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Abstract

The effective dynamic properties of specific periodic structures involving rubber-like materials can be adjusted by
pre-strain, thus facilitating the design of custom acoustic filters. While nonlinear viscoelastic behaviour is one of the
main features of soft solids, it has been rarely incorporated in the study of such phononic media. Here, we study the
dynamic response of nonlinear viscoelastic solids within a ‘small-on-large’ acoustoelasticity framework, that is we
consider the propagation of small amplitude waves superimposed on a large static deformation. Incompressible soft
solids whose behaviour is described by the Fung–Simo quasi-linear viscoelasticy theory (QLV) are considered. We
derive the incremental equations using stress-like memory variables governed by linear evolution equations. Thus,
we show that wave dispersion is governed by a strain-dependent generalised Maxwell rheology. Illustrations cover the
propagation of plane waves under homogeneous tensile strain in a QLV Mooney–Rivlin solid. The acoustoelasticity
theory is then applied to phononic crystals involving a lattice of hollow cylinders, by making use of a dedicated per-
turbation approach. In particular, results highlight the influence of viscoelastic dissipation on the location of the first
band gap. We show that dissipation shifts the band gap frequencies, simultaneously increasing the band gap width.
These results are relevant to practical applications of soft viscoelastic solids subject to static pre-stress.

Keywords: viscoelastic material, finite strain, soft solids, phononic crystal, tunable band gap

1 Introduction

Solid rubber has been used in various cultural and engineering applications since ancient Mesoamerican times [1].
Mechanically, elastomers (including rubber vulcanisates) are very soft solids, a property that is also found in many soft
biological materials such as skin, blood vessels, muscle, lung or brain tissue [2, 3]. Due to their high strength, they can
support very large elastic deformations. Moreover, they can exhibit large hysteresis loops in loading-unloading exper-
iments, as well as creep and relaxation phenomena [4, 5]. From these observations, one deduces that the mechanical
stress is not solely function of the deformation. In isothermal or isentropic configurations, it is therefore quite natural
to consider finite-strain viscoelastic material models to account for the dissipation of mechanical energy.

Among various theories found in the modelling literature [6], a nearly-incompressible viscoelastic model with
internal variables was introduced by Simo [7]. In the limit of perfect incompressibility, the latter amounts to Fung’s
quasi-linear viscoelasticity (QLV) [8, 9] when the corresponding relaxation function is a scalar Prony series (under
these assumptions, we will refer to it as ‘Fung–Simo’ model). Despite experiments revealing the limits of this modelling
approach [4], it has remained a very popular theory due to its simplicity and its ability to reproduce the main features
of nonlinear viscoelastic behaviour, see Refs. [10–13] to name a few.

‘Small-on-large’ incremental motions are obtained by superposition of an infinitesimal deformation on a large
static deformation [14]. Such deformations have lead to numerous studies in mechanics, e.g. with applications to the
propagation of small-amplitude waves in pre-stressed composites and phononic crystals [15, 16]. As far as viscoelastic
solids are concerned, the literature is less abundant. Destrade et al. [17] studied incremental motions for solids of the
differential type (i.e., nonlinear Kelvin–Voigt solids), which are unable to capture stress relaxation phenomena [18].
Parnell and De Pascalis [19] overcome this limitation by addressing QLV acoustoelasticity in a specific configuration.
The present study extends QLV acoustoelasticity to more general settings by making use of stress-like memory vari-
ables that arise naturally in the expression of the stress. This way, we provide a guide to the analysis of incremental
motions in incompressible Fung–Simo solids.

For the phononic crystal described by Barnwell et al. [16], recent studies show how an applied pre-stress can
influence wave propagation properties in the absence of dissipation (see Ref. [20] for further details), including the
control of the band gaps that arise in the dispersion diagrams. To design optimal structures for specific purposes
(such as noise filtering and wave guiding [21]), it becomes essential to understand how the geometric and constitutive
parameters can influence the band structure. Although rubber-like materials are often assumed elastic, viscoelastic
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behaviour eventually introduces frequency-dependent dissipation. It is therefore interesting to analyse the effect of
dissipation on the dispersion diagrams.

The literature on phononic crystals includes studies of spring-mass systems with damping and of continuous
systems with linear viscoelastic behaviour [22, 23]. In particular, similar configurations to Barnwell et al. [16] were
investigated in the limit of linear viscoelasticity [24, 25]. Nevertheless, to the authors’ present knowledge, continuous
systems with nonlinear viscoelastic behaviour were seldom considered [19].

In the present study, we investigate the effect of viscoelastic dissipation on the above-mentioned pre-stressed
periodic structure [16] at low frequencies, i.e. about the first band gap. Using the plane-wave expansion method, the
‘small-on-large’ QLV theory is used to analyse the propagation of viscoelastic Bloch waves in the phononic crystal.
For this purpose, a dedicated viscoelastic perturbation is introduced, based on the assumption that the viscoelastic
material parameters do not vary in space (contrary to the elastic parameters). We find that dissipation shifts the
band gap frequencies, simultaneously increasing the band gap width. It is therefore crucial to account for viscoelastic
behaviour in soft phononic media where dissipation produces non-negligible effects.

The paper is organised as follows. Section 2 presents the equations of motion, their incremental counterpart, as
well as the propagation of plane waves in homogeneous pre-stressed media with Mooney–Rivlin QLV behaviour. In
Section 3, the theory is applied to the periodic structure of Barnwell et al. [16] by considering the propagation of
small-amplitude antiplane waves in the pre-stressed phononic crystal. The effect of loss is analysed by means of a
perturbation approach. Conclusions and prospects are detailed in Section 4. In the Appendix A, we show how the
thermodynamic analysis of Ref. [26] can be extended to the case of incompressible QLV solids.

2 Acoustoelastic motion of viscoelastic solids

2.1 Preliminaries

In what follows, we present the basic equations of incompressible Lagrangian solid dynamics [27]. We consider
a homogeneous and isotropic solid continuum on which no external volume force is applied. Furthermore, self-
gravitation is neglected. A particle initially located at some position X of the reference configuration moves to a
position x of the current configuration. The deformation gradient tensor is the second-order tensor defined as

F = ∂x

∂X
= I +Gradu , (1)

where u = x − X is the displacement field, I is the metric tensor, and Grad denotes the gradient operator with respect
to the material coordinates X (Lagrangian gradient). If the Euclidean space is described by an orthonormal basis
{e1,e2,e3} and a Cartesian coordinate system, then I has Kronecker delta components I = [δi j ].

In the analysis, we consider incompressible materials, for which the constraint of no volume dilatation

J = detF ≡ 1 (2)

is prescribed at all times, so that the mass density ρ is constant. Various strain tensors are defined as functions of F ,
such as the left Cauchy–Green tensor B = F Fᵀ, the right Cauchy–Green tensor C = FᵀF , and the Green–Lagrange ten-
sor E = 1

2 (C−I ). Sometimes, the principal stretchesλi are introduced. Their squaresλ2
i correspond to the eigenvalues

of A ∈ {B ,C }. Thus, the invariants Ii of A are given by

I1 = tr A =λ2
1 +λ2

2 +λ2
3

I2 = 1
2

(
(tr A)2 − tr(A2)

)=λ−2
1 +λ−2

2 +λ−2
3

I3 = det A =λ2
1λ

2
2λ

2
3 ≡ 1,

(3)

under the incompressibility constraint (2). Note that I3 is related to the volumetric dilatation (2) through I3 = J 2.
In the absence of body forces, the motion is also governed by the conservation of momentum

ρv̇ = DivP or ρv̇ = divT (4)

where the first Piola–Kirchhoff stress tensor P and the Cauchy stress tensor T = P Fᵀ = T ᵀ are specified by the consti-
tutive law. These stress tensors are also related to the second Piola–Kirchhoff stress tensor S = F−1P which satisfies
T = F SFᵀ for incompressible solids. While ‘Div’ is the Lagrangian gradient’s trace, the differential operator ‘div’ is
computed with respect to x (Eulerian divergence). The ‘dot’ denotes the material time derivative.

The present definitions are consistent with notation used in the monograph by Holzapfel [27]. The divergence in
Eq. (4) reads [divT ]i = Ti j , j componentwise, where indices after the coma denote spatial differentiation, and summa-
tion over repeated indices is performed. In some other texts, a transposed definition of the divergence is used, see e.g.
Ref. [17]. In this case, the Lagrangian equation of motion involves the material divergence of the nominal stress tensor
Pᵀ instead of P .
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2.2 Fung–Simo incompressible viscoelasticity

Fung’s quasi-linear viscoelasticity (QLV) or Fung’s model of viscoelasticity is presented below (see Section 7.13 of Fung
[8]). This model is based on the assumption that the stress is linearly dependent on the history of the elastic stress
response by considering a fading memory effect with a Boltzmann superposition principle and that the viscous re-
laxation rate is independent of the instantaneous local strain. By analogy with linear viscoelasticity [28], the second
Piola–Kirchhoff stress is therefore given by [8]

S =G∗∗∗ Ṡe =
∫ +∞

−∞
G(t − s) : Ṡe(s)ds = Ġ∗∗∗Se (5)

for compressible solids, where the colon denotes double contraction G : Ṡe = [Gi j k`Ṡe
k`]. The stress tensor Se =

2∂W /∂C is the elastic response derived from a strain energy density function W , and G is a fourth-order relaxation
tensor.

Although other choices can be made, scalar relaxation is sometimes assumed [26, 29, 30] by choosing the fourth-
order relaxation tensor G=G Is along the symmetric identity tensor Is = 1

2 [δi kδ j`+δi`δ j k ]. The relaxation function G
is assumed proportional to the Heaviside step function H (i.e., G is of the Heaviside type [28]). Typically, the relaxation
function G may be chosen as a Prony series of the form

G (t ) =
[

1−
n∑

k=1
gk (1−e−t/τk )

]
H(t ) , (6)

with an arbitrary number n of relaxation mechanisms of magnitude gk and characteristic time τk .
For causal problems where deformation starts at t = 0, the elastic response Se is of the Heaviside type too. Thus,

the product rule of differentiation and restriction of the integrals to [0, t ] yields alternative forms of the convolution
products [8, 9]. In the present study, the material is not assumed stress-free at negative times. We thus keep convolu-
tion over R instead (5).

In the incompressible case (2), the stress response S includes an additional term −pC−1 where p is the Lagrange
multiplier of the incompressibility constraint — the corresponding Cauchy stress T = F SFᵀ includes the term −p I .
Moreover, the strain energy function W depends on the invariants I1, I2 only, and the elastic response reduces to

Se = 2(W1 + I1W2) I −2W2C , (7)

where Wi is shorthand for the partial derivative ∂W /∂Ii evaluated at (I1, I2). Equivalent forms to Eq. (7) can be derived
by using the Cayley–Hamilton theorem, but we do not enter into these considerations here (see Refs. [9, 26]). For sake
of consistency with incompressible linear elasticity in the limit of infinitesimal deformations, we assume that the
relationship µ/2 =W1(3,3)+W2(3,3) defines the shear modulus µ> 0.

To split stresses into deviatoric/isochoric and hydrostatic/volumetric contributions, Simo [7] introduced a nearly
incompressible theory with internal variables. Integration of the differential equations governing the evolution of
internal variables allows to rewrite the constitutive law using hereditary integrals. In the incompressible limit, we thus
have (see Eq. (1.17) of Ref. [7])

S =−pC−1+Dev
(
G ∗ Ṡe

D

)
=−qC−1+G ∗ Ṡe

D =−qC−1+
∫
R
G (t − s)Ṡe

D(s)ds =−qC−1+ Ġ ∗Se
D

(8)

with G defined in Eq. (6), up to a suitable redefinition of the arbitrary Lagrange multiplier p as q . Here, we have intro-
duced the notation Se

D = Dev(Se) where Dev(•) = (•)− 1
3 (• : C )C−1 denotes the deviatoric operator in the Lagrangian

description [27]. Similarly to Eq. (5), the star operator ∗ denotes the standard convolution product in time domain,
and the elastic response is deduced from Eq. (7).

Let us assume that the material is in an equilibrium state Se = S̄e for negative times, which undergoes continuous
perturbations about t = 0. The rate of Se

D is therefore a causal signal which vanishes at the origin of times. The
expression of the relaxation function (6) in Eq. (8) yields

S =−qC−1+Se
D −

n∑
k=1

Sv
k , T =−q I +T e

d −
n∑

k=1
T v

k , (9)

where

Sv
k = gk

∫ t

0

(
1−e−(t−s)/τk

)
Ṡe

D(s)ds = gk

τk

∫ t

0
e−(t−s)/τk Se

D(s)ds (10)

and T v
k = F Sv

k Fᵀ are memory variables arising in the expression of the convolution product [26]. Here, we have intro-

duced the notation T e
d = dev(T e), where the operator dev(•) = (•)− 1

3 tr(•)I is the deviatoric projection in the spatial
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Figure 1: Acoustoelasticity. Combination of a large static deformation and a small incremental perturbation.

description [27]. Now, computing the time derivative of the memory variables, we find that Sv
k satisfies the linear

evolution equation [29]
τk Ṡv

k = gk Se
D −Sv

k . (11)

Thus, the convolution product in the constitutive law (8) is replaced by a summation of n memory variables which
satisfy a linear differential equation. This way, the Fung–Simo QLV theory introduces an additive decomposition of
stress [26]. One notes that this model is equivalent to the incompressible version of the Fung-type viscoelastic model
described by De Pascalis et al. [9], as noted in other related works [26, 31]. Thermodynamic consistency is discussed
in Appendix A.

2.3 Small-on-large analysis

We follow the steps in Destrade et al. [17] for the derivation of the QLV acoustoelasticity equations, and refer to Sec-
tion 2.1 for definitions and notations. A similar derivation is presented in Parnell and De Pascalis [19] without the
use of memory variables. The main idea consists in decomposing the total deformation by introducing an interme-
diate configuration. As shown in Figure 1, the solid undergoes a static pre-deformation X 7→ x̄ followed by a dynamic
infinitesimal deformation x̄ 7→ x .

Static deformation At equilibrium, the deformation is governed by the balance equation (4) with zero velocity v̄ = 0.
We denote all quantities associated with the present finite deformation by an overbar. Thus, the corresponding dis-
placement vector is defined by ū = x̄ − X . The stresses are deduced from the deformation gradients F̄ = ∂x̄/∂X and
from the constitutive law (9), where the memory variables (11) equal their equilibrium value S̄v

k = gk S̄e
D, or equiva-

lently T̄ v
k = gk T̄ e

d . Thus, the material is in its relaxed elastic limit [26], which satisfies

div T̄ = 0 with T̄ =−q̄ I +
(

1−
n∑

k=1
gk

)
T̄ e

d (12)

deduced from the constitutive law (9), or equivalently Div P̄ = 0 with the stress P̄ = T̄ F̄−ᵀ. The divergence operator
with the overbar is obtained by spatial differentiation with respect to x̄ . We will see later on how it relates to div.

Dynamic perturbation Now, a deformation with small displacement
˜
u is superimposed on the present finite static

deformation. We denote incremental quantities associated with the infinitesimal deformation by an undertilde. For
instance, the total displacement and position fields are given by u = ū+

˜
u and x = x̄+

˜
u, respectively (see Fig. 1). Using

the chain rule, the deformation gradient tensor is decomposed as

F = ∂x

∂x̄

∂x̄

∂X
= (I +H)F̄ = F̄ +

˜
F ,

˜
F = HF̄ , (13)

where H = ∂
˜
u/∂x̄ is the incremental displacement gradient tensor in the pre-deformed configuration (the undertilde

is discarded for this incremental quantity for sake of parsimony, as there is no ambiguity). Introducing the infinites-
imal strain tensor ε such that 2ε = H + Hᵀ, we compute the incremental strain tensor

˜
C = F̄ᵀ(2ε)F̄ , as well as the

incremental invariants [17]

˜
I1 = 2tr(εB̄ ) ,

˜
I2 =−2tr

(
εB̄−1) ,

˜
I3 = 0, (14)

where the expression for
˜
I2 is deduced from the Cayley–Hamilton identity applied to the tensor B̄ .

Let us write the Eulerian equation of motion (4) corresponding to the total deformation, with the displacement
field u and the Cauchy stress tensor T ' T̄ +

˜
T . Since the displacement ū is static, the total velocity v = ẋ reduces to

the material time-derivative of
˜
u. One notes that the divergence operators are linked through

divT = div
(
T (I +H)−ᵀ

)' div
(
T −T H

ᵀ)
, (15)
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where we have used the Piola identity over the incremental deformation x̄ 7→ x with deformation gradient tensor I +H
(see Eq. (13)). Conversely, we note that the relationship divT = div(T +T Hᵀ) is satisfied at leading order too. These
relationships between divergence operators are of the same type as Eq. (4) (see Sec. 4.3 of Ref. [27]), up to a redefinition
of the reference and deformed states using the intermediate configuration of Fig. 1.

Since the pre-deformed solid is in a static equilibrium characterised by Eq. (12), we end up with the incremental
equation of motion

ρ
˜
ü = div

˜
Σ,

˜
Σ=

˜
T − T̄ H

ᵀ
, (16)

where the use of div or of div is equivalent at the same order of approximation. In fact, the position vector x ' x̄
describes a small perturbation from the pre-deformed state, which is reminiscent of the linear elastic framework. The
incremental incompressibility constraint deduced from Eq. (2) and from the decomposition (13) reads tr H = 0, or
equivalently div

˜
u = 0.

Using the constitutive law (9), we derive the expression of the incremental Cauchy stress tensor as follows

˜
T =−

˜
q I +

˜
T e

d −
n∑

k=1 ˜
T v

k , (17)

where
˜
q is the incremental pressure. The increment of the elastic response is deduced from the definition T e = F SeFᵀ

by linearising the products, and a similar computation is performed for the viscous stresses. Thus, the effective lin-
earised stress of Eq. (16) reads

˜
Σ=−

˜
q I + q̄ H

ᵀ+
(

1−
n∑

k=1
gk

)
HT̄ e

d + F̄

(
˜
Se

D −
n∑

k=1 ˜
Sv

k

)
F̄
ᵀ

, (18)

The relevant increments deduced from Eq. (7) are given by

˜
Se = 2

(
˜

W1 +
˜
I1W̄2 + Ī1

˜
W2

)
I −2

˜
W2C̄ −2W̄2

˜
C , (19)

and thus

˜
Se

D =
˜
Se − 1

3

(
˜
Se : C̄ + S̄e :

˜
C

)
C̄−1 − 1

3

(
S̄e : C̄

)
˜
C−1

=
˜
Se − 2

3

(
˜
I1W̄1 +2

˜
I2W̄2 + Ī1

˜
W1 +2Ī2

˜
W2

)
C̄−1 − 2

3

(
Ī1W̄1 +2Ī2W̄2

)
˜
C−1

(20)

with
˜
C−1 =−F̄−1(2ε)F̄−ᵀ. From Eq. (11), we deduce

τk ˙
˜
Sv

k = gk
˜
Se

D −
˜
Sv

k . (21)

In Eqs. (19)-(20), the increment
˜

Wi = Wi −W̄i given by
˜

Wi =
˜
I1W̄i 1 +

˜
I2W̄i 2 follows from a truncated Taylor series of

the function Wi (I1, I2) about the equilibrium values (Ī1, Ī2), where Wi j is shorthand for ∂Wi /∂I j , see Ref. [17]. If we
compute the transpose of Eq. (18), then we remark that the incremental stress tensor

˜
Σ is not preserved. Moreover,

substitution of H by its transpose does not necessarily keep
˜
Σ invariant, showing that the incremental constitutive

law (18) does not exhibit any elementary symmetry in general.

2.4 Dispersive plane waves

We consider incremental harmonic plane waves of the form

˜
u = û ei(ωt−κn···x) , H = Ĥ ei(ωt−κn···x),

˜
q = q̂ ei(ωt−κn···x), (22)

with complex amplitude û for the incremental displacement field
˜
u, and similar notation is used for the harmonic

amplitude of other incremental quantities such as q̂ , Σ̂, T̂ , etc. Following from the definition of H , the displacement
gradient’s harmonic amplitude satisfies Ĥ =−iκ (û⊗n). The exponential space-time dependency involves the angular
frequency ω, the wave number κ, and the imaginary unit i =

p
−1. This wave is propagating along the n-direction,

where n is an arbitrary unit vector.
Injecting this Ansatz in the incremental incompressibility constraint gives us the orthogonality condition û ·n = 0,

i.e. the wave corresponds to a transverse shearing motion. The incremental equation of motion reads ρω2û = iκΣ̂n in
harmonic form, where the complex amplitudes

Σ̂=−q̂ I + q̄ Ĥ
ᵀ+

(
1−

n∑
k=1

gk

)
ĤT̄ e

d +
(

1−
n∑

k=1

gk

1+ iωτk

)
F̄ Ŝe

DF̄
ᵀ

(23)

are deduced from Eqs. (18)-(21). Given the definition of H , the displacement gradient amplitudes Ĥ = −iκ (û ⊗n)
satisfy the property Ĥᵀn = 0 due to the orthogonality condition. Then, scalar multiplication of the wave equation by
the unit vector n yields the condition nᵀ

Σ̂n = 0 from which the dynamic pressure q̂ is deduced, see expression of Σ̂ in
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Table 1: Reference values of the material parameters describing a rubber-like solid. The viscoelastic Mooney–Rivlin
parameters for n = 1 relaxation mechanism are extracted from several literature references [4, 33].

ρ [kg/m3] C1 [MPa] C2 [kPa] g [—] τ [s]

1.1×103 0.228 8.3 0.29 0.31

Eq. (23). Given Eq. (23), one observes that the incremental stress Σ̂ is linear in the displacement gradient amplitudes
Ĥ . In other words, we can write a relationship of the form

Σ̂n = [I −n ⊗n]
[
Σ̂+ q̂ I − q̄ Ĥ

ᵀ]
n where Σ̂+ q̂ I − q̄ Ĥ

ᵀ =A : Ĥ , (24)

for some fourth-order instantaneous stiffness tensor A to be determined in practical cases. In general, this tensor
does not present any specific symmetry. The first equation of Eq. (24) follows from the property nᵀ

Σ̂n = 0 where n is
unitary.

Finally, let us introduce the second-order acoustic tensor Q such that [A : Ĥ ]n =−iκQû, i.e. which components are
given by Qi j = Ai p j q np nq . In general, this tensor is complex-valued and not necessarily symmetric. The incremental
wave equation rewrites as an eigenvalue problem of the form

ρ
ω2

κ2 û = [I −n ⊗n]Q[I −n ⊗n] û (25)

governing nontrivial solutions û 6= 0, where we have used Eq. (24) and the orthogonality condition û ·n = 0 [32]. The
above dispersion relationship links the wave number κ to the frequency ω. Assuming that an admissible polarisation
vector is known, the dynamic modulus ρω2/κ2 is then deduced from Eq. (25) by scalar multiplication with û. Note in
passing that frequency-deformation separability is not satisfied for general plane waves, i.e. ρω2/κ2 cannot necessarily
be written as the product of one function of ω and one function of F̄ . Parnell and De Pascalis [19] found that this
property was satisfied for elongated slender beams at long times.

Remark. If no pre-deformation is applied (i.e., if F̄ = I and T̄ = 0), we note that the incremental stresses satisfy
˜
Σ=

˜
T ,

see Eq. (16), and that the elastic stress T̄ e
d deduced from Eq. (7) with Ī1 = 3 vanishes too. Using Eqs. (19)-(20), the

expression in Eq. (23) reduces to

Σ̂=−q̂?I +2µ

(
1−

n∑
k=1

gk

1+ iωτk

)
ε̂ (26)

in the absence of pre-deformation, up to an appropriate redefinition of the dynamic pressure q̂ as q̂?. Here, we have
used the fact that the elastic response is consistent with linear elasticity in the infinitesimal strain limit. One observes
that a generalised Maxwell rheology is recovered, as expected.

2.5 Illustration

For illustration purposes, let us consider the propagation of transverse shear waves in an unbounded material un-
dergoing simple tension/compression in the propagation direction. The material is assumed to have incompressible
Mooney–Rivlin behaviour in the elastic range, i.e. the strain energy function reads

W =C1 (I1 −3)+C2 (I2 −3) (27)

where the invariants are defined in Eq. (3). For consistency with linear elasticity, the material parameters C1 = W1

and C2 = W2 are constants related to the shear modulus µ = 2(C1 +C2). The neo-Hookean strain energy function
is recovered when C2 is equal to zero. Viscoelastic behaviour with n = 1 relaxation mechanism is assumed, with
parameters τ= τ1 and g = g1 for sake of simplicity.

Physical parameters for soft rubber-like solids can be estimated from various literature sources, see summary in
Table 1. For the long-time elastic response, we use the material parameters for incompressible Mooney–Rivlin rubber
from Marckmann et al. [33] extracted from the data by Treloar, i.e. (1− g )C1 = 0.162 MPa and (1− g )C2 = 5.9 kPa.
Therefore, the relaxed shear modulus equals 0.336 MPa. Comparable results were obtained by Khajehsaeid et al. [34],
with the numerical values 0.142 and 0.011 MPa for the two long-time Mooney parameters.

The viscoelastic parameters g , τ are inferred from Ciambella et al. [4], where we have selected the first relaxation
mechanism for the Fung model identified through a relaxation test. Thus, the unrelaxed shear modulus equals µ =
0.473 MPa. In upcoming computations, the mass density ρ = 1.1×103 kg/m3 of soft rubber is assumed. Therefore, the
shear wave speed c =

√
µ/ρ takes the numerical value c ≈ 21 m/s with the values of Table 1.

Now, consider that the material is deformed according to uniaxial tension-compression along e3, i.e. the deforma-
tion gradient reads F̄ = diag

[
λ̄i

]
, with the axial stretch λ̄3 = λ̄ and lateral stretches λ̄1 = λ̄2 such that incompressibility
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Figure 2: Acoustoelasticity of transverse waves propagating in the transverse direction to tensile stretch. Evolution
of the coefficients involved in the expression (30) of the dynamic modulus µx in terms of the static stretch λ̄. The
horizontal dots mark the value of the shear modulus µ.

λ̄λ̄2
1 = 1 is enforced. The equilibrium equation (12) must be satisfied, where the stress T̄ follows from the elastic re-

sponse T̄ e = F̄ S̄eF̄ᵀ of Eq. (7) with the invariants given by Ī1 = λ̄2 +2/λ̄ and Ī2 = λ̄−2 +2λ̄. Thus, the equilibrium stress
is a diagonal tensor whose entries are the principal stresses, and the lateral tractions are equal. Imposing that the lat-
eral tractions T̄11 = T̄22 vanish leads to the expression of the Lagrange multiplier q̄ and of the axial equilibrium stress
T̄33.

Incremental wave solutions propagating in a direction n normal to the direction of elongation e3 are considered,
for instance n = e1. In agreement with the orthogonality condition, we assume that the wave is polarised along e3,
so that the displacement gradient tensor Ĥ = −iκ (û ⊗n) has nonzero components along e3 ⊗ e1 only. Since the pre-
deformation is homogeneous [17], the incremental wave equation (16) becomes ρω2û = iκT̂ n in harmonic form.
Following the same steps as in the above derivation, the harmonic amplitude of the incremental Cauchy stress (17) is
obtained:

T̂ =−q̂ I + (1− g )
(

ĤT̄ e
d + T̄ e

d Ĥ
ᵀ)+ (

1− g

1+ iωτ

)
F̄ Ŝe

DF̄
ᵀ

. (28)

Using Eqs. (19)-(20) and the fact that T̄ e
d is diagonal, multiplication by n then yields[
T̂ + q̂?I

]
n = [

A : Ĥ
]

n =−iκQû =−iκµx û (29)

up to a redefinition of the acoustic pressure q̂ , with the coefficients

µx = (1− g )[T̄ e
d ]11 +

(
1− g

1+ iωτ

)
µ̄v

x (30)

and

[T̄ e
d ]11 =

2

3

[(
3λ̄−1 − Ī1

)
C1 +

(
3Ī1λ̄

−1 −3λ̄−2 −2Ī2
)
C2

]
, µ̄v

x = 2

3

[
Ī1C1 +

(
2Ī2 −3λ̄

)
C2

]
. (31)

Here we have also used the expression of the left Cauchy–Green strain tensor B̄ = diag
[
λ̄2

i

]
, and the property 2ε̂n =

−iκû following from the orthogonality condition. Therefore, the instantaneous stiffness tensor A = 2µx I
s is propor-

tional to the fourth-order symmetric identity tensor, and the acoustic tensor Q = µx I is proportional to identity. Fi-
nally, the dispersion relationship ρω2/κ2 =µx for incremental displacements û polarised along e3 is obtained.

Figure 2 represents the evolution of the stiffness coefficients governing the two terms of Eq. (30) with respect to
the pre-stretch λ̄. If no pre-deformation is applied (λ̄= 1), then the stress component [T̄ e

d ]11 vanishes, and we recover
the same dynamic modulus ρω2/κ2 as deduced from Eq. (26). In the vicinity of the undeformed state, the coefficient
[T̄ e

d ]11 is decreasing with respect to λ̄, whereas µv
x has reached a local minimum (zero slope). Note in passing that

frequency-deformation separability is not satisfied in general, i.e. the dynamic modulus µx cannot be written as the
product of one function of ω and one function of λ̄.

Dispersion and dissipation properties can be deduced from the dispersion relationship ρω2/κ2 =µx , see Carcione
[28] for complements. Using the above expression of the dynamic modulus µx , one deduces the phase velocity

ω

Reκ
=±

√
2(1+D2)

1+
p

1+D2

√
|Reµx |
ρ

(32)

and dissipation factor

D =− Im(κ2)

Re(κ2)
= Imµx

Reµx
= D0

2ΩΩ0

Ω2 +Ω2
0

(33)

whereΩ=ωτ is a normalised frequency, and

D0 =
g

2Ω0

µ̄v
x

µ̄v
x + (1− g )[T̄ e

d ]11
, Ω2

0 = (1− g )
µ̄v

x + [T̄ e
d ]11

µ̄v
x + (1− g )[T̄ e

d ]11
(34)

7



(a)

10−1 100

15

20

25

λ̄

f (Hz)

P
h

as
e

ve
lo

ci
ty

(m
/s

)
(b)

10−1 100
0

0.1

0.2

λ̄

f (Hz)

D
is

si
p

at
io

n
fa

ct
o

r

Figure 3: Properties of dispersive plane waves. Evolution of the phase velocity (a) and of the dissipation factor (b)
in terms of the frequency f = ω/(2π) for the longitudinal stretches λ̄ in {0.6,0.8, . . . ,1.4}. The frequency axis has a
decimal logarithmic scale. Thick red lines mark the undeformed case λ̄= 1. The dashed line in (b) marks the locus of
maximum dissipation.

for any applied stretch λ̄. The frequency evolution of the medium’s phase velocity and dissipation factor for sev-
eral levels of pre-deformation is displayed in Figure 3. A first look at these curves shows that the phase velocity is
frequency-dependent (Fig. 3a), i.e. the material is dispersive, and that the dissipation factor has a bell-shaped curve
in terms of logarithmic frequencies (Fig. 3b). According to Eq. (33), the dissipation factor reaches its maximum value
D0 at the normalised frequencyΩ=Ω0.

The thick line in Fig. 3 marks the undeformed state, where the tensile equilibrium stretch λ̄ equals unity. In this
case, the high-frequency limit of the phase velocity is the shear wave speed c, and its low-frequency limit equals Ω0c
with Ω0 = √

1− g . These asymptotes are marked by horizontal dotted lines in Fig. 3a. The dissipation factor reaches
its maximum value D0 = g /(2Ω0) ≈ 0.17 at the normalised frequency Ω0. Given the numerical values deduced from
Table 1, the undeformed material is mostly attenuating about the frequencyΩ0/(2πτ) = 0.43 Hz (vertical line in Fig. 3),
i.e. in the low-frequency range.

Now, let us consider several levels of applied pre-deformation by varying λ̄. Figure 3a shows that the phase velocity
decreases monotonically with stretch. In the vicinity of the undeformed state, Eq. (33) tells us that the maximum
dissipation D0 increases with the pre-stretch λ̄, whereas Ω0 decreases with increasing pre-stretch. This evolution is
confirmed in Fig. 3b, where the bell-shaped curves flatten with decreasing stretch. Moreover, these curves are slightly
shifted towards decreasing frequency when the stretch is increased, as shows the dashed curve marking the locus of
maximum dissipation. In conclusion, the elongated material’s dissipation occurs at lower frequency and with more
significant effect than in the compressed material.1

3 Application to a pre-stressed phononic crystal

In this section, we consider the same configuration as Barnwell et al. [16]. As represented in Fig. 4, it consists of a two-
dimensional periodic structure with square unit cells (the structure is assumed invariant along the z-axis). Each unit
cell has an embedded annulus region made of a soft rubber-like material described in earlier sections, corresponding
to hollow cylinders in three-dimensional space. The cylinders are assumed to be made of a viscoelastic Mooney–
Rivlin material with n = 1 relaxation mechanism, which reference parameters are given in Table 1. The inner region
of the annuli is filled with an inviscid gas allowing to control the pressure inside the cylinders, while the outer region
consists of another solid material (host material). In the present study, we assume that the host material has the same
relaxation function as the cylinders, i.e. the same parameters g , τ whose reference values are shown in Table 1. All
unit cells are submitted to the same static pre-deformation, resulting from an applied inner pressure combined with
cylinder elongation along z. This elongation is chosen in such a way that the outer region is initially undeformed —
in other words, pre-deformation is restricted to the annulus region. In what follows, we first recall the equations
governing incremental wave propagation within a single unit cell before the full periodic structure is addressed.

3.1 Pre-deformed unit cell

Let us consider the cylindrical coordinate system of a cell (see Fig. 4), which deforms exclusively in the annulus region
r0 ≤ r̄ ≤ r1. In a standard fashion, we introduce the coordinates (r̄, θ̄, z̄) and (R,Θ, Z ) of a particle in the deformed
and undeformed states, respectively (see picture in Fig. 1). The deformation includes a radial component r̄ 7→ R(r̄ )

1The opposite tendencies are observed if the incremental waves propagate in the direction of elongation (not shown here). Indeed, if the material
is elongated in a given direction, then it is simultaneously compressed in the transverse directions due to the incompressibility property.
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Figure 4: Infinite periodic structure from Barnwell et al. [16], and its square unit cell. Only the inner radius of the
annulus region varies with pre-deformation.

and a vertical component Z = z̄/ζ where ζ is constant [16]. The corresponding deformation gradient tensor reads
F̄ = diag

[
λ̄i

]
for i ∈ {r,θ, z}, with the radial stretch λ̄r = 1/R ′(r̄ ), angular stretch λ̄θ = r̄ /R(r̄ ), and vertical stretch λ̄z = ζ.

The incompressibility constraint (2) for F̄ implies

R(r̄ )2 = ζr̄ 2 + (1−ζ)r 2
1 ,

r 2
1 −R(r0)2

r 2
1

< ζ< r 2
1

r 2
1 − r 2

0

, (35)

where we have used the fact that the outer annulus boundary r1 = R(r1) is invariant. In Eq. (35), the bounds for the
vertical stretch ζ follow from the requirement of (real) achievable positions for the inner boundary R(r0) > 0 with
r0 > 0. Thus, imposing the position R(r0) of the inner boundary yields the value of the vertical stretch, and vice versa.
The expression of the other stretches λ̄r , λ̄θ in terms of r̄ then follows from this boundary condition.

The equilibrium equation (12) involves the static stress T̄ with the elastic response T̄ e of Eq. (7). Here, it is more
convenient to rewrite the elastic stress as T̄ e = (∂W̄ /∂F̄ ) F̄ᵀ, where the strain energy W̄ is expressed in terms of the
r̄ -dependent stretches λ̄i defined above. Thus, the elastic response T̄ e = diag

[
λ̄i ∂W̄ /∂λ̄i

]
is a diagonal tensor, where

the partial derivatives of W̄ with respect to the stretches are radial functions. Finally, up to a redefinition of pressure,
the equilibrium equations in cylindrical coordinates tell us that the Lagrange multiplier depends on r̄ only, and so
does the radial stress component T̄r r as well. The latter is given by

T̄r r (r̄ ) =−p0 + (1− g )
∫ r̄

r0

1

%

(
λ̄θ(%)

∂W̄

∂λ̄θ
(%)− λ̄r (%)

∂W̄

∂λ̄r
(%)

)
d%

=−p0 + (1− g )

(
C1

ζ
+ζC2

)[
ln

(
R(r̄ )2/r̄ 2

R(r0)2/r 2
0

)
+ 1−ζ

ζ

(
r 2

1

r̄ 2 − r 2
1

r 2
0

)]
,

(36)

where the pressure T̄r r (r0) =−p0 is imposed at the inner surface of the annulus region [16]. For a given input pressure
p0, the vertical stretch ζ is chosen in such a way that the integral term of Eq. (36) equals p0 at the radius r̄ = r1.
Therefore, ζ is solution to a transcendental equation which can be solved using Newton’s method. This way, the radial
traction T̄r r vanishes at the outer boundary of the annulus region, which remains invariant under such a static pre-
deformation.

With this pre-deformation, we now consider time-harmonic incremental displacements
˜
u = û eiωt of the form û =

w(r,θ)ez , for which the incompressibility constraint is always satisfied. In cylindrical coordinates, the time-harmonic
displacement gradient tensor Ĥ has components w,r and w,θ/r along ez ⊗ er and ez ⊗ eθ , respectively. Incremental
waves are governed by Eq. (16), i.e. −ρω2û = divΣ̂, where the time-harmonic incremental stress Σ̂ is deduced from
Eq. (23), cf. previous paragraph for the description of the equilibrium state (quantities with overbar). In cylindrical
coordinates, the radial and angular components make the Lagrange multiplier vanish. The vertical component yields
the harmonic wave equation

−ρω2w = 1

r

∂

∂r

(
r Σ̂zr

)+ 1

r

∂

∂θ
Σ̂zθ , Σ̂zr =µr

∂w

∂r
, Σ̂zθ =

µθ

r

∂w

∂θ
(37)

with the coefficients
µp = (1− g )[T̄ e

d ]pp +
(
1− g

1+ iωτ

)
µ̄v

p , p = r,θ (38)

where

[T̄ e
d ]pp = 2

3

[(
3λ̄2

p − Ī1

)
C1 +

(
3Ī1λ̄

2
p −3λ̄4

p −2Ī2

)
C2

]
(39)
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and

µ̄v
r =

2

3

[
Ī1C1 + (2Ī2 −3λ̄−2

θ )C2
]

, µ̄v
θ =

2

3

[
Ī1C1 + (2Ī2 −3λ̄−2

r )C2
]

. (40)

One observes that these expressions have a very similar form to that in Sec. 2.5, which follows from the fact that the
static deformation gradient is diagonal. In the relaxed elastic limit ω → 0, the above expressions match Eq. (7) of
Barnwell et al. [16], where the above coefficients reduce to µp = 2(1− g )

(
C1λ̄

2
p +C2λ̄

−2
z

)
for p = r,θ. Note however

that the unrelaxed elastic limit ω→+∞ yields different expressions. This observation is consistent with the fact that
a high-frequency incremental perturbation couples both relaxed and unrelaxed elastic solid limits (in the static pre-
deformation and its dynamic perturbation, respectively).

3.2 Pre-deformed periodic structure

Similarly to Barnwell et al. [16], we rely on the plane-wave-expansion method to analyse the band gap structure
of the pre-deformed periodic material described in Fig. 4. We consider time-harmonic antiplane waves polarised
along z, corresponding to incremental displacements

˜
u = û eiωt of the form û = w(x, y)ez where ω is the angular

frequency. The motion is governed by the incremental wave equation −ρω2û = divΣ̂ with the incremental stress
tensor of Eq. (23), where pre-deformation is described by the quantities with overbars.

Due to the periodicity of the system, the static pre-deformation is periodic with period ` in both directions x, y .
Following Bloch’s theorem, we seek wave fields of the form [16]

w(x) = eiκ·x
(∑

G
W [G]eiG ·x

)
, (41)

where the Bloch wavevector κ and reciprocal lattice vectors G are orthogonal to the vertical z-axis. Reciprocal lattice
vectors span the integer combinations of the primitive vectors b j = 2π

` e j , i.e. we may write G = m j b j with integer
components (m1,m2) inZ2. Therefore, inside the parentheses, a `-periodic function in two dimensions is represented
by its Fourier series with coefficients W [G]. In fact, translation of x by any lattice vector R defined as an integer
combination of the primitive vectors ai = `ei keeps the bracketed function invariant. We note that the relationship
ai ·b j = 2πδi j between primitive vectors is satisfied.

Similarly to Barnwell et al. [16] we now transform the incremental wave equation (37) governing vertical dis-
placements to Cartesian coordinates using the change of variables (x, y) = r (cosθ, sinθ). Over each unit cell, Eq. (37)
rewrites as

−ρω2w = ∂

∂x
Σ̂zx +

∂

∂y
Σ̂z y , (42)

where [
Σ̂zx

Σ̂z y

]
= 1

x2 + y2

[
x2µr + y2µθ x y(µr −µθ)
x y(µr −µθ) y2µr +x2µθ

][
w,x

w,y

]
= A h (43)

and the vector h gathers the displacement gradient components w,x , w,y .
Next, the expressions of ρ and A are extended to the whole periodic structure by spatial periodisation, i.e. the

coefficients of the wave equation (42) are rewritten as Fourier series

ρ(x) =
∑
G

R[G]eiG ·x , A(x) =
∑
G

A [G]eiG ·x , (44)

which coefficients are given by

R[G] = 1

`2

∫
Cell

ρ(x)e−iG ·x dx , A [G] = 1

`2

∫
Cell

A(x)e−iG ·x dx . (45)

Similarly, the vector h has the Fourier coefficients H [G] = iW [G] (G +κ) deduced from the Bloch wave Ansatz (41).
Finally, substitution of the Fourier series representations (44) in Eq. (42) yields the algebraic problem(

K−ω2M
)

w = 0 (46)

with KG ′G = (G +κ)
ᵀ
A [G ′−G] (G ′+κ), MG ′G =R[G ′−G],

where the vector w = (W [G])ᵀ gathers the lattice Fourier coefficients of the vertical displacement w . Here, we have
used the convolution theorem of Fourier series, and the product rule ∇∇∇· (Ah) = hᵀ∇∇∇· A + A : ∇∇∇h with A = Aᵀ for the
Cartesian divergence operator in two space dimensions.

Up to the notations used in the present study, Eq. (46) matches exactly Eq. (23) of the study by Barnwell et al. [16].
However, for a fixed wavevectorκ, Eq. (46) can no longer be viewed as a generalised eigenvalue problem forω2. In fact,
according to the expression of the coefficients µr , µθ in Eq. (38), the matrix A with lattice Fourier coefficients A [G]
is now complex-valued and dependent on the angular frequency ω— and so does the matrix K as well. Nevertheless,
non-trivial solutions to Eq. (46) still express the singularity of the matrix K−ω2M, e.g. to be evaluated with respect to
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ω=ω(κ) at some fixed wavevector κ.2 For any wavevector κ= κn with complex wavenumber κ, the absolute phase
velocity of Bloch waves deduced from Eq. (46) equals Reω/Reκ, while the attenuation in space and time is given by
−Imκ and Imω, respectively.

In the elastic case (g = 0), the evolution of the dispersion curves with applied pre-deformation and selected ma-
terial parameters is well-described in literature [16, 20]. In the viscoelastic case (g 6= 0), performing the Bloch wave
analysis is more involved due to complex values and frequency-dependence in Eq. (46). To address these challenges,
several approaches are adopted in literature, including direct computational methods [24, 25] as well as dedicated
algorithms [37, 38]. In the next subsection, we introduce a perturbation method based on the small parameter g , that
does not involve very sophisticated algorithms — see technical details in Section 3.4. We then investigate separately
the influence of g and τ on wave dispersion at some applied stretch ζ≥ 1.

3.3 Perturbation theory

When solving the algebraic problem (46) with respect to ω by means of a given numerical method, it is often useful
to provide an initial guess for ω. To do so, let us introduce a perturbation method based on the small parameter g to
approximate the angular frequency. For this purpose, we introduce generalised eigenvectors r forming a basis of the
right null space of K−ω2M.

We seek solutions to Eq. (46) in the form of power series of g , i.e. we set ω'ω0 + gω1 and r ' r0 + g r1, where the
zeroth-order quantities ω0, r0 correspond to g = 0. Similar expansions for K and M are thus introduced, where the
Hermitian matrix M is found to be independent on g . As shown in the expression (38)-(43) of A, the matrices A and
K can be linearised with respect to g , leading to perturbations of the form A ' A 0 + gA 1 and K ' K0 + g K1, where
the zeroth-order matrices corresponding to the elastic limit g = 0 are Hermitian. The first-order matrix K1 has the
coefficients

K1
G ′G =κ1ᵀA 0[G ′−G] (G ′+κ0)+ (G +κ0)

ᵀ
A 1[G ′−G] (G ′+κ0)+ (G +κ0)

ᵀ
A 0[G ′−G]κ1 (47)

following from a power-series expansion of the wavevectorκ'κ0+gκ1, where the first-order matrix A 1 is dependent
on ω0. Injecting this Ansatz in the algebraic problem (46) leads to the conditions

order 0:
(
K0 − (ω0)2M

)
r0 = 0 ,

order 1:
(
K1 −2ω0ω1M

)
r0 + (

K0 − (ω0)2M
)

r1 = 0 ,
(48)

at zeroth order and first order of the small parameter g .
Now, we left-multiply the second line of Eq. (48) by the vector r0† where the dagger symbol denotes the transpose

conjugate. At the same time, we compute the transpose conjugate of the first line of Eq. (48), recalling that K0 and M
are Hermitian matrices. Thus, combining both identities leads to the following approximate expression of the angular
frequency

ω'ω0 + gω1 =ω0 + g

2ω0

r0†K1r0

r0†M r0
(49)

at first order in g . One observes that the increment of the angular frequency is linear with respect to the (presumably
small) perturbation g K1 of the matrix K. By construction, the truncation error |ω0 + gω1 −ω| introduced by the first-
order perturbation is necessarily of order O(g 2). Upon division by ω, the same rate of convergence is obtained for the
relative error |(ω0 + gω1)/ω−1|.

Illustration Let us go back to the example studied in Section 2.5 where the dispersion relationship takes the form
K = ρω2 with K = µxκ

2. Similarly, we are considering perturbed quantities in terms of the small parameter g , where
the elastic case corresponds to g = 0. Thus, we seek ω in the form of a power series in g , where we have assumed
κ ' κ0 + gκ1 and µx ' µ0

x + gµ1
x . According to Eq. (30), the zeroth-order term of the dynamic modulus µx equals

µ0
x = [T̄ e

d ]11+µ̄v
x , and the first-order termµ1

x is anω0-dependent complex number. We find the relationship K 0 = ρ(ω0)2

at order zero, and

ω'ω0 + g K 1

2ω0ρ
with K 1 = 2µ0

xκ
0κ1 + (κ0)2µ1

x (50)

at order one. Note the similarity with the case of the phononic crystal (49).
To evaluate the error introduced by the present first-order approximation, we consider an exact wavenumber κ

that was obtained by solving the dispersion relationship ρω2/κ2 =µx for a given real frequencyω. By setting κ0 = Reκ
and gκ1 = i Imκ, the perturbation (50) produces an approximation of the angular frequency ω, introducing a relative
error of order O(g 2). This property is illustrated in Figure 5a (black triangle), where an appropriate rate of decay in log-
log coordinates is found for all the applied stretches λ̄ at the frequency of maximum dissipation. Note that the relative

2Alternatively, one might seek values of κ=κ(ω) such that the matrix K−ω2M becomes singular for some fixed value of ω. Both approaches are
usually found to be equivalent (see [35, 36] for instance).
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Figure 5: Perturbation theory (50). (a) Measurement of the relative frequency error at the stretches λ̄ in {0.6,0.8, . . . ,1.4},
where the frequency f = Ω0/(2πτ) corresponds to maximum dissipation. (b) Dispersion errors for g = 0.29: exact
curve against first-order perturbation.

error does not exceed ≈ 2% with the value g = 0.29 of Table 1 (vertical dotted line) at the frequency of maximum
dissipation.

Fig. 5b displays the dispersion error introduced by the perturbation method for the value g = 0.29 of Table 1. Here,
we compare the dispersion curves of Fig. 3a with the same quantity obtained by perturbation (50). One observes that
the overall evolution is well-reproduced, and that the perturbation method performs best in the high-frequency range.
In the present configuration, phase velocities are slightly overestimated in compression and underestimated in elon-
gation at the frequency of maximum dissipation (about the vertical line in Fig. 3b). Computation of the corresponding
relative frequency errors shows that they do not exceed 2% over the frequency range of the figure.

3.4 Results and discussion

We present the results obtained for the phononic crystal in dimensionless form by setting

κ̌= `κ, ω̌= `ω

c0
, x̌ = x

`
, ρ̌(x̌) = ρ(x)

ρ0
, Čk (x̌) = Ck (x)

µ0
(k = 1,2), τ̌= c0τ

`
, (51)

where ` is the cell size, and ρ0, µ0 = 2(C10+C20), c0 =
√
µ0/ρ0 are mechanical properties of the host material deduced

from Table 1 (r̄ > r1). In the following, Ř0 = 0.3 and cylindrical inclusions are thought softer than the host so that
the imposed pre-deformation is achievable [16, 20]. To this end we simply assume a uniform softening by setting
C11/C10 = C21/C20 = ρ1/ρ0 = 0.1 for the cylinder material (r0 < r̄ < r1), while the relaxation function is the same in
both regions (parameters g , τ of Table 1). We neglect the added-mass effect caused by the presence of air in the
cylinder core by setting the mechanical parameters to zero in the corresponding region (r̄ < r0).

To avoid any instability that can occur to compressed hollow cylinders [39, 40] and which might lead to consequent
dramatic change of the periodic structure, the pre-deformation applied to the cylindrical annuli is of extensional type,
i.e. ζ > 1. Fig. 6 illustrates the effect of the pre-deformation applied to the periodic material by showing the radial
evolution of the incremental shear moduli in the cylinders at various stretches ζ in the elastic case (g = 0). Vertical
dotted lines mark the inner radius ř0 of the cylinders (ř0 = 0.3 at ζ = 1, ř0 ≈ 0.36 at ζ = 1.5 and ř0 ≈ 0.41 at ζ = 3
according to (35) whilst outer radius is fixed at ř1 = 0.45).

To investigate the effect of viscoelastic dissipation on the dispersion properties, we apply the perturbation method
described in Sec. 3.3, providing a ω̌(κ̌)-method for the approximate resolution of Eq. (46). Upon rescaling (51), we
consider a finite number (2Nmax + 1)2 of reciprocal lattice vectors G , G ′ where the integer Nmax > 0 represents the
‘maximum plane wave number’ [16]. This step amounts to a truncation of spatial Fourier series at order Nmax. Next,
the (2Nmax + 1)2 × (2Nmax + 1)2 matrices M, K of Eq. (46) are constructed. In practice, the integrals (45) defining A

and R are computed numerically using left Riemann sums with 40 Nmax points in each spatial direction — Riemann
sums are equivalent to the trapezoidal rule since the integrand is periodic. The sum is evaluated using Matlab’s Fast
Fourier Transform algorithm fft2. At order zero in g , the elastic case [16] is recovered, and the corresponding modal
frequencies are computed using Matlab’s eig function. Computations involved in the implementation of the pertur-
bation method (49) are of the same nature as in the elastic case, thus following similar steps.

Here, we used Nmax = 6 Fourier modes. We restricted the study to real-valued wavevectors such that Imκ̌ = 0 by
settingκ1 = 0 for the viscoelastic perturbations, see Eq. (47). In a standard fashion, normalised wavevectors κ̌ scan the
edges of the irreducible Brillouin zone3, i.e. κ̌ varies linearly along the path M:(π,π) → Γ:(0,0) → X:(π,0) → M:(π,π).

3The present coordinates of M, Γ, X are used in Refs. [16, 20]. Similarly to Deymier [21] p. 97, the basis vectors for κ̌ in Barnwell et al. [16] should
be understood ‘in units of 2π’, that is i = (2π,0), j = (0,2π). Note the typo in Fig. 2 of De Pascalis et al. [20].
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Figure 6: Static deformation. Evolution of the nondimensional incremental stiffness at equilibrium in pre-stressed
Mooney–Rivlin cylinders with softness ratio 0.1.

Here, we have set 20 points along each edge, and results are obtained in a reasonable computational time.
Fig. 7 shows the band diagram for the real and imaginary part of ω̌, where each curve corresponds to a given

propagation mode — here the first two modes are shown. Those curves refer to the pre-stressed case ζ = 1.5 while g
varies as shown in the legend. The blank space between consecutive real frequencies corresponds to the first band
gap (Fig. 7a). Remembering that g = 0 represents the elastic case (black solid line), we can observe that the displayed
modes shift towards lower frequencies as g is increased (with a roughly linear dependence). Since the imaginary
part of ω̌ is non-negative, a dissipative dynamic behaviour is found (Fig. 7b). The figure shows that the temporal
attenuation increases with g .

Fig. 8 is similar to Fig. 7, but now τ̌ is varied while the other parameters are kept fixed (therefore g = 0.29 and
ζ = 1.5). We observe that Re ω̌ is shifted nonlinearly towards higher frequencies as τ̌ is increased. The limit τ̌→+∞
corresponds to an elastic response, for which Im ω̌→ 0. However, it is worth noting that this limit differs from the
limit g → 0, as shown in Eq. (38) and related discussions. The temporal attenuation in Fig. 8b is evolving in a non-
monotonous way with respect to τ̌, a phenomenon that will be discussed later on. The same band diagrams were also
produced at ζ= 1 (no pre-stress) and ζ= 3, leading to similar effects as in Figs. 7-8 upon varying g and τ̌.

The estimation of the band gap width is of particular interest for wave filtering once loss is taken into account
(g > 0). This is measured versus both g and τ̌ when all the other parameters are kept constant as above. The results
are summarized in Fig. 9. As shown in Fig. 9a, the band gap width increases linearly with the parameter g in all three
cases (ζ = 1, ζ = 1.5 and ζ = 3 as displayed in a common legend). A non-monotonous evolution is instead observed
for the band gap width with respect to τ̌. This nonlinear evolution is all the more marked as the level of applied
pre-deformation is large.

For an unstressed homogeneous medium, the maximum dissipation D = g /(2
√

1− g ) is obtained at the scaled
frequency ω̌D = √

1− g /τ̌, see Section 2.4. Clearly, as shown in Fig. 10a, ω̌D remains within the band gap bounds
ω̌L < ω̌U when g is varied (we refer to ω̌L as the maximum frequency attained along the first mode, while ω̌U refers
to the minimum frequency attained along the second mode). However, at the same time, the level of dissipation D is
increasing with increasing values of g . This observation explains qualitatively why the band gap width is increasing
with g (Fig. 9a), leading to the formulation of the following empirical conjecture:

Conjecture. With the present configuration, the more dissipation occurs in a band gap, the larger its width.

Now, let us look at the non-monotonous evolution of the attenuation and of the band gap width with respect
to τ̌ (Figs. 8b-9b). As shown in Fig. 10b, maximum dissipation occurs approximately within the range 0.1 ≤ τ̌ ≤ 0.3.
Coherently, Fig. 8b indicates that attenuation is very large in this range. However, Fig. 9b shows that the band gaps are
largest around τ̌ ≈ 0.5. Therefore maximum dissipation in the homogeneous solid does not exactly entail the largest
band gaps in the phononic crystal. Possibly this mismatch is due to the heterogeneity of the periodic structure.

In the end, it seems that the above empirical conjecture gives only a qualitative explanation for the non-monotonous
evolution of the band gap width. In fact, if τ̌ is very small, then ω̌D is very large and the material is nearly elastic: al-
most no dissipation takes place in the frequency range ω̌L < ω̌ < ω̌U of the first few propagation modes. In contrast,
if τ̌ is very large, then ω̌D is very small; again, the material is nearly elastic in this frequency range of interest (with
a different elastic limit than for τ̌→ 0). Finally, viscoelastic dissipation really influences the band gap width when τ̌

is neither too large nor too small. The above observations are reminiscent of Zhao and Wei [37] who found that “the
viscoelastic constants of host material affect not only the location but also the width of band gaps.”

For the aim of band gap tuning, the influence of elastic and geometric parameters was already discussed in
Ref. [20]. Above observations highlight the influence of viscoelastic parameters when one single relaxation mecha-
nism is considered. On the one hand, we note that the band gap width can be increased by increasing g . On the
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Figure 7: Dispersion curves in the phononic crystal for several values of g while τ̌= 0.31 is kept constant. The stretch
ζ= 1.5 is applied to the cylinders, whose stiffness equals 10% of the host material’s stiffness given in Table 1. (a) Real
and (b) imaginary frequency.
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Figure 8: Dispersion curves in the phononic crystal for several values of τ̌ while g = 0.29 is kept constant. Same
configuration as Fig. 7.
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Figure 9: Band gap width referring to Figs. 7a-8a (black solid line) in terms of g or τ̌ with other parameters kept
constant. Other curves display the band gap width obtained for distinct stretching levels.

other hand, the band gap width can be increased by increasing τ̌' 0 up to a local maximum. If τ̌→+∞ is increased
further, then the band gap width decreases slowly towards a horizontal asymptote, i.e. the band gap width becomes
less sensitive to variations of τ̌.

4 Conclusion

Phononic crystals are manufactured materials designed for the purpose of controlling sound and vibration based on
their tunable geometric and material properties. In the last two decades, numerous research works have focussed on
these materials and their applications in engineering, from electronic devices such as diodes and transistors to noise
control devices [41]. Despite increasing interest, relevant literature on lossy materials subject to large deformations is
rather scarce, to the authors’ present knowledge.

In summary, the present study addresses (i) the computation of incremental stresses in incompressible Fung–
Simo solids; (ii) the analysis of dispersion for infinitesimal waves superimposed on a large static deformation; (iii) the
Bloch-wave analysis for a lossy phononic crystal made of pre-stressed cylinders whose istantaneous elastic response
is described by a Mooney–Rivlin potential. Key elements are the use of stress-like memory variables governed by linear
evolution equations, as well as the implementation of a viscoelastic perturbation method.

Given that the present study is quasi-analytical, its full range of application remains quite restricted (small g ,
uniform dissipation, low frequency, propagative modes, one relaxation mechanism, etc.). Since computational ap-
proaches are more versatile, they seem to be a relevant tool for future works in this direction. Global wave attenuation
properties are described in Krushynska et al. [25] where the authors report “an increase [of the wave attenuation per-
formance] outside the band gap in the same way as in homogeneous materials” — a similar observation is reported in
Wang et al. [24] (not shown here).

Application to other rheologies and configurations could be considered. Further developments could also encom-
pass the study of pre-deformed composites [15], including periodic media based on magneto-active materials [42]. In
this context, high-order dynamic homogenisation theories could provide effective models for pre-stressed viscoelas-
tic structures valid at moderate frequencies [43]. Another potential direction of research is the study of manufactured
phononic crystals with an irregular lattice [44].
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A Thermodynamics

In this section, we present the non-equilibrium thermodynamic analysis of the present incompressible Fung–Simo
theory by following the steps in Berjamin et al. [26] (a compressible version of the Simo model is presented in the
corresponding seminal works [7]). We introduce the thermodynamic potential

Ψ=−q(J −1)+W (C̃ )− 1
2

n∑
k=1

(
Sv

k : C −Φk (Sv
k )

)
, (52)

which is Helmholtz’ free energy per unit of reference volume. The deformation tensor with overtilde is the volume-
preserving strain tensor C̃ = J−2/3C . The functions Φk are presumably convex potentials to be determined. With
the present definitions, the constitutive law (9) reads S = 2∂Ψ/∂C under the incompressibility constraint (2). If the
pressure p of Eq. (8) was used instead of its redefinition q , then the tensor C in Eq. (52) would have to be substituted
by its volume-preserving version for consistency. Since the derivation is very similar with either expression, we restrict
the presentation to the present one.

Assuming that the memory variables Sv
k governed by Eq. (11) are internal variables of state, the dissipation per unit

volume is given by the corresponding formulas [26]

D =−
n∑

k=1

∂Ψ

∂Sv
k

: Ṡv
k =

n∑
k=1

1

2τk

(
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∂Φk (Sv
k )

∂Sv
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)
:

(
2gk
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∂C
−Sv

k

)
. (53)

We introduce the Legendre transform 2Wk = Sv
k : C v

k −Φk of the potentialΦk such that the relationships C v
k = ∂Φk /∂Sv

k
and Sv

k = 2∂Wk /∂C v
k are satisfied. As shown in Ref. [26], setting Wk (·) = gkW (̃·) then yields

D =
n∑

k=1

gk

τk

(
C −C v

k

)
:

(
∂W (C̃ )

∂C
−
∂W (C̃ v
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∂C v
k

)
. (54)

The convexity inequality for W entails the thermodynamic consistency of the Fung–Simo model.
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