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A B S T R A C T   

Satellite-based monitoring of crop phenology is commonly built on the analysis of Vegetation Index (VI) time 
series by extracting phenological metrics. The relatively fine detection of the various timings in crops growth 
during their development cycle depends on the density and regularity of valid observations. Medium spatial 
resolution (MSR) daily observations provide consistent cloud-free n-day composite time series, suitable for 
phenological applications, but do not offer an adequate spatial resolution. MSR pixels are generally mixed pixels 
or “mixels”, composed of several land cover classes, which complicate crop-specific monitoring from space. To 
address the MSR mixel problem, we implemented a spatial disaggregation (SD) approach that estimates a crop- 
specific VI based on the crop fraction in a mixel provided by a land use map. First, SD was applied on synthetic 
MSR data (i.e. Sentinel-2 data aggregated at 300 m) in order to test the method in an ideal case. After validation, 
the method was applied to PROBA-V data, using 300 m and 10-day composites over a large area around Paris, for 
four main crops (i.e. winter cereals, spring barley, oilseed rape and maize) in 2016–2017. The evaluation of SD 
was done by comparing disaggregated data with reference data (i.e. Sentinel-2 10 m). Indeed, two main results 
were observed, i) SD was able to reconstruct the crop-specific VI time series of all crops and ii) PROBA-V data 
increased the number of crop-specific VI valid observations at certain stages of the crop’s growth period 
compared to Sentinel-2 data, this with a consistent and regular revisit throughout the growth cycle. In conclu
sion, SD can be used to improve the exploitation of MSR data in seasonal crop monitoring, especially during the 
transition periods when the VI of crops are likely to change quickly. This paves the way for monitoring crop 
phenology over fragmented landscapes, from sensors such as MODIS or SPOT-VEGETATION, even for years 
before Sentinel-2 launch.   

1. Introduction 

Crop monitoring has been at the core of the motivations for devel
oping Earth Observation satellites like Landsat since the 1970′s. Remote 
sensing data have frequently been used for many applications in the 
agricultural sector, ranging from near-real time crop monitoring to yield 
forecasting for examples, as detailed by Atzberger (2013) and Weiss 
et al. (2020). Reasons for monitoring crops by remote sensing are 
numerous. First, remote sensing brings essential knowledge for food 
production evaluation such as main crop types, cultivated areas or yields 
(e.g. Donohue et al., 2018; Lobell, 2013; Lobell et al., 2015; Wu et al., 
2014). Second, real time monitoring can support crop management and 
agricultural practices (e.g. Dodin et al., 2021; Mulla, 2013). Third, it 

provides indicators for agro-ecosystems assessment on hydrology (e.g. 
Baghdadi et al., 2008; Leenhardt et al., 2012), biodiversity (e.g. Petrou 
et al., 2015), soil organic carbon (e.g. Vaudour et al., 2021), pollution by 
pesticides (e.g. Ward et al., 2000), etc. 

Since crop development is highly dynamic during its vegetation 
cycle, a large part of remote sensing agricultural applications rely on the 
ability to frequently acquire images. This is necessary to monitor 
radiometric temporal changes linked to crop growth, which allows main 
crop types identification (Foerster et al., 2012; Heupel et al., 2018; 
Siachalou et al., 2015; Vaudour et al., 2015; Waldner et al., 2016) or 
agricultural production assessment (Becker-Reshef et al., 2010; Wu 
et al., 2014). Monitoring growth development stages, mostly known as 
crop phenology, is one of most important agricultural applications of 
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remote sensing (Atzberger, 2013). 
The monitoring of vegetation phenology largely relies on medium 

spatial resolution (MSR), i.e. hectometric to kilometric, satellite images 
(Becker-Reshef et al., 2010; Delbart et al., 2015, 2006, 2005; Sakamoto 
et al., 2006, 2005). This is because MSR sensors acquire data across a 
large swath allowing an almost complete coverage every day, at least 
outside the tropics. Indeed, transitional vegetation phases can be 
observed with a high revisit level depending on the satellite temporal 
resolution and cloud cover status. Daily measurements also increase the 
probability of cloud-free composite images, which reinforces the ability 
to monitor phenology with such sensors. However, MSR satellite series 
are best suited to large scale applications (wide regions, and/or national 
to semi-continental scales) for relatively homogeneous landscapes 
characterized by large areas, such as open fields (Kastens et al., 2017). 
For agricultural landscapes characterized by smaller fields, MSR pixels 
are generally mixed pixels or “mixels”. This makes crop-specific moni
toring more complex, as in the fragmented landscapes of north-western 
France where field size is around 6.5 ha in average. 

In this context, phenological indicators detection in such areas re
quires observations with high spatial resolution (HSR), which limits the 
possible contribution of adjacent fields in a given pixel. In addition, the 
identification of phenological transitional stages needs a high revisit 
frequency, and images should be taken every 10 days at least, which 
makes recent satellite series such as Sentinel-2 well suited (Defourny 
et al., 2019; Khaliq et al., 2018; Solano-Correa et al., 2018). 

Yet, Sentinel-2 data have several limitations, particularly for retro
spective phenology studies. Since 2015 only, data are available with a 
10-day temporal resolution, then with a 5-day one from 2017 onwards. 
In temperate areas, temporal frequency of usable observations might be 
lower because of cloud cover, notably in autumn when winter crops start 
growing. 

To address the MSR mixel problem, many solutions have been pro
posed based on spatial downscaling models aiming at extracting fine 
resolution information from coarse resolution products, with the help of 
fine resolution auxiliary data. In the case of vegetation phenology, land 
cover maps at high resolution are generally used. Spatial downscaling, 
also called disaggregation, fusion or unmixing methods, can rely on very 
different techniques from purely statistical to physically-based ones. The 
overall purpose is to solve the linear or nonlinear spectral unmixing 
problem assuming that the mixel variable is the combination of the 
endmember signals weighted by their respective fractions. Such ap
proaches have been developed to unmix spectral reflectances of various 
sensors. For example, Gao et al. (2006) proposed the STARFM model to 
predict daily reflectances at Landsat spatial resolution from a set of 
Landsat and MODIS data. The method has been extended and tested with 
success to map crop phenology and land cover at 30 m resolution using 
vegetation index (NDVI) time series (Gao et al., 2017). Inspired by 
STARFM, Gevaert and García-Haro (2015) and Zhao et al. (2018) pro
posed the STRUM and RASTFM methods respectively to unmix spectral 
reflectances. Compared to STARFM, these methods showed better per
formances when i) the availability of high spatial resolution imagery is 
limited and ii) complex spatio-temporal changes, such as urban expan
sion, are present. The same approaches have been applied to the 
downscaling of FAPAR (fraction of absorbed photosynthetically active 
radiation) satellite products. For example, Li et al. (2017) fused Landsat 
and PROBA-V (300 m) to estimate FAPAR at 30 m via a second-degree 
empirical polynomial function and were able to increase the spatio- 
temporal resolution and fill cloud gaps in the Landsat-like FAPAR time 
series. The unmixing problem has also been addressed through deter
ministic approaches such as the one proposed by Lobell and Asner 
(2004), who assessed the temporal reflectances of the endmembers 
provided by pure MODIS pixels to map cropland fractions in their 
mixels. The method demonstrated good performances at regional scale 
but could display high uncertainties at a finer scale. On their side, 
Haertel and Shimabukuro (2005) proposed a “double step inversion”. 
First, endmembers’ fractions were estimated in Landsat mixels from 

their reflectances provided by pure pixels. Then, the fractions were 
aggregated at MODIS resolution and their endmembers reflectances 
were estimated. They obtained satisfactory results on the endmembers 
reflectances in all the spectral bands used. Busetto et al. (2008) esti
mated the endmembers signals to generate NDVI time series at the 
MODIS sub-pixel level using a weighted system of equations based 
mainly on the spectral dissimilarity of the mixels with the target pixel 
provided by Landsat. It showed greater accuracy as the endmember 
fraction increased in the mixel. On the other hand, statistical approaches 
have also been explored. For example, Faivre and Fischer (1997) 
assumed that crop reflectances within a land cover class were Gaussian 
and could be estimated by a Bayesian inversion approach. The method 
was applied successfully to predict crop reflectances at 20 m spatial 
resolution from degraded SPOT data at 400 m. 

Here, a SD method was implemented for disaggregating the NDVI 
(Normalized Difference Vegetation Index) of agricultural mixels in order 
to reconstruct crop-specific NDVI temporal profiles from MSR time se
ries, using the crop fraction provided by a land use map as auxiliary 
data. Similar to Asner et al. (1997), Atzberger et al. (2014), etc. studies, 
this approach was based on a classical linear mixing model. 

2. Study area, materials and methods 

2.1. Study area 

The study area is a cropland located in the northern half of the Ile-de- 
France administrative region, around Paris (48◦65′ − 49◦25′ N; 1◦65′ −

3◦10′ E) and comprises a total area of 7 039 km2. The boundaries of the 
study area were defined by the Sentinel-2 T31UDQ tile (Fig. 1). Crop 
rotations mostly comprise winter oilseed rape, winter wheat, spring 
barley and sometimes maize. Crop production conventionally starts 
from deep ploughing in November-December, then chisel in March, 
followed by seedbed preparation for spring cereals. Winter crops are 
typically sown in October-November and spring crops in March-April. 

2.2. Materials: Satellite imagery and land use map 

All the available scenes from Sentinel-2 and PROBA-V sensors be
tween September 2016 and October 2017 were used. Sentinel-2 (A and 
B) images were acquired at 10 m spatial resolution with a five days 
revisit interval. The level 2A images that provide surface reflectances 
with atmospheric corrections were downloaded from the Muscate plat
form of the French land data center (CNES-THEIA LAND, n.d). NDVI 
time series were computed and included 54 scenes. Synthetic MSR data 
were built by the averaging resampling method to aggregate Sentinel-2 
NDVI images at a 300 m spatial resolution. 

PROBA-V images were acquired at 300 m spatial resolution with a 
daily revisit. In this study, the S10 10-day composite NDVI product, 
based on the Maximum Value Composite method as proposed by Holben 
(1986), was used. The products were obtained from the Vito Remote 
Sensing data center (VITO, 2018). NDVI time series included 42 scenes. 
All images from the two sensors were masked from clouds and shadows. 

The land use map was obtained from the Land Parcel Identification 
System (LPIS). Since 2015 in France, LPIS has provided an annual map 
of crop types reported at the field level. The database was downloaded 
from the Géoservices platform of the Institut national de l’information 
géographique et forestière (IGN, 2021). The four following thematic crop 
classes were considered: winter cereals (grouping winter wheat and 
winter barley), winter oilseed rape, maize and spring barley (Table 1). In 
addition, a fifth class named “others” was created to refer to the 
remaining land cover types of the agricultural landscape, such as other 
crop types, rural ways, herbaceous or non-herbaceous inter-parcel 
boundaries, hedges, small urbanized areas, groves, etc. 
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2.3. Methods 

The SD algorithm was applied on synthetic MSR data knowing crop 
fractions within mixels through the LPIS. Sentinel-2 with 10 m spatial 
resolution was used to evaluate the results. The SD method was further 
applied on real MSR PROBA-V data (Fig. 2). 

2.3.1. Mathematical principles 
The SD method was based on the linear mixing model, which as

sumes that the signal value of a mixel j is the weighted average of the 
contribution of each land use i fraction present within that mixel j, and 
that the signal is stationary within a land use class as detailed by Settle 
and Drake (1993). This approach was applied to the NDVI, with the 
contribution of each crop type i to the NDVIj value weighted by its 
fractional coverage, which is mathematically expressed as follows: 

NDVIj(t) =
∑n

i=1
fci,j × NDVIi(t)+ εj(t) (1)  

where NDVIj(t) is the NDVI value of the mixel j at time t, fci,j is the areal 
fraction of crop i in mixel j, NDVIi(t) is the NDVI value of crop i at time t, 

n is the number of crops within mixel j, and εj(t) is the error in mixel j at 
time t. 

Oleson et al. (1995) proposed to build a system of linear equations, 
replicating Eq. (1), from all pixels k in a neighborhood. Therefore, the 
NDVIi(t) estimate can be given by solving a system of M linear equations 
using pseudo-inversion (since generally M > n) as follows: 

NDVIi(t)(n×1) =
[
fct

(M×n)fc(M×n)
]− 1fct

(M×n)NDVIj(t)(M×1) (2)  

where fc(M×n) is the matrix of fractions with M number of rows (corre
sponding to the number of mixels considered for the estimation) and n 
number of columns (corresponding to the number of analyzed crop 
types). 

2.3.2. Spatial disaggregation method 
Input data comprised a generic MSR satellite image obtained at a 

given time t 
(
MSRimaget

)
, and yearly images of fractional cover per 

thematic crop class 
(
fci

)
matched at the same spatial resolution. For each 

mixel j of the MSRimaget, both NDVIj value and areal fraction values of 

its sub-pixels 
(

fci,j

)
were known. This allowed to build the M− system 

from which the NDVI value of each class i was estimated (Fig. 3). 

2.3.2.1. Fractional cover image. The fractional cover image (fci,j) rep
resented the fraction of thematic crop class i within each mixel j of the 
MSR image. The areal fractions of the classes present within mixels were 
obtained by intersecting a grid at MSR resolution with the land use map 
of thematic crop classes. Based on intersected pixels, MSR image target 
mixels containing one or more classes of interest (Table 1) to be pro
cessed were identified. The sum of all classes i fractions within a mixel j 

must be equal to 1
(∑n

i=1fci,j = 1
)

. 

Fig. 1. Location of the study area within the Ile-de-France administrative region. The red box delimitates the sub-area of interest presented in Fig. 4. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Area covered by the four main crops under study.  

Main crop Total area 
(ha) 

Average field area 
(ha) 

% of cultivated 
land 

Winter cereals 106 000  7.3  48.3 
Winter oilseed 

rape 
28 926  7.5  13.1 

Maize 17 782  5.0  8.1 
Spring barley 8 790  5.4  4.0  
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2.3.2.2. Class and mixels selection. All neighboring mixels k that built a 
given M-system were composed of the same thematic crop classes i as the 
central target mixel j. The “matched” composition between target mixel j 
and a mixel k was one of all possible combinations of classes i present in 
the target mixel. Indeed, if mixel j was composed of three classes (a, b, 
c), a selected neighbor pixel had the same or a lower number of classes 
than the mixel j (e.g. a, b; a, c; b, c; a, b, c or pure pixel). In addition, 
mixels k that did not meet class i minimum fraction criteria (i.e. 0.01) 
were excluded from M-system. Consequently, a new subset of mixels k 
called m-system was obtained, which was used to estimate the NDVIi of a 
target mixel j. 

2.3.2.3. SD application at neighborhood level. The crop-specific NDVIi 
value of a target mixel j was estimated from neighboring mixels k in 
order to preserve the spatial variability of the classes i across the study 
area as proposed by Zhukov et al. (1999). Therefore, the algorithm 
considered that NDVI value of class i at time t in mixel j may be different 
from that of mixel k belonging or not to the same close neighborhood 
(
NDVIi,j ∕= NDVIi,k

)
. Differences in NDVI values may stem either from 

pedoclimatic/environmental variability, or from management practices 
(e.g. plant material, fertilization, cultural operations, irrigation, 
amendment practices, etc.). In order to better reflect the considered 
pixel, the M-system was built using a sliding window of size 3 × 3, 
restricting the disaggregation process to its closest neighborhood. 

2.3.3. Evaluation: Comparing disaggregated data with reference data 
SD performance was evaluated by comparing NDVI temporal profile 

with the reference data. Comparison was made for each disaggregated 
mixel j for each crop type i on a pixel-by-pixel basis. Reference data were 
the average NDVI of class i in a mixel j provided by pure Sentinel-2 pixels 
with full 10 m spatial resolution. Performance indicators used were 
correlation coefficients (R, Eq. (3)) and root mean square differences 
(RMSD, Eq. (4)). Sentinel-2 and PROBA-V comparison was made be
tween closest acquisition dates (i.e. ± 5 days). 

R =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ (3)  

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(xi − yi)

2

√

(4)  

where n is the number of dates, x is the reference NDVI value of crop 
type i of mixel j, and y is the disaggregated NDVI value of crop type i of 
mixel j. 

3. Results 

Results are presented in three steps: i) description of the dis
aggregated crop-specific images; ii) analysis of the level of agreement of 

Fig. 2. Methods workflow. The solid box represents the development section of the SD algorithm on synthetic MSR data. The dotted box represents the application 
section of the SD algorithm on real MSR PROBA-V data. Shaded boxes figure input data. The SD algorithm (bottom right box) is detailed on Fig. 3. 

Fig. 3. SD algorithm framework. Shaded and dotted boxes are detailed in the sections below.  
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the temporal NDVI profile between disaggregated and reference data 
and iii) average temporal profiles of all disaggregated mixels. 

3.1. Disaggregated crop-specific image 

SD main results were the disaggregated crop-specific images. Fig. 4 
shows a sub-region of such images for winter cereals and maize at two 
dates (26th May and 29th August 2017). Overall, output maps suggested 
the ability of the SD method to reconstruct spatio-temporal growth dy
namics for a given crop. The NDVI temporal behaviour reflected sea
sonal weather variations reproducing the large differences that can be 
observed from spring to summer periods (Fig. 4). May image shows the 
peak of vegetative activity in the winter cereals cycle while the August 
image corresponds to post-harvest. Referring to maize, it was sown in 
April-May and harvested in October. The maize fields appear bare on the 
26th May image while the 29th August image shows a peak of vegetative 
activity. 

3.2. Disaggregated crop-specific time series vs reference data 

On a mixel j level (Fig. 5), SD allowed retrieving the different sea
sonality of winter cereals and maize. SD reproduced the large differences 
in NDVI observed by Sentinel-2 during the autumn and spring periods. It 
shall be specified that, because its composition was not homogeneous 
with that of the other pixels in the 3x3 pixels neighborhood, the mixel k 
at the bottom right containing winter oilseed rape was not considered in 
the estimation. Disaggregated NDVI profiles of the central mixel j in 
Fig. 5 were obtained from the m-system relying on the 7 neighboring 
pixels and the central mixel j itself. 

Overall, considering both RMSD and correlation maps of perfor
mance, a high level of agreement was obtained between the dis
aggregated time series and reference data for all crops and for the entire 
study area (Fig. 6). 

3.3. Average temporal NDVI profiles of all disaggregated mixels 

The average NDVI profile, over the entire study area, of all dis
aggregated mixels for a given crop made it possible to summarize results 
with respect to the temporal behaviour. Fig. 7 demonstrates the 

capability of the SD algorithm to reproduce the temporal variations 
captured by Sentinel-2 with 10 m spatial resolution. These temporal 
variations, depending on the crop types, designate the different 
phenological stages that can be retrieved by remote sensing (i.e. SOS, 
POS and EOS). 

The start of the growing season of winter cereals was detectable from 
a few weeks after the emergence of the plants (Fig. 7a). NDVI values 
began to rise in December; then, the NDVI peak occurred between May 
and June during stages with maximum leaf biomass and chlorophyll 
activity. The end of the cycle was marked by the start of the senescence 
in mid-June. For spring crops, a consistent change in NDVI was visible in 
April-May for spring barley and May-June for maize (Fig. 7d and c). 
Spring barley was harvested at the same time as winter crops in late 
July, while maize was harvested in late October. The winter oilseed rape 
began its cycle in September and was harvested at the end of July. Its 
flowering took place between April and May. Such a phenological event 
could be linked to the observed decrease of about ≈ 20% in NDVI 
amplitude during this period (Fig. 7b). 

3.4. Application of SD algorithm on PROBA-V data 

Similarly to the outputs from the synthetic MSR data, SD applied on 
PROBA-V with a 300 m spatial resolution was able to correctly repro
duce the temporal variations of NDVI for all crops. Temporal behaviours 
of disaggregated mixels strongly matched the reference data (Fig. 8). 
One striking improvement from SD over the Sentinel-2 data was the 
regularity of the observations and their densification over periods dur
ing which no cloud-free Sentinel-2 data were available. For example, 
there was no cloudless Sentinel-2 data available in October and 
November 2016, while SD allowed monitoring the initial growth of 
winter oilseed rape during this specific period (Fig. 8). Figs. 4, 5 and 6 
were also reproduced for the PROBA-V data and provided in the Sup
plementary data section (Supplementary Figs. 1, 2 and 3). 

The NDVI value detected in the spring crop sowing period was higher 
than expected (i.e. > 0.35), and lower than the reference data in sum
mer, mainly for maize. This was not observed in the results obtained 
from the synthetic MSR data. These discrepancies come from the input 
PROBA-V data and not from the SD method itself, as it was also observed 
in the PROBA-V NDVI time series for the existing pure pixels of the same 

Fig. 4. Disaggregated crop-specific images from synthetic MSR data over a sub-area of interest (shown in Fig. 1). Each column represents: A) Mixel signal, B) Winter 
cereals disaggregated signal, C) Winter cereals reference signal, D) Maize disaggregated signal and E) Maize reference signal. The top row illustrates a date in late 
spring (26th May 2017), while the bottom row is for late summer. (29th August 2017). The brown to green color palette represents NDVI values from 0 to 1. Gray 
color corresponds to non-target mixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

H. Rivas et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102569

6

sensor (Fig. 8). What was revealed here was therefore an inter-sensor 
divergence that could be due to the Point Spread Function (PSF) of 
the optical PROBA-V system. Each projected 300 m pixel does not 
perfectly coincide with the resolution cell, and moreover each resolution 
cell can be partly affected by its neighbors as the PSF is not a purely 
rectangle function. In other words, each pixel value can be influenced by 
its neighbors, that may include other crops but also other permanently 

vegetated areas (e.g. small tree groups, hedges) that increase the NDVI 
in winter, or other artificial areas (e.g. buildings, ways) that decrease it 
in summer. This effect was not considered in this SD method that was 
based on the image grid geometry. 

Altogether the results demonstrated the robustness of the algorithm, 
even though the relevance of reconstructing the phenological cycle of a 
given crop was constrained by the quality of the input data. Finally, we 

Fig. 5. Comparison between the temporal profile of a disaggregated mixel from synthetic MSR data and the reference profile. The disaggregated mixel is composed of 
50% maize, 39% winter cereals and 11% others. A) NDVI temporal profile of the mixel. B) Disaggregated (blue) and reference (red) NDVI temporal profile for Winter 
cereals. C) Disaggregated (blue) and reference (red) NDVI temporal profile for Maize. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. RMSD (A) and correlation (B) maps between the disaggregated crop-specific NDVI time series from synthetic MSR data and the reference data, for the four 
main crops (top: Winter cereals, Winter oilseed rape, bottom: Maize, Spring barley). 
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observed that the method, when it was applied to real MSR data, was 
able to reconstruct the NDVI curve for the most two dominant crops of 
the area, winter cereals and winter oilseed rape. It provided a reasonable 
approximation for maize and spring barley that allowed following the 
phenological transitions as the SD curve remained correlated with the 
reference data despite having a smaller seasonal amplitude. 

The overall average correlation with the reference data was 0.88 and 
0.72 for the synthetic MSR and PROBA-V data respectively. The errors 
varied from 0.09 to 0.14 for synthetic MSR data and from 0.12 to 0.21 
for the PROBA-V data (Table 2). 

4. Discussion 

SD method allowed estimating the NDVI of all crop types present 
within a mixel based on knowledge of their fractions. It was possible to 
obtain the crop-specific NDVI time series at MSR, even if a crop has a 
small extent within the study area. The results demonstrated that the SD 
approach was capable of reconstructing the phenological cycle of a 
given crop. The phenological stages commonly studied by remote 
sensing data (i.e. SOS, POS and EOS) were clearly visible for all crops. 

Fig. 7. Average NDVI profiles of all disaggregated mixels from synthetic MSR data (blue) and of all pixels from reference data (red), for the four main crops (A. 
Winter cereals, B. Winter oilseed rape, C. Maize, D. Spring barley). Shaded band represents the ± 1 standard deviation of values. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Average NDVI profile of all disaggregated mixels from PROBA-V data (blue), from pure PROBA-V pixels (black) and reference data (red) for the four main 
crops (A. Winter cereals, B. Winter oilseed rape, C. Maize, D. Spring barley). The shaded band represents the ± 1 standard deviation of values. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.1. Accuracy of crop-specific NDVI 

Disaggregated time series showed strong correlations with reference 
data. The predominant winter crops performed better than the minor 
spring crops. Spring crops tended to have discrepancies for the extremes 
values of the reference NDVI curve, especially at the start and middle of 
their cycle. This may be due to the imprecision of land use information 
introduced by the “others” class. The intra-class radiometric dissimi
larity of the latter could affect the estimate of NDVI of minor crops. The 
strong presence of winter crops in a neighborhood could explain the fact 
that these predominant crops were less influenced by this phenomenon. 
When the SD method is applied to the PROBA-V data, this fact could be 
worsened by the PSF of its system as observed by Wang and Atkinson 
(2017) and as mentioned in Section 3.4. 

Disaggregated data reproduced the NDVI temporal variations for 
each crop as confirmed by the reference data. However, the relevance of 
the observed phenological indicators must be considered with respect to 
the input data such as the MSR mixel value and the fraction of each crop. 
In addition, heterogeneous status of a crop within a neighborhood, for 
the same phenological stage, could affect the NDVI estimation. 

4.2. Potential of SD in crop-specific phenology applications 

The results demonstrated the robustness of the algorithm and its 
ability to estimate crop-specific NDVI for all crops. Indeed, the SD 
approach reinforces the possibility of exploiting the MSR data to study 
crop phenology over fragmented agricultural areas with a higher num
ber of valid observations and a more regular time step than with high 
spatial resolution data. This has been demonstrated by PROBA-V data, 
especially during autumn and spring, when Sentinel-2 images could not 
be used because of clouds. Moreover, MSR data are available for the last 
4 decades, which is fundamental for retrospective studies of the crop- 
specific phenology, especially in the current context of adaptation of 
the agricultural production system to climate change. Exploiting MSR 
data, as proposed by Lobell et al. (2013) and Manfron et al. (2017), can 
help to improve the understanding of the evolution, or adaptation, of 
crop growth timing in recent decades. 

4.3. Limitations 

In this paper, we assumed two key points which were i) full and 
accurate knowledge of the land use in the mixels and ii) radiometrically 

homogeneous i-classes. In view of this consideration, firstly it is neces
sary to reduce the unknown class “others” as much as possible. This will 
be particularly important for the application of SD at the kilometric 
spatial resolution of SPOT-VEGETATION which was the predecessor of 
PROBA-V. Reducing this unknown implies increasing the number of 
known classes. However, the addition of thematic classes requires the 
use of a larger sliding window to ensure the amount of mixels needed to 
solve the system. Increasing the extension of the neighborhood also adds 
intra-class radiometric differences, because of the spatial variations in 
phenology for a given crop. Moreover, the addition of classes increases 
the possibility of having correlations between pixels in the linear 
equation system, which will impede inversion of the latter. In this 
context, it is necessary to make a compromise between the number of 
classes to be processed and the fraction of the class “others” within the 
mixel. Secondly, the homogeneous condition of the crops is deviated 
from reality due to many factors (natural or anthropogenic), even for the 
same phenological stage of a given crop. Indeed, the estimation of NDVI 
is also sensitive to those factors that may be present in a neighborhood, 
including the difference in crop density among and within mixels for 
example. For 1 km spatial resolution images, the notion of intra-class 
radiometric dissimilarity could be considered as proposed by Busetto 
et al. (2008). Despite all these above-mentioned limitations, the first 
sensitivity tests on images at 1 km showed that SD could also reconstruct 
the phenology of dominant crops, without increasing the number of 
classes and the size of the neighborhood. The evidence for these obser
vations is not presented in this paper and still has to be validated. 

4.4. Perspectives 

Vegetation phenology from remote sensing has a wide range of 
environmental and agricultural applications at local to regional scales, 
which requires frequent observations with an appropriate spatial reso
lution. In a fragmented agricultural landscape, SD could provide crop- 
specific phenology from mixels. In the case of winter wheat, the map
ping of phenometrics over a long period could be strongly improved. For 
example, Manfron et al. (2017) obtained encouraging results for the 
detection of the date of sowing from MODIS data in a small area in the 
south of France. For such a study, the SD method could be used as a data 
pre-processing, at least for the dominant crops. 

5. Conclusion 

The SD method allowed us to estimate the NDVI of all crop types 
present in a mixel and to reconstitute the crop-specific phenology from 
MSR data. The application of the SD on real MSR data demonstrated the 
robustness of the algorithm. 

This is an important result as one of our future research is to apply 
this method to the study of crop-specific phenology before the Sentinel-2 
era, i.e. on SPOT-VEGETATION data. We have established that it will be 
possible for winter cereals in this current study area, and possibly for 
other crops in a different region, but only for the most dominant crops. 
For minor crops, it may be necessary to apply the method to MODIS data 
because of its 250 m spatial resolution. However, MODIS displays more 
geometric uncertainty in connection with its whiskbroom design that 
induces variations in its PSF over the swath direction, which would thus 
likely increase the effects discussed above, disturbing phenological 
retrieval from such time series (Helman, 2018). 

When applied to PROBA-V data, and presumably also to Sentinel-3 
data, the SD method improves the monitoring of individual crops in 
the context of fragmented landscapes, especially in transition periods 
such as autumn and spring when cloud cover is often frequent. 
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