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Abstract. 2D Echocardiography is a popular and cost-efficient tool for
cardiac dysfunction diagnosis. Automatic solutions that could effectively
and efficiently analyse cardiac functions are highly desired in clinical
situations. Segmentation and motion tracking are two important tech-
niques to extract useful cardiac indexes, such as left ventricle ejection
fraction (LVEF), global longitudinal strain (GLS), etc. However, these
tasks are non-trivial since ultrasound images usually suffer from poor
signal-to-noise ratio, boundary ambiguity and out of view problem. In
this paper, we explore how to introduce shape constraints from global,
regional and pixel level into a baseline U-Net model for better segmen-
tation and landmark tracking. Our experiments show that all the three
propositions perform similarly as the baseline model in terms of geomet-
rical scores, while our pixel-level model, which uses a multi-class contour
loss, reduces segmentation outliers and improves the tracking accuracy
of 3 landmarks used for GLS computation. With appropriate augmenta-
tion techniques, our models also show a good generalisation performance
when testing on a larger unseen cohort.

Keywords: Segmentation, Deep Learning, Deformation, Echocardiog-
raphy

1 Introduction

Echocardiography, a non-invasive and cost-efficient imaging technique, is widely
used by cardiologists to evaluate the cardiac function. Segmentation and motion
tracking are two essential tasks that can help cardiologists in clinical decision-
making. Segmentation offers information of shape and volume while motion
tracking provides knowledge of deformation and function.

Deep learning based methods have shown very good performance for medi-
cal segmentation and registration. As for segmentation, the U-Net architecture
has proved its overwhelming power in large cohort echocardiography segmenta-
tion [11]. With appropriate adaptation of U-Net model and data augmentation,
the U-Net architecture also demonstrated good generalisation ability in segment-
ing cardiac magnetic resonance images (CMRI) [5]. However, echocardiography
segmentation is still difficult since it usually encounters the problem of out of
view, poor signal-to-noise ratio etc, especially for myocardium segmentation.
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In the field of cardiac motion tracking, unsupervised deep learning are very
popular and these schemes reach similar performance or even outperform tra-
ditional registration methods. Krebs et al. proposed a conditional variational
autoencoder which learned a diffeomorphic transformation from pairwise CMRI
in an unsupervised way [10]. Shawn et al [1] designed a U-Net like network
for unsupervised pairwise echocardiography motion tracking. However, the dis-
placement field can be unrealistic without relevant regularisation.

Numerous studies have shown that global longitudinal strain (GLS) is more
sensitive than left ventricular ejection fraction (LVEF) as a measure of systolic
function and has potential in identifying left ventricle dysfunction in clinical[9][7].
This value can be approximated by measuring the left ventricle length change
[14]. Therefore, estimating a dense displacement may not be necessary.

U-Net like deep learning models depend largely on pixel-level classification,
which can generate artefacts which are irregular with the organ shape. Re-
searchers are seeking to combine shape constraints with deep learning meth-
ods [3]. With the same intention to improve the segmentation consistency with
anatomical shapes in 2D echocardiography, in our work, we explore to introduce
shape constraints from global, regional and pixel level into a baseline U-Net
model. From the segmentation results, useful information such as ejection frac-
tion, landmark based GLS can be extracted. The detailed model architecture will
be explained in section 2. We then present the implementation and experiment
results for segmentation and landmark detection in section 3.

2 Methods

We use a U-Net model as our baseline model. Its encoder consists of 5 down-
sampling (MaxPool + Conv) blocks with ReLU activation after the 3x3 convolu-
tion. The corresponding decoder has 5 up-sampling (UpSample + Conv) blocks
and is skip-connected with the encoder. Based on this model, we consider to
incorporate shape constraints from three levels:

– Global-level: estimate a triangle like landmark map in parallel with seg-
mentation (SEG-LM)

– Regional-level: add a poly-affine myocardium reconstruction network to
constrain the shape of myocardium mask (SEG-AFFINE)

– Pixel-level: use a multi-class contour-loss to finely classify the boundary
pixel (SEG-CONTOUR)

We will explain the three methods in detail in the following subsections.

2.1 SEG-LM: Parallel segmentation and landmark detection

We adapt the baseline U-Net model for simultaneous segmentation and landmark
prediction by adding a separate branch of decoder for landmark map estimation.
The two decoders process the encoder information in parallel. The final layer of
segmentation branch and landmark detection have SoftMax activation, Sigmoid
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Fig. 1: Detailed information of the 4 explored methods.

activation respectively. In particular, we consider the two end points of mitral
valve (basal points) and the apex along the endocardial contour. The basal
points are identified as the two end-points of adjacent boundary of both left
ventricle and left atrium. The endo-apex point is then calculated as the furthest
point to the mid-basal point along the endocardium. The output of landmark
detection network is a heatmap of the corresponding target point. From the
output heatmap, we extract the landmark position by finding the location of
maximum or computing the centroid.

As we have different labels in the ground-truth data (myocardium, blood
pool, atrium), a multi-class dice Ldice is used as the segmentation loss. As for
landmark detection, we first penalise on the squared error of landmark heat-map
(L2 loss: Ll2 ). In order to avoid landmark overlapping on different output layers,
we regularise the centre distance loss LCD of different landmark heat-maps as
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proposed in [15]:

LCD =
1

2

3∑
i=1,j 6=i

1/(C(Hi)− C(Hj))2 (1)

with C the operation to obtain the centre position and Hi the landmark heat-
map. Finally, a mean squared distance loss between the predicted heatmap centre
and the ground truth point Lpoint is also applied. Thus we have a total loss Ltotal
for optimisation:

Ltotal = Ldice + αLl2 + βLCD + γLpoint (2)

2.2 SEG-AFFINE: Poly-affine Regulariser for Myocardium

With the intention to constrain the regularity of predicted myocardium mask, we
propose to model the myocardium mask as a combination of 6 AHA regions [4].
We first choose a reference myocardium mask R from the training set. All the
N training myocardium masks (Mi)

N
i=1 are aligned to the reference mask by an

affine transform (Ti)
N
i=1 estimated from the three landmarks (left basal, right

basal and endo-apex). Then all aligned masks are averaged to a mean mask R̄.
The mean mask R̄ is threshold-ed (R̄f ) and split into 6 AHA regions (Īj)

6
j=1. For

every myocardium mask Mi, we aim to first find 1 affine matrix Ag that glob-

ally transform the reference mask to M̂i
g
. The corresponding reference regions

become (Īgj )6j=1 = Ag Īj . We then find 6 affine matrices (Aij)
6
j=1, that transform

the transformed (globally) mean AHA regions (Īgj )6j=1 into M̂i =
∑6
j=1Aij Ī

g
j

that best reconstructs the target mask Mi, i.e. M̂i ≈ Mi. For better fusion of
the transformed 6 regions, we use the spatially weighted regions (multi-variate

Gaussian) Ĩwj instead of Īj , s.t.
∑6
j=1 Ĩ

w
j = R̄f .

We use a CNN to estimate the affine parameters and reconstruct the given
mask. The proposed network has two sub-networks. The first one seeks to esti-
mate global affine parameters for global alignment which consists of two hidden
convolutional layers with down-sampling. The second sub-network is to find the
6 regional affine matrix. It begins with an encoder for high level feature extrac-
tion. The extracted features are passed through fully connected layers for affine
matrix estimation Âij . By affine transform, we could reconstruct M̂0 from the

6 mean regions M̂0 =
∑6
j=1 Âij Ĩ

wg
j . Two Conv layers are followed to refine the

fusion mask M̂0 and thus we obtain the final output M̂f (detailed information
in fig.2).

In order to regularise the value of the affine parameters, we approach the
affine parameter estimation problem using Maximum A Posteriori (MAP) with
prior probabilities on the parameter values P (A). The MAP aims to optimise:
arg max[P (A|M)] ∝ P (M |A)P (A), i.e. arg min[− logP (M |A) − logP (A)] We
use Gaussian distributions for conditional likelihood and priors. For P (M |A) ∝
exp(− 1

2 (M − M̂(A))TΣ−1(M − M̂(A))), the variance is identity. For P (A) ∼
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Fig. 2: Architecture of Proposed Poly-affine Regulariser

N (µ̂, Σ̂), µ̂ and Σ̂ are the maximum likelihood estimate (here we only con-
sider diagonal covariance matrices) from the aligned transformation parameters
(Ti)

N
i=1. The regularisation for affine parameters is Laffine = αLl2 + βLprior,

where Ll2 is the mean square error between the reconstructed image and the
input and

Lprior =

K∑
k=1

6∑
j=1

δj
(Akj − µ̂j)2

Σ̂jj
(3)

where K = 1 for global affine parameter and K = 6 for regional affine parame-
ters.

Thus the total loss for the poly-affine reconstruction network is:

Ltotal = Ldice(M̂g) + βgLgprior
global sub-net

+Ldice(M̂0) + Ldice(M̂f ) + αLl2 + βrLrprior
regional sub-net

(4)

Once the poly-affine regulariser network is trained, the 6+36 affine param-
eters serve as explicit hidden variables to regularise the shape of myocardium
prediction. We train a U-Net model (same as baseline model) which seeks for
the best overlapping of mask as well as the minimum distance between the cor-
responding affine parameters of predicted myocardium and that of ground truth
myocardium. The loss function for this method is

loss = dice+ αMSE(PA(P )− PA(M)) (5)

, where MSE is the mean squared error, PA is poly-affine regulariser that outputs
the 42 affine parameters.

2.3 SEG-CONTOUR: multi-class contour-loss

In order to increase the classification accuracy on the boundary, we choose to use
an adapted multi-class contour loss[8]. Firstly, a distance mapD(M) is calculated
from ground truth mask and it illustrates the shortest euclidean distance of each
pixel to the closest border. Then the contour loss is calculated as

losscontour =
∑

(D(M) ◦ contour(B(P ))) (6)
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where ◦ performs element-wise multiplication. P is the prediction output after
SoftMax activation of U-Net for a certain class. B(P ) represents a differentiable
thresholded Sigmoid for binarisation

B(P ) =
1

1 + exp−γ(P−T )
(7)

where γ = 20 and T = 0.5.
The contour of the binarised mask is obtained by applying a 2D Sobel filter

contour(P ) = |Gx ∗ P |+ |Gy ∗ P | (8)

where ∗ denotes 2D convolution and Gx, Gy are 2D Sobel kernel in x-,y- dimen-
sion:

Gx =

1 0 −1
2 0 −2
1 0 −1

 , Gy =

 1 2 1
0 0 0
−1 −2 −1

 .
3 Experiments and Results

3.1 Datasets

In this work, we work on two public data sets: CAMUS1 and ECHONET2. CA-
MUS dataset consist of publicly accessible 2D echocardiographies and the cor-
responding annotations of 450 patients. For each patient, 2D apical 4-chambers
(A4C) and 2-chambers (A2C) view sequences are available. Manual annotation
of cardiac structures (left endocardium, left epicardium and left atrium) were
acquired by expert cardiologists for each patient in each view, at end-diastole
(ED) and end-systole (ES) [11]. Along with the image and annotation data, we
also have the following information: image quality (good/medium/poor), left
ventricle end-diastole volume (LVedv), left ventricle end-systole volume (LVesv)
and left ventricle ejection fraction(LVef).

ECHONET dataset contains 10 030 apical 4-chambers echocardiography
videos as part of routine clinical care at Stanford University Hospital [13]. Seg-
mentation measurements (left endocardium) at end-diastole and end-systole are
available for all videos. The corresponding LVedv, LVesv, LVef are also provided
for each video.

3.2 Experiments

We trained the baseline UNet, SEG-LM, SEG-AFFINE, SEG-CONTOUR mod-
els on the CAMUS dataset (both 2-chamber and 4 chamber ED/ES frames)
using 10-fold cross validation. The 450 patients are randomly split-ed into 10

1 https://www.creatis.insa-lyon.fr/Challenge/camus/databases.html
2 https://echonet.github.io/dynamic/)

https://www.creatis.insa-lyon.fr/Challenge/camus/databases.html
https://echonet.github.io/dynamic/
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Fig. 3: (a)An example of segmentation ground truth of CAMUS dataset. The
two basal and apex landmarks are extracted following the procedures described
in section 2.1. (b) An example of annotation provided by ECHONET dataset.
We generate the ground truth mask of LV by linearly connecting the border
points. The grand axe (in red) is considered as the line connecting the apex and
mid-basal point. The length of grand axe is considered as the LV length. (c-d)
GLS calculation illustration (background is one echo image from CAMUS). We
calculate the GLS from the LV length change by following the approximation
method in [14].

folds, with each fold has similar distribution of image quality and LVef distribu-
tion. Every turn we use 8 fold data for training, 1 fold for validation (for model
selection) and 1 fold for testing.

From the segmentation result, we first find the largest connected component
for each class and applied a closing operation to fill the potential hole that could
exist inside the predicted mask. We then extract the basal and apex landmark
points following protocol described in section 2.1 for the four models except
SEG-LM whose landmark is extracted from the landmark branch. The direction
of mid-basal to apex will be regarded as grand axe of left ventricle and is used
for left ventricle volume estimation by using modified Simpson’s rule [6], thus
the calculation of ejection fraction. The distance from mid-basal to apex forms
the ventricle length and serves for global longitudinal strain calculation [14].
Because of the dataset limitation, we don’t have the all the 3 apical views for
left ventricle, so the GLS estimation will not be very accurate. However, we still
calculate the GLS from 2 views (CAMUS) and 1 view (ECHONET) as reference
to test the landmark detection accuracy.

All the segmentation models are implemented with Pytorch with a batch
size of 8 and input image resized to 256 × 256. In order to avoid over-fitting
and improve generalisation performance, we apply random data augmentation
at training phase for all the networks. A stack of rotation, random cropping,
brightness adjustment, contrast change, sharpening, blurring and speckle noise
addition is conducted with each a probability of 0.5 for every input image. CA-
MUS dataset does not contain the ground truth of desired landmarks. We gen-
erated the ’ground truth’ landmark position from ground truth segmentation
masks. The Gaussian heatmap of ground-truth landmarks is computed with
σ = 4.
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The baseline U-Net is trained with a multi-class dice loss. An Adam optimiser
is applied with a learning rate of 1e−3. The training is early stopped when the dice
loss on validation data shows no increase for more than 5 epochs. For SEG-LM
model, we set α = 0.05, β = 0.5, γ = 0.5 in eq.2. An Adam optimiser is applied
(lr= 10−4). The output heatmap of landmarks is first processed to keep only
one point cluster per layer and then the landmark location is extracted as the
centroid. The poly-affine regulariser network is first trained with the myocardium
ground truth for reconstruction. We set α = 0.005, βr = βg = 0.01, σ6

i=1 = 1
and learning rate at 1e-4. We then train a baseline U-Net with the polyaffine
regulariser using loss function (eq.5) with α = 10. The parameter for global prior
is calculated from the training-specific (Ti)

N
i=1. The parameter for regional prior

is set as µ1...6 = [1, 0, 0, 0, 1, 0] and [Σ6
i=1] = 0.1. As for SEG-CONTOUR model,

contour loss is optimised along with the dice loss. The contour loss is easy to
fall into a local minimum of 0 so we set a weight of 100, 1e-4 for dice loss and
contour loss respectively.

3.3 Evaluation metrics

For segmentation results, apart from the most used geometrical metrics: Dice
coefficient, Hausdorff distance (HD) and Mean Surface Distance (MSD), we also
use two anatomical metrics: Convexity(Cx) and Simplicity(Sp) [12].

Convexity(Cx) =
Area(P )

Area(ConvexHull(P )
(9)

Simplicity(Sp) =

√
4π ∗Area(P )

Perimeter(P )
(10)

Based on these metrics, we calculate the number of outliers for algorithm/model
robustness evaluation. The outlier of segmentation prediction for CAMUS dataset
is established from the inter-variability tests with the upper limit values for
HD and MSD, and lower limit values for the simplicity and convexity [12]. A
prediction mask is considered as a geometrical outlier if its HD > 3.5mm or
MSD > 8.2mm at ED, if HD > 4mm or MSD > 8.8mm at ES. The cor-
responding limit for anatomical outlier is if Cx < 0.529 or Sp < 0.741 for
endocardium, if Cx < 0.694 or Sp < 0.960 for epicardium[12].

3.4 Results

We show the evaluation results in Tables 1 and 2, computed from 450 patients of
CAMUS dataset using 10 fold cross-validation for the four methods detailed in
Section 2. Compared with the baseline model, the SEG-LM, SEG-AFFINE mod-
els demonstrate only a slight decrease in terms of segmentation metric, ejection
fraction (EF) prediction accuracy and landmark detection accuracy. The SEG-
CONTOUR model shows a similar performance with baseline model in Dice
score (table.1), but reduces greatly the number of geometrical and anatomical
outliers (table.1). It’s quite reasonable that with a smaller HD and MSD, the
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Endo Epi Outlier

Method Dice
HD

(mm)
MSD
(mm)

Dice
HD

(mm)
MSD
(mm)

Geo. Ana. Both

Baseline
0.931
± 0.040

5.04
± 3.00

1.51
± 0.83

0.951
± 0.025

5.75
± 3.61

1.71
± 0.91

15% 2.8% 2.5%

SEG-LM
0.928
± 0.042

5.47
± 3.04

1.59
± 0.84

0.950
± 0.025

6.22
± 3.74

1.79
± 0.93

20% 7.6% 5.3%

SEG-AFFINE
0.930
± 0.042

5.14
± 3.00

1.53
± 0.88

0.951
± 0.027

5.84
± 3.75

1.72
± 0.95

14.3% 5.1% 3.7%

SEG-CONTOUR
0.931
± 0.041

4.99
± 2.95

1.50
± 0.73

0.952
± 0.026

5.63
± 3.32

1.67
± 0.87

13.8% 1.5% 1.2%

Table 1: CAMUS Segmentation Metric. Endo.: endocardium, Epi: epi-
cardium, HD: Hausdorff distance, MSD: mean surface distance, Geo.: Geomet-
rical outlier, Ana.: Anatomical outlier. Values in bold represent the best score.

Basal1 Basal2 Apex GLS(%) EF(%)

Method
MAE
(mm)

MAE
(mm)

MAE
(mm)

MAE
(%)

Corr.
Bias(%)
± std

MAE
(%)

Corr.
Bias(%)
± std

Baseline 2.36 3.06 4.06 3.97 0.74
-0.73
± 5.20

4.76 0.86
0.93
± 7.07

SEG-LM 2.82 3.45 4.48 4.51 0.70
-1.74
± 5.27

5.26 0.84
2.51
± 8.04

SEG-AFFINE 2.35 2.97 4.22 4.03 0.74
-0.9
± 5.15

4.96 0.85
1.16
± 7.31

SEG-CONTOUR 2.25 2.80 3.97 3.96 0.75
-0.36
± 5.34

5.06 0.84
0.7
± 7.50

Table 2: CAMUS Landmark/GLS and EF Prediction. Basal1: the left
mitral valve end point, Basal2: the right mitral valve end point, EF: ejection
fraction, GLS: global longitudinal strain. Values in bold represent the best score.

SEG-CONTOUR reduces the classification error along the boundary area thus
less outlier predictions. This is consistent with the observations that a good Dice
score does not always guarantee a good HD [2] and in our case, not always leads
to anatomically-plausible segmentation. The SEG-CONTOUR model is also ca-
pable of tracking more precisely the boundary especially the landmarks (table.2)
thus a smaller bias of GLS prediction. In terms of EF calculation, the baseline
U-Net model shows smaller mean absolute error but a larger bias than the SEG-
CONTOUR loss. We show three CAMUS test examples (fig.4) where each row
has a good/medium/bad performance in terms of HD score respectively. Com-
paring with the the rest 3 models, SEG-CONTOUR has a more fluent border
similar as the ground truth annotation.

The evaluation results of applying the trained model on a totally different
dataset ECHONET (the same test fold of 1277 patients as in [13]) show the
same trend of performance of our 4 methods. The SEG-CONTOUR method
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Fig. 4: 3 CAMUS segmentation examples (good/medium/bad in terms of HD).
The 4 four columns represent the baseline model, SEG-LM, SEG-AFFINE, SEG-
CONTOUR respectively from left to right. The red, green, cyan lines repre-
sent the predicted segmentation contours of epicardium, endocardium and left
atrium. The transparent green, blue and yellow regions are the ground truth
masks of myocardium, left ventricle blood pool and left atrium respectively.

demonstrates a good performance on tasks related to boundary information,
for example, lower HD and MSD, better GLS estimation. It’s less accurate on
area based task, i.e. volume estimation thus ejection fraction prediction. It is
noticeable that all of the four models demonstrate a nice Dice coefficient on this
different dataset (the Dice coefficient of models trained on ECHONET data is
0.92% [13]), which proves the importance of appropriate image augmentation
techniques.

4 Conclusion

In this paper, we explored methods to introduce shape constraints into 2D
Echocardiography segmentation models from three levels: global-level (SEG-
LM), regional-level (SEG-AFFINE), pixel-level (SEG-CONTOUR). From the
evaluation results on CAMUS dataset and its generalisation result on a un-
seen dataset ECHONET, it is more efficient to introduce pixel-level shape con-
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Fig. 5: The baseline U-Net model is trained with only one of the mentioned aug-
mentation methods on CAMUS dataset and then is evaluated on the same test
fold of ECHONET segmentation model, whose dice coefficient is 0.92. Contrast
adjustment contributes most to the improvement of generalisation result while
with all the techniques, we obtain the best Dice score and less variation. No-aug-
5: trained model of 5th epoch without augmentation, No-aug-30: trained model
of 30th epoch without augmentation. At 30th epoch, the model has already over-
fitted the CAMUS data.

Table 3: ECHONET Prediction
Endo-cardium (LV) EF GLS

Method Dice
HD

(pxls)
MSD
(pxls)

MAE
(%)

R2 Corr.
Bias(%)
± std

MAE
(%)

R2 Corr.
Bias(%)
± std

Baseline
0.892
± 0.069

12.99
± 7.96

3.74
± 3.42

7.97 0.11 0.69
4.46
± 12.80

4.96 -1.2 0.38
0.36
± 7.94

SEG-LM
0.886
± 0.063

13.54
± 6.86

3.87
± 2.63

8.79 0.02 0.72
6.21
± 13.39

5.61 -1.49 0.36
-1.9
± 7.07

SEG-
AFFINE

0.887
± 0.068

13.12
± 7.25

3.87
± 2.97

9.35 -0.14 0.67
7.11
± 14.41

5.88 -2.44 0.29
-0.75
± 9.29

SEG-
CONTOUR

0.895
± 0.057

12.56
± 6.34

3.58
± 2.16

8.39 0.07 0.69
5.03
± 13.21

4.39 -0.43 0.51
0.59
± 6.52

straint than global or regional level constraints for U-Net based models. With
a multi-class contour loss, SEG-CONTOUR model achieves better classification
on the boundary pixels with a reduced a Hausdorff distance and more accu-
rate landmark detection result. Our experiments showed the good potential of
SEG-CONTOUR for a more robust segmentation and deformation analysis.
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