or both. We study the sensitivity of the spatiotem-
poral features of machine learning forecast models. Our main goal is to
understand how the spatiotemporal features affect the performance of the
models. First, we propose to study the impact of spatial and temporal
inputs such as the served station, the train route or direction, and the
type of day on the forecasting results to set up the best way to build a
set of machine learning models to predict the passenger load of trains.
Second, we address the effect of the temporal aggregation level on model
performances for the forecasting task. The proposed models are based on
ensemble machine learning approaches and have been deployed on a line
of the Paris greater area railway network. A fine-grained evaluation is
conducted as a support of the model’s sensitivity analysis.

Sensitivity analysis, forecast, time series, Random Forest, passenger load,
transportation network
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1 Introduction

In recent years, the larger availability of information systems collecting data on
public transport networks such as automatic fare collection (AFC), automatic
passenger counts and loads in trains and bus (APC), or automatic vehicle loca-
tions (AVL) has allowed providing more detailed information and analysis on the
state of transport systems. Long-term and short-term prediction of passenger
flows is an active topic as it is an essential task to efficiently plan the transport
offer, as well as to provide real-time information to passengers. Indeed, research
studies have analyzed the effects of crowding on passengers’ behavior and oper-
ation management, often highlighting impacts on waiting and travel time, route
choice, and passengers’ wellbeing [1].

In transport applications related to roads network, traffic prediction has been
an active research subject for more than 40 years [2]. Various methods have
been proposed to perform long-term and short-term predictions in this field.
Studies focusing on flow prediction in public transport are more recent but rely
on the large state of the art of this related problem. Methods can be split into
three main categories: näıve, parametric, and nonparametric approaches. Näıve
approaches such as historical averages are often used as a baseline to compare
the performance of newly proposed models. Among parametric approaches are
notably ARIMA-based models [3], Kalman filter-based models [4], or Bayesian
networks [5]. Among the nonparametric are notably tree ensemble learning
approaches [6–8] or neural network approaches [8–10].

Most of the studies which forecast passenger crowds based on ridership ob-
tained from AFC provide results at the metro station level [5, 7, 9–11]. Their
datasets have different characteristics but most of the studies focus on subway
or light rail transit systems and they use aggregated data on grids with 1, 2, 10,
15, or 30 minutes intervals. In this situation, the studied dataset corresponds to
regular time series. Only two studies [12,13] are performing forecast per vehicle
(tram or metro train), using a time unit corresponding to the vehicle times-
tamp at a station. But still, the problem in [12] is a regular time series problem
because metro trains are circulating every 5 minutes. It is also worth noting
that the majority of the studies are performing short-term forecasts whereas [7]
considered long-term forecasts.

Globally, most of the studies are experimental and applied to a small portion
of the considered public transport system. Models are trained on few stations
or a single line of the network and almost no study, except [9] which addresses
the complete network, discusses the scalability of the proposed approach and
studies the suitable right spatial and temporal granularity to obtain the most
relevant forecasts. Those questions are related to the question of the impact
of the spatiotemporal scale at which the data are observed on the regularity
and the variability of the mobility pattern. [14–16] perform analytical studies
of the spatiotemporal patterns presented in AFC data to gain knowledge on
the regularity or variability of those patterns. Although no predictive model
is developed in those studies, they are informative on the impact of the data
granulometry on variability and hence on the possibility to obtain meaningful
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predictions.
To deploy valuable forecasts on a public transport network it is crucial to

take into account the following points:

• It is unrealistic to develop and maintain a model per station for a large
public transport network containing hundreds of stations. Therefore, it
is important to understand to which extent a single model can provide
accurate forecasts for multiple stations. Knowing that stations can have
different profiles, the quality of the forecast can be impacted according to
their characteristics. To this end, [8] compared different models trained
for each station to a model trained for all the stations at once, while [9]
compared models trained for each station to models trained for stations
regrouped based on their similar mobility pattern.

• The time interval on which the passenger flow is aggregated has an impact
on the variability of the time series and thus on its predictability. Most
of the studies use a fixed time step, often around 15 minutes which has
been identified by [14] as a change point for the variability patterns for
3 different transportation networks. But being able to obtain prediction
results on different time steps can be beneficial for planning as well as for
real-time monitoring of trains capacity. [11] tries different time steps to
validate the performance of the proposed approach, while [9] proposed an
adaptative time step chosen according to the stations’ profiles.

To contribute to this existing work, we propose to study and compare the re-
sults of prediction models of the passenger load trained on subsets with different
spatiotemporal targets, and on datasets with different levels of spatiotemporal
aggregation. Building light, transferable, and easily deployable models is a pre-
requisite in many industrial applications. Having this goal in mind, we analyze
the spatiotemporal sensitivity of forecasting models based on the Random For-
est algorithm [17]. The rest of this paper is organized as followed: Section 2
presents the available dataset, Section 3 presents the forecasting method and the
different models that will be compared, then section 4 presents the sensitivity
analysis of the different spatiotemporal features.

2 Data description

The study focuses on the French suburban railway Transilien line H operated by
SNCF and located in Paris greater area. The railway line carries approximately
250,000 passengers daily with trains circulating during service hours from 5 am
to 2 am the next day. The dataset covers 41 stations, organized in 4 branches
connecting Paris city center to different suburban towns, located in the northern
area of Paris from January 2016 to December 2017. The dataset consists of
records of the passenger load collected via sensors in vehicles and calculated at
each time a train makes a stop in a station.

Figure 1 shows examples of the passenger load plotted according to the ob-
served station, the direction of the trains, and the type of day. The load is
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influenced by many contextual spatiotemporal variables, among which are: the
time of the day (morning and evening rush hours, etc.), the day of the week
(weekday or weekend), or the day of the year (holidays), the station location
(city center, suburb), the direction of the train and its mission, that is the list
of served stations knowing that trains can be omnibus or direct. The effect
of this last variable is visible on the figure, for Paris Nord or Saint-Denis sta-
tions, through oscillations in passengers load of two consecutive trains. Figure
1 also shows that train stops are not evenly distributed across stations: there
are more records i.e. train stops in the inner city and dense suburbs stations
than in suburbs stations located far away from Paris. We have to process an
unbalanced spatiotemporal dataset with more observations on some stations,
and trains passing at different frequencies according to the time of the day and
the location (branch, station). In addition to those contextual factors, public
transport demand and therefore passenger load can also be impacted by exter-
nal events (social, cultural, sport, etc.). Hence, the model should integrate all
the temporal, spatial, and exogenous factors listed above to provide accurate
forecasts.

Figure 1: Variation of the passenger load profiles per station and direction (row),
and type of day (column)
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3 Methodology

3.1 Forecasting using Random Forest Regression

In previous works [18] on the same dataset, we compared passenger load pre-
dictions obtained with different machine learning models such as XGBoost [19],
Random Forest [17], and a neural network based on an LSTM architecture.
Due to their close performances, we chose in this study to work with the Ran-
dom Forest tree ensemble learning approach for its low computational cost, its
interpretability, and its good performance even compared to more complex ap-
proaches based on deep neural networks. Random Forests are well suited in our
application where the processed dataset contains complex spatial and temporal
dependencies that can be represented through feature engineering.

Tree ensemble methods are machine learning algorithms used to solve re-
gression and classification problems. Those methods rely on the combination of
weak estimators, here binary decision trees, to obtain a more robust estimator.
Tree ensemble methods can be split into two categories: the averaging meth-
ods relying on independent estimators to build the robust estimator [17,20], and
the boosting methods relying on estimators built sequentially to obtain the final
one [19,21,22]. Random Forest is a popular algorithm of the averaging methods
category which relies on a bagging method that proposes to combine and av-
erage several trees built independently to obtain a single and more performant
estimator with reduced variance. The introduction of randomization processes
with replacements on the records and the features (bootstrap samples) allows
building complex models while limiting overfitting.

3.2 The different forecasting models

We study the results of passenger load prediction models trained on different
subsets and on datasets with different levels of spatiotemporal aggregation and
different features.

3.2.1 Dataset splitting and the different sub-models

Training subsets are defined using spatiotemporal variables that supposedly
create patterns in the passenger load of the trains: the station at which a train
stops, the direction of the train, and the type of days of service. The type of day
is given by 6 categories (used by the transport authority) composed by weekdays,
Saturdays and Sundays in and outside holidays periods, while the direction of
trains is given by the 2 categories from and to Paris city center. The patterns
created by those variables are observable in many public transport networks
and most of the studies reviewed in section 1 treat them by deploying specific
predictive models per station or per type of day for example. If we were to apply
the same approach to our dataset, we would have to train up to 492 models by
considering the different stations, types of day, and direction of the trains (see
Table 2). From an operational point of view, it seems very difficult to keep track
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of such a large number of models, especially when considering that line H is only
one of the 15 railway lines of the Transilien network operated by SNCF, and one
of the 31 lines metro and railway lines covering Paris metropolitan area, which
serves only 41 stations on more than 700 stations. Having this difficulty in mind,
one of our goals is to assess the performance of the predictive models trained
on different subsets. The goal is indeed to diminish the number of models to
maintain to ease the operational transfer of such a predictive approach.

3.2.2 Data aggregation and the different spatiotemporal scales

As stated by previous studies such as [14–16], the spatiotemporal aggregation
of a dataset determines its variability, hence its predictability. To better under-
stand the variability of the passenger load and its impact on the forecast, we
train different models built on two criteria: the different spatiotemporal aggre-
gation scales. As shown in Table 1, the spatial unit varies from train to station,
and the temporal unit ranges from a minute to an hour for both predictive
temporal horizons (long-term and short-term).

Table 1: Predictive models based on the forecasting horizons and the dataset
spatiotemporal scales

Spatiotemporal scale Forecast horizon
Spatial unit Temporal unit Long-term Features Short-term Features

(Train id, Station id)

Timestamp Calendar Calendar
(hh:mm:ss) Contextual Contextual

Theoretical schedule Theoretical schedule
Realized schedule

Train lag
Station lag

Station id

15 minutes Calendar Calendar
interval Contextual Contextual

30 minutes Agg. theoretical schedule Agg. theoretical schedule
interval Agg. realized schedule

60 minutes Station lag
interval

Predictions are computed for each train stop at a specific time (first row of
Table 1). In this situation, the location of the forecast, that is the train stop, and
the time of the forecast is the theoretical schedule at which the train is supposed
to arrive at the station. Predictions are also computed on different aggregated
datasets (other rows of Table 1). The aggregation consists of regrouping records
in time intervals of fixed size: the passenger load is not predicted for a single
train, but for all the trains passing at the station in the given interval. Here the
target variable is the sum of the passenger load of the trains contained in the
time interval, which are trains that are scheduled to stop at the target station
during the interval.
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3.2.3 Models features

To build the predictive models, the following features are considered:

• Contextual features: 1) the train stop id (i.e the station) encoded in one-
hot, 2) the planned route of the train, i.e. list of served stations summa-
rized as a mission code encoded in one-hot, 3) a boolean indicating if the
train stop is the departure station of the train.

• Schedule features: Theoretical (resp. Realized) arrival and departure time
at each train stop, expressed in time passed since the beginning of the daily
service starting at 4 am.

• Calendar information: 1) the day of the year represented with a cycli-
cal encoding using sine and cosine functions, 2) one-hot encodings of the
weekdays and the holidays

Single-step predictions for the next timestamp or time interval t are com-
puted. But we studied two forecast horizons: long and short terms predictions
(see Table 1). Long-term predictions rely only on the contextual and calendar
available a long time in advance. They are supposed to provide results that
can be interpreted as mean results over detailed historical traffic context, that
remain valid in a yearly horizon, and can be used for planning purposes. Short-
term predictions rely on the same features and on lagged features which can
capture the short-term dynamics useful for real-time monitoring and informa-
tion. Those features are obtained by applying a lag on the passenger load or
the realized schedule features sorted by:

• Train lag, that is the state of the train at its previous stops;

• Station lag, that is the state of the previous trains passing at the same
station as the train stop.

The features considered in the aggregated models are globally the same
as in the disaggregated model. Schedule features are average values over the
aggregated trains and only lagged features on stations are considered as short-
term feature candidates. The definition of lagged features on trains is more
complex on the aggregated datasets due to the configuration of the network.
The trains passing at a target station during a given time interval are not
necessarily coming from the same previous stations because of the difference in
missions (branches, direct vs. omnibus). To avoid mixing information coming
from different locations of the network, we decide to exclude those lag features
in the study.

4 Sensitivity analysis

In this section, we discuss the performances of the different models trained
in the various settings described in the previous section. First, we study the
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patterns associated with specificities of the spatiotemporal units and compare
the results of the trained models on different subsets split using spatiotemporal
characteristics. Second, we study the non-explainable variability and the effect
of the aggregation of the dataset on the known variability.

4.1 Experiments settings

Experiments have been carried out with the Random Forest implementation of
the scikit-learn library [23]. Models have been trained on the data of the year
2016, while the year 2017 is used as an independent test set. The experiments
presented in section 4.2 have been performed at the disaggregated train stop
scale using long-Term features on all the subset split summarized in table 2.
And the experiments presented in section 4.3 have been performed on all the
scales and types of features identified in Table 1.

Models are evaluated using the Root Mean Square Error (RMSE) metric
(1), and mainly Weight Mean Absolute Percentage Error (WMAPE) metric (2)
to take into account the difference of volume of passengers:

RMSE =

√∑
t

∑
j(Ftj −Atj)2

n
(1)

WMAPE =

∑
t

∑
j |Ftj −Atj |∑n
t=1 |Atj |

(2)

where Atj (resp. Ftj) is the observed (resp. forecasted) passenger load at
time t and location j (train stop or station) and n is the total number of samples.

An iterative grid search with a cross-validation procedure has been used to
fine-tune the hyperparameters of the models. This procedure has been applied
on different training sets split using the type of day variable where each train-
ing set is composed of long-term and short-term features but without any lag
features. We choose to split the dataset by type of days to have a manageable
number of training sets, but with different characteristics in terms of size and
pattern of passenger load. It allowed us to evaluate if the characteristics of the
subset have an impact on the parameters and if so, on which parameters. In
the end, a unique set of hyperparameters has been selected to be used to train
all the models on the split dataset. Among the most significant parameters, we
chose to train the Random Forest with deep trees (max depth = 50) combined
with a minimal impurity decrease of 0.01. It allows the creation of large and
complex trees capable of representing complex patterns using a large amount of
information extracted from the features of the largest datasets. But the second
parameter allows adapting to the smaller datasets by stopping the training early
and creating smaller trees as shown by Table 2. The same set of parameters has
been used for the models trained at the different spatiotemporal scales, with
only an adaptation on the maximum numbers of samples and features as the
training set in those experiments is bigger.
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Table 2: Parameters of the independent models training
Models Number Training Mean depth
Split of models Time (mm:ss)* of forests

Global x 1 06:06 48,9
Direction x 2 04:05 45,0
Type of day x 6 04:54 43,7
Type of day x Direction x 12 03:35 36,3
Station x 41 05:12 29,4
Station x Direction x 82 06:40 26,3
Station x Type of day x 246 07:35 18,5
Station x Type of day x Direction x 492 09:46 15,8

* Evaluated on a virtual machine with 32 vCPU, 115GB of RAM.

4.2 How many independent models to train?

As presented in section 1, most of the studies on the forecasting of mobility flows
consider that spatiotemporal characteristics such as the considered station or
the type of days create such a great heterogeneity in the dataset, that it is best
to train several models according to those characteristics. The question here is
to what extent the forecasting models can discover those patterns and associate
them to the different spatiotemporal units. Table 3 presents the global perfor-
mances of the models trained on the different subsets split by spatiotemporal
characteristics.

Table 3: Global performances of the independent models
Models TRAIN (2016) TEST (2017)

Split Number RMSE WMAPE RMSE WMAPE
Global x 1 43,44 12,43 54,29 14,37
Direction x 2 42,14 11,92 53,62 14,06
Type of day x 6 42,60 11,90 49,37 13,87
Type of day x Direction x 12 41,52 11,48 49,07 13,71
Station x 41 40,15 10,87 53,12 13,74
Station x Direction x 82 39,97 10,78 53,00 13,72
Station x Type of day x 246 40,49 10,87 49,41 13,74
Station x Type of day x Direction x 492 40,35 10,82 49,35 13,72

The main result is that no matter the split of the dataset, with the set of
chosen hyperparameters, the performances seem to remain constant from the
global model to the detailed 492 independent models, even if the global model
performs a little bit worst than the smaller models. To asset the significance of
the differences between the independent models, figure 2 presents the heatmap
of the residuals difference (i.e. the difference between the residuals of a model A
and the residuals of a model B) and highlight with black boxes pairs of models
for which the null hypothesis of the Wilcoxon signed-rank test [24] cannot be
rejected (p− value > 0.05). This test which allows comparing the distributions
of pairs of forecast residuals indicates that most of the independent models still
provide statistically different results. But the p-values should be used with
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caution in our experiments which use a very large number of samples [25]. As
displayed in the center of each cell, the median of the residuals differences is still
very small for most of the models. With medians smaller than one passenger
and weighted error metrics varying between 13 and 15 passengers (WMAPE), we
can conclude that the different models provide mostly the same results. Indeed
the passenger countings differences between the forecast models are too small
to impact the quality of the information provided to the end-users.

Figure 2: Models split comparison: median of the residuals differences &
Wilcoxon test results

Looking at the results detailed according to the spatiotemporal variables,
the performances remain similar regardless of the model. Figure 3 provides
results according to the direction of the trains on the network. The prediction
performances for trains from and to Paris city center are globally similar even
if direction determines the passenger load according to the time of the day.

Figure 3: Models split comparison: details per directions

Figure 4 presents results according to the type of day. It shows that the
performances of the models are globally similar no matter what the model is.
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Figure 4: Models split comparison: details per type of day

But it confirms that the quality of the forecasts differs according to the type
of day, even with the most 492-unit models. Holidays are harder to predict,
especially Sundays and Saturdays, while non-holidays and especially weekdays
(larger dataset, and supposedly with the most regular patterns such as home-
to-work mobility patterns) exhibit better performances.

Figure 5 provides results per station and type of day. Here again, it appears
that all the models have similar performances on all stations except for some
stations located specifically on the Paris – Pontoise branch of the line. Differ-
ences between models appear for some trains (in direction to Paris) circulating
during the weekdays and for some trains circulating (from Paris) the Saturdays
and Sundays, stopping at the stations of Montigny-Beauchamp and Saint-Ouen-
l’Aumône. For those stations, the models trained on the subsets split by type
of day and direction gave worst performances than the other models on the test
set. The location of those stations on the same branch led to think that a spatial
pattern could not be discovered for this specific branch, that has the specificity
to share most of its stations with another suburban railway line (RER C) on
which we do not have any data. Figure 5 also shows that the performances differ
per station for all the models. Looking at the WMAPE metric that normalizes
the error with the mean passenger load, making the error per station compa-
rable, it appears that performances deteriorate in small suburban stations such
as Seugy, Luzarches, or Champagne-sur-Oise. The passenger load of those sta-
tions is always smaller, but also it exhibits a higher variability than in inner-city
stations making the forecast problem harder.

Overall, it appears that training a global model to forecast the passenger load
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Figure 5: Models split comparison : details per stations and types of day

of all the trains circulating at any station and any type of day on railway line H is
similar to training a large number of independent models, even if spatiotemporal
variables indeed condition the quality of the forecast. Of course, those results are
determined by the set of hyperparameters chosen to train the Random Forests.
We favor here having a unique model to maintain, but the compromise between
the size of the model and the number of models could lead to another choice
depending on the application. Notably, when considering the training time
showed in Table 2, it appears that the overall training time increases with the
number of models to train, but the global model takes more time to train than
the models split by direction and type of day. If a short training time is a
requirement, the split according to those criteria offers a compromise between
the unique training on a large and complex dataset and numerous trainings on
simpler datasets that are costly from a time point of view.

4.3 How the spatiotemporal aggregation affects the per-
formances?

In this section, we investigate the impact of the aggregation of the spatiotempo-
ral units on the variability of the dataset. The question here is to what extent
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the aggregation helps to obtain better forecasts of the passenger load. To an-
swer this question, we will compare the results of models trained on different
spatiotemporal units. Table 4 gives an overview of the performances of the long-
term and short-term models trained on 6 spatiotemporal units: the passenger
load at each train stop on a given timestamp, and the passenger load per station
on time steps of 1, 5, 15, 30, and 60 minutes.

Table 4: Performances of the LT and ST models trained on different spatiotem-
poral scales

Long-Term Short-Term
Spatial Unit Temporal Unit TRAIN (2016) TEST (2017) TRAIN (2016) TEST (2017)

Station

60 minutes 9,46 11,96 9,41 13,04
30 minutes 10,48 12,96 10,61 14,21
15 minutes 10,83 13,39 10,85 14,48
5 minutes 10,77 13,34 10,68 14,37
1 minutes 10,67 13,24 10,68 14,37

Train Disagregated 10,83 13,88 4,07 5,43

The short-term ’Train’ model using the train and station lag features out-
performs all the other models. Notably, this model outperforms all the other
short-term models where the load is aggregated per station, knowing that those
models only use station lag features. The train lag features are determinants to
obtain accurate predictions of the passenger load. Figure 6 presents a heatmap
of the medians of the residuals differences used to compute the Wilcoxon signed-
rank test. For all the pairs of models, the null hypothesis can be rejected but
here again the large sample size is prone to caution in the interpretation of the
p-values. Looking at the median, the used features (short or long term) as well
as the spatial unit condition the results. However, the temporal aggregation
seems to have a smaller influence on the results which translates in medians
closer to zero. Considering the WMAPE metrics and the median of the resid-
uals, the temporal aggregation seems to slightly affect the performance as the
error slightly decreases with the aggregation of the data per station.

Figure 7 presents a comparison of the forecasting results aggregated per sta-
tion and type of day for all the models. Here again, the train ST LT model
outperforms all the other models on the majority of the stations, except the
departure stations where the train lag features are null by default. For the
departure stations, all the other short-term and long-term models, no matter
what the spatiotemporal scale, provide similar results. For those stations, the
train ST LT performs worst than all the other models because from an analy-
sis of the importance of the features this model relies mostly on the train lag
features. It is not able to learn properly the passenger load behavior of those
stations based on the other features.

When comparing the models of the other no-departure stations, it appears
that the temporal aggregation plays in favor of the accuracy of the forecasts per
station, the 60 minutes time steps being more accurate than 30, 15, 5, and 1
minute time steps, and the ‘train ’ model for long-term and short-term models.
And interestingly when comparing the short-term and long-term models at the
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Figure 6: Models scales comparison: median of the residuals differences

same spatiotemporal scale for the ‘station ’ forecast, it seems that lag features
are not beneficial no matter what the scale as long-term forecast models are
better. Short-term features seem slightly beneficial only for stations where the
frequency of trains is high.

Except for the 60 minutes aggregation, the performances of the other tem-
porally aggregated models seem to depend more on the station profile than on
the temporal aggregation. The frequency of the trains varies according to the
location: in Paris city center it is around 3 minutes during peak hours, whereas
in suburbs it is around 30 minutes during peak hours and 1 hour during off-peak
hours. Hence, the temporal aggregation does not reduce the variability homoge-
neously. In some situations instead of helping it seems to lose some information
or to enhance the variability compared to the other stations on which the ag-
gregated models may focus more during the training. But as stated previously
the impact of temporal aggregation on the performance is still overall minimal.

Figure8 compares models results according to the direction of the trains
and the different peak hours of the day. The morning and evening peaks are
identified according to the adaptation of the trains offer with more frequent
trains passing at each station. The morning peak goes from 6 am to 10 am,
while the evening peak goes from 4 pm to 8 pm. The off-peak period is defined
as the complementary period of service outside those two peaks. Except for the
train ST LT model, similar patterns in the results are observable through the
scales depending only minimally on the type of forecast. When looking at trains
circulating from Paris to the suburbs, the morning peak (red) and the off-peak
hours (green) are the most difficult periods to predict. It is expected that the
evening peak shows more regularity in this direction because from the urban
organization it is the time of the day where workers are leaving Paris city center
to go back to residential areas located in the suburbs. The off-peak period is

14



Figure 7: Models scales comparison: details per stations and types of day

easier to predict than the morning peak for stations close to Paris because it may
contain more regular mobility patterns associated with work-related mobility
but with staggered hours. When looking at trains circulating from the suburbs
to Paris, the off-peak (green) is the most difficult period to predict, probably
because it regroups all the non-work-related patterns associated for example to
leisure activities, followed by the evening peak. The morning peak period in
this direction presents more regularity, probably because it is the time of the
day where workers are going to Paris to work.

From the comparison of the results of the different models, it appears that
aggregating the dataset helps a little in the prediction but it is not determinant
on the quality of the results. Results are consistent through scales, although
using the disaggregated dataset provides better forecasting models because it
helps to incorporate determinant lag features on the previous status of each
train. Using similar train lag features has not been tested on the aggregated
scales because of the network architecture of the studied railway line. Hence,
training models on aggregated datasets could be preferable for the long-term
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Figure 8: Models scales comparison: details per direction and peak hours
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forecast where the train precision is not required, while training models on
the disaggregated dataset could be preferable to obtain the most accurate and
short-term forecast.

5 Conclusion

In this paper, we studied the sensitivity of spatiotemporal features on the predic-
tion of the passenger load on board the train. This study offers valuable insights
on the impact of the spatiotemporal features involved in the construction of the
machine learning models which can help to easily deployed and maintained such
models in real-world settings. First, it appeared that it was sufficient to train a
single Random Forest model for all the stations of the studied railway line and
that it was not necessary to train several models for each station, direction, or
type of day. With the relevant set of hyperparameters, it was possible to train
a forest with trees complex enough to represent various patterns depending on
the location of the trains or on the temporal context of circulation of the trains.
Second, it appeared that the forecast results were consistent through different
scales of spatiotemporal aggregation. When data of the passenger load was ag-
gregated according to the station on a regular temporal grid of 1, 5, 15, 30, or 60
minutes, the aggregation played only a little in favor of the forecast by bringing
more regularity to the dataset. It could notably be beneficial to train long-term
forecast models. But observing the passenger load of each train was the best
way to obtain accurate short-term forecast models relying on the passenger load
observed at the previous train stop. This model was the most accurate one of
the study, even if performances on departure stations of the trains were similar
to the other models. For those stations, the other contextual features related
to the calendar, schedule, or location were still relevant enough to obtain valid
forecasts.

Future research should investigate more extensively the evolution of model
responses over time. It would be interesting to analyze the impact of different
sizes of historical data to train the models to evaluate the necessary amount of in-
formation to obtain relevant forecasts. It could also help to better understand to
which extent the predictive models remain valid through time. Moreover, future
research should extend the sensitivity analysis to other predictive approaches
such as the previously studied LSTM neural network model [18] compare the
performances of the different models in those various spatiotemporal settings.
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