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AUTOMORPHISMS OF PROCONGRUENCE CURVE AND PANTS
COMPLEXES

MARCO BOGGI AND LOUIS FUNAR

ABSTRACT. In this paper we study the automorphism group of the procongruence map-
ping class group through its action on the associated procongruence curve and pants
complexes. Our main result is a rigidity theorem for the procongruence completion of the
pants complex. As an application we prove that moduli stacks of smooth algebraic curves
satisfy a weak anabelian property in the procongruence setting.

AMS Math Classification: 14G32, 20E18, 14D23, 20F34, 57M10.

1. INTRODUCTION

Let S = S, be a closed orientable surface of genus g(S) = ¢ from which n points have
been removed. We assume that S has negative Euler characteristic, i.e. 2 — 29 —n < 0.
Let Map(S) be the extended mapping class group of the surface S, namely the group of
isotopy classes of diffeomorphisms of S. The mapping class group I'(S) is the subgroup of
Map(S) consisting of those elements which preserve a fixed orientation of the surface.

Let M(S) be the Deligne-Mumford (briefly DM) moduli stack over Q parameterizing
smooth algebraic curves whose complex model is diffeomorphic to S. For an algebraic stack
Y defined over k and a field extension k C k’, let Y := Y X Speck’. Then, after a choice
of base point, the mapping class group I'(S) identifies with the topological fundamental
group of the complex moduli stack M(S)c.

In a series of papers (cf. [26], [27], [32]), Ivanov, for ¢ > 3, and McCarthy, for g <
2, determined the automorphisms groups of I'(S) and Map(S). An essential tool was
the complex of curves C(S). This is the (abstract) simplicial complex whose simplices
consist of sets of isotopy classes of nonperipheral simple closed curves on S which admit
disjoint representatives. Its dimension is d(S) — 1 = 3g — 2 + n, where d(S5) is called
the modular dimension of S, because it is also the dimension of the moduli stack M(S).
There is a natural action of Map(S) on C(S). Ivanov observed that this action factors
through the group of inner automorphisms Inn Map(S) and extends to a homomorphism
Aut(Map(S)) — Aut(C(S)). Away from a few exceptions (for d(S) < 3), the latter
homomorphism is injective. A fundamental result of Ivanov then states that, for d(S) > 2,
the homomorphism Inn(Map(S)) — Aut(C(S)) is also surjective. This immediately implies
that, for d(S) > 3, we have Aut(Map(5)) = Inn(Map(S)) and Aut(I'(S)) = Inn(Map(S))
(see Corollary 3.7 for a more precise result).

Marco Boggi was partially supported by CAPES - Cédigo de Financiamento 001 - and by Institut
Fourier, Laboratoire de Mathematiques UMR 5582, Université Grenoble Alpes, France.
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Let f(S ) be the profinite completion of the mapping class group I'(S). The automor-

~

phism group Aut(I'(S5)) is of great arithmetic significance. By Belyi theorem (cf. [3]),
there is indeed a natural faithful representation Gg — Out(I(S)), where G is the abso-
lute Galois group of the rationals. Classical Grothendieck-Teichmiiller theory can then be
described as the attempt to corner the image of G inside Out(T(S)) (cf. [12], [24], [28]).

The basic idea of Grothendieck-Teichmiiller theory is to restrict to the subgroup of au-
tomorphisms of f(S ) which satisfy the same conditions naturally satisfied by those coming
from the Galois action. This leads to consider the subgroup Out*(I'(S)) of Out(I'(S)),
roughly described as the subgroup of elements which preserve the conjugacy classes of a
special set of geometrically significant subgroups. In fact, thanks to a result of Harbater
and Schneps (cf. [18] for details), the profinite Grothendieck-Teichmiiller group GT can
be identified with Out*(I'(S)) for S the 5-punctured sphere. Harbater and Schneps then

proceeded to show that there is a natural isomorphism GT 2 Out*(T'(S)) for all S such
that g(S) =0 and d(S) > 1.

The main stumbling block in extending genus 0 Grothendieck-Teichmiiller theory to
higher genus is the fact that, in the profinite setting contrary to the topological one, there
is no satisfactory geometric description of the subgroups of I'(S) arising as centralizers
of the "profinite” Dehn twists (cf. Section 4.7). A way to circumvent this difficulty is
to consider, instead of f(S), the procongruence mapping class group I'(S), defined as the
image of the natural representation I'(S) — Out(7,(S)). This approach was systematically
developed in [7] (cf. also [23]) where a complete description of centralizers of procongruence
Dehn twists is given.

Note that, since the congruence suEg\roup property holds in genus 0, there are natural
isomorphisms I'(S) 2 I'(S) and then GT 2 Out*(I'(S)) for ¢(S) = 0. Moreover, by Corol-
lary 7.6 in [7], for instance, there is a natural faithful representation Gg — Out*(I'(S))
for all genera (cf. Definition 7.1 for the precise definition of Out*(I'(S))). Therefore,
Grothendieck-Teichmiiller theory can be rephrased in this context.

A key property of the group Aut*(I'(S)) is that it admits a natural action on a profi-
nite version of the curve complex and can then be approached in a manner similar to the
group Aut(T'(S)). The procongruence curve complex C(S) of C(S) is an abstract sim-
plicial profinite complex (cf. Definition 3.2 in [7]) naturally associated to the congruence
completion f‘(S) of the mapping class group. There is a natural continuous action of
['(S) on C(S) which factors through an action of InnT'(S) and then extends to an action
Aut*(T(S)) — Aut(C(S)). In complete analogy with the topological case, this homomor-
phism is injective, except for a few cases when d(S) < 3 (cf. Theorem 7.3). A completely
different matter is to understand whether this homomorphism is surjective.

In this paper, we will deal with a somewhat more treatable but related problem. Let
Cp(S) be the pants graph associated to the surface S. The vertices of Cp(S) are the facets
of C(S), namely the maximal multicurves. Two vertices are connected by an edge if the
corresponding multicurves share a subset of d(s) — 1 elements while the remaining pair
of curves has minimal nontrivial geometric intersection (cf. Section 2.8). As done for the
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curve complex, we can associate to the congruence completion f‘(S) a profinite version of
the pants graph. This is the procongruence pants graph C’p(S), a 1-dimensional abstract
simplicial profinite complex endowed with a natural continuous action of T (9).

A level structure M?> is a finite, geometrically connected, étale covering of the moduli
stack M(S) (cf. Section 2.5). This admits a canonical extension to a (in general, ramified)

covering M = M(9), where M(S) is the DM compactification of M(S) (cf. Section 2.3).
Then, a basic feature of Cp(.5) is that it can be realized as the inverse limit of 1-skeletons

of some natural triangulations of the 1-dimensional strata in the DM boundary of /Vé. It
is thus natural to expect C’p(S ) to be a more rigid object than the procongruence curve
complex C(S). The main result of the paper shows that this is indeed the case.

More precisely, the natural action of I'(S) on Cp(S) factors through a homomorphism
Inn(T(S)) — Aut(Cp(S)), which is injective for d(S) > 1. Then, the main result of the
paper is that, in analogy with what happens in the topological setting, this map has cofinite
image (cf. Theorem 8.1):

Theorem A. For S # 515 a connected hyperbolic surface such that d(S) > 1, there is an
exact sequence:

1 — Inn(T'(S)) — Aut(Cp(S)) — [[{=1},
o(9)

where O(S) is the finite set of the topological types of (d(S) — 1)-multicurves on S. For S
of type (1,2), the group Aut(Cp(S12)) must be replaced with the subgroup of those auto-
morphisms preserving the set of separating curves.

Note that O(S) can equivalently be described as the set of I'(S)-orbits of (d(S) — 1)-
multicurves: C(5)q(s)—2/I'(S) = C(5)qcs)-2/I'(S).

The second part of this paper is devoted to arithmetic applications of the procongruence
rigidity of pants complexes. Let k be a sub-p-adic field, that is to say a subfield of a finitely
generated extension of Q, for some prime p and let Gy be its Galois group. By a classical
result of S. Mochizuki, given a smooth hyperbolic curve C' and any smooth variety X,
both defined over k, there is a natural bijection between the set of dominant morphisms
Homﬂgom(X ,C) and the set of Gyg-equivariant open homomorphism, up to inner automor-
phisms, Hom¢ ™ ((7{*(Xg), 71*(C5))°" (cf. Theorem A in [31]). This property, known as
the anabelian property for hyperbolic curves, had been conjectured by Grothendieck in [16]
for number fields.

In this paper, building on Mochizuki theorem and as an application of Theorem A, we
will be able to prove a procongruence version of the anabelian conjecture for moduli stacks
of smooth hyperbolic curves, possibly with level structure.

Working with stacks, instead of varieties, entails the additional difficulty that they form a
strict (2, 1)-category, that is to say their Hom functors take values in groupoids rather than
in sets. More precisely, for each pair of stacks X and Y, it is given a category Hom(X,Y),
whose objects are the 1-morphisms f: X — Y and such that morphisms between two
1l-morphisms f,g: X — Y, denoted by a double arrow o: f = g and called 2-morphisms,
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are invertible. We will denote the objects of the category Hom(X,Y') by 1-Hom(X,Y") and
its morphisms by 2-Hom(X,Y).

Let M* and M* be level structures over the moduli stack M(S) and M(.S’), respectively,
where, for simplicity, we further assume that both S and S’ are different from Sp4. We
then formulate an anabelian congjecture for moduli stacks of curves with level structure (cf.
Conjecture 9.5 for a more general version of this conjecture) as the statement that:

(i) there is a natural bijection 1-Isomy (Mg, My) = Tsomg, (7' (M2), 75 (ME))om,
where the latter is the set of outer Gy-equivariant isomorphisms;

(ii) the group of generic automorphisms Z* of the DM stack M} identifies with the
center of 7{*(MF).

Since there is a natural isomorphism Z# = Auty(idy:) (cf. (i) of Lemma 9.1) and the
set 2-Isomy (M3, ML), if nonempty, is a trivial Auty(id Mﬂg)—torsor over 1-Isomy (M7, MY),
the above two conditions imply that the groupoid Isomy (M, M%) can indeed be recovered
from the étale fundamental groups 7f*(M2) and w§*(M~) (cf. Section 9 for details).

In our setting, we need to replace the geometric étale fundamental group of the mod-
uli stack of curves with the procongruence completion of the mapping class group or,
equivalently, its image under the universal monodromy representation. Of course, if the
congruence subgroup property holds, the prongruence completion coincides with the profi-
nite completion. This property is known to hold for genus at most 2 (cf. [2, 6]). Moreover,
we will restrict to x-isomorphisms between open subgroups of procongruence completions
I', namely those which preserve the set of stabilizers for the action on the procongruence
curve complex.

We can now formulate our main anabelian result (cf. Theorem 9.8):

Theorem B. Let T and T be open subgroups of T'(S) and T'(S"), respectively, (where we
assume that S, S # Sp4) and k a sub-p-adic field over which the associated level structures
are both defined. Let Isom*Gk(l;)‘,l;”)o‘lt be the set of orbits for the action of I'* by inner
automorphisms on the set of Gy-equivariant isomorphisms. We then have:

(i) there is a natural bijection 1-Isomy (M3, MY) = Isomy, (DA, T#)ot;

(ii) the group of generic automorphisms Z* of MY identifies with the center of I

Remark 1.1. Since the moduli space of genus 0 curves with 4 ordered labels M, 4 identifies
with a level structure over the moduli stack of 1-pointed, genus 1 curves M ;, the above
theorem also holds for S = Sp4 (resp. S” = Sp4) as soon as we assume that the level
I (resp. I'*) is contained in the pure mapping class group. For the general case, the
problem is to deal with the group of generic automorphisms of the associated level structure,
which, for S = Sp4, might be rather complicated. In fact, if we "erase” the group of
generic automorphisms (cf. Section 9), we can then state the anabelian result without any
restriction on S (cf. Theorem 9.11).

Thanks to this result, we can also determine an arithmetic version of Aut*(I'(.S)). More
precisely, we define the arithmetic procongruence mapping class group 1'(S)g to be the
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image of the étale fundamental group of M(S)q via the monodromy representation asso-
ciated to the universal punctured curve over M(S)g. This group fits in the short exact
sequence:
1 =T(S) = T'(S)g — Gg — 1.
There is a natural action of I'(S)g on the procongruence curve complex C(S). For an
open subgroup U of I'(S)g, we define Aut*(U) to be the group of automorphisms of U
which preserve the set of stabilizers for the action of U on the set of O-simplices C/(S)o.

We then have the following absolute anabelian (cf. Remark 9.17) version of Theorem B
(cf. Theorem 9.16):

Theorem C. For d(S) > 1, {et U be an open normal subgroup of the arithmetic procon-
gruence mapping class group I'(S)q and let us denote by Z(U) its center. There is then a
short exact sequence:

1 — Hom(U/Z(U), Z(U)) = Aut*(U) — Inn(T'(S)g) — 1.

Q
In particular, for S # Sia,Ss, we have: Aut*(U) = Inn(T'(S)g) = I'(9)g.
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The structure of this article is as follows. In Section 2 we collect the relevant defini-
tions for later use, in particular we introduce curve complexes and pants complexes in the
topological setting. In Section 3, first, we explain the rigidity of the curve complex, after
Ivanov. Then, we give a short proof of the rigidity of the pants complexes, after Margalit,
which prepares the ground for our approach to the profinite case.

The main objects of study of the article are the profinite avatars of curve and pants
complexes, simple closed curves, braid and Dehn twists. These are introduced in Section 4.

In order to extend Ivanov’s approach to the rigidity of curve complexes in the profinite
context, we need a parameterization of profinite Dehn twists and a description of their
centralizers. Even though this is presently lacking, the first author obtained these results
after replacing the full profinite topology on mapping class groups by the more tractable
congruence topology.
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In order to keep the exposition self-contained we state the results from [7] which will be
needed later. Specifically, Theorem 4.11 gives necessary and sufficient conditions for two
procongruence multitwists to be equal and Corollary 4.12 shows that the centralizers of
procongruence multitwists coincide with the stabilizers of the corresponding simplices of
the procongruence curve complex. In particular, we can define the topological type of a
procongruence multitwist, as in the topological case. Along with Theorem 4.10, this also
allows to determine the centralizers of open subgroups of the procongruence mapping class
group (cf. Theorem 4.14).

The main result (Theorem 5.5) of Section 5 establishes the procongruence analogue of the
fact that every automorphism of a curve complex (except for a 2-punctured torus) preserves
the topological types of multicurves. As a first step, we show that two procongruence curve
complexes are isomorphic if and only if, in the topological case, the corresponding curve
complexes are isomorphic (cf. Theorem 5.1).

Section 6 gives a geometric interpretation of the pants graph and of its procongruence
completion in terms, respectively, of the Bers bordification of the Teichmiiller space and
of the Deligne-Mumford compactifications of level structures. The key observation is that
the pants graph describes the 1-skeleton of a natural triangulation of the 1-dimensional
stratum of the Bers bordification of the Teichmiiller space. This implies that the quotient
of the pants graph by a level of the mapping class group describes the 1-skeleton of a
triangulation of the 1-dimensional stratum of the Deligne-Mumford compactification of
the associated level structure over the moduli space of curves (cf. Proposition 6.2). The
main result of this section is that the procongruence curve complex can be reconstructed
from the procongruence pants graph (cf. Theorem 6.7).

In Section 7, we show that the natural actions of the procongruence mapping class group
on the procongruence curve and pants complexes, with the usual low genera exceptions,
are both faithful (cf. Theorem 7.3). We then observe that the action of the procongruence
mapping class group on the procongruence curve complex extends to an action of a special
subgroup of the automorphisms group of the procongruence mapping class group. This is
the closed subgroup consisting of those automorphisms which preserve the set of stabiliz-
ers for the action of the procongruence mapping class group on the procongruence curve
complex (the so called *-condition).

The rigidity of the procongruence pants complexes is proved in Section 8 (cf. Theorem
8.1). We start by analyzing the 1-dimensional case. In this case, the finite quotients
by levels of the pants graph identify with the 1-skeletons of natural triangulations of the
Deligne-Mumford compactification of the associated level structures and the result is more
or less straightforward. Once orientations are taken into account, the results of Sections 5
and 6 allow to "globalize” the 1-dimensional case to higher dimension.

Section 9 is devoted to a procongruence anabelian result for moduli stacks of curves
with level structures, which, roughly speaking, states that isomorphisms between them
correspond to orbits of Galois-equivariant x-isomorphisms between the corresponding pro-
congruence levels (cf. Theorem 9.8). In the last section, we deduce from it the absolute
anabelian result stated at the end of the introduction, which describes the *-automorphisms
of arithmetic proncongruence mapping class groups (cf. Theorem 9.16).
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2. DEFINITIONS

2.1. A surface S is of (topological) type (g,n) if it is diffeomorphic to S, ,, namely the
closed orientable surface of genus g with n deleted points. We occasionally write g(S) for
the genus of S. The surface S, ,, is hyperbolic if 29 —2+n > 0. We will restrict henceforth
to hyperbolic surfaces.

2.2. Throughout this paper, we denote by Z(G) the center of a group G and, given a
subgroup H of G, we denote by Zg(H) the centralizer of H in G and by Ng(H) the
normalizer of H in G.

2.3. Attached to a hyperbolic surface S of type (g, n) are the Teichmiiller space T (S) and
the Deligne-Mumford (DM) moduli stack M(S), parameterizing smooth algebraic curves
whose complex model is diffeomorphic to S. We will also consider the DM compactification
M(S) of M(S). This is the DM moduli stack which parameterizes the stable curves
obtained as nodal degenerations of the curves parameterized by M(S). All these moduli
stacks have dimension d(S) = d,,, = 3g — 3 +n, which we then call the modular dimension
of S or of the corresponding type.

For S = S, ., sometimes, we simply write Ty, for 7 (S,..), M, for M(S,,) and M
for M(S,.,.). We use the brackets ([n]) to stress that the points are unlabelled, that is to
say, they are considered as an unordered set. Instead, we denote by M, ,, (resp. ./\_/lgm) the
moduli stack of algebraic projective curves of genus g with n labelled points (or punctures).

2.4. Let Map(S) denote the extended mapping class group of S, i.e. the group of isotopy
classes of diffeomorphisms of S. The index 2 subgroup of orientation preserving isotopy
classes is denoted Map™(S). More generally an upper + will mean orientation preserv-
ing. We write ['(S) = Map™(S) and call it the (Teichmiiller) modular group or, simply,
the mapping class group. It can be identified with the topological fundamental group of
the complex DM stack M(S)¢ and then with the covering transformation group of the
unramified cover T(S) — M(S)c. So we have the tautological exact sequence:

(1) 1 - TI'(S) = Map(S) — {£1} — 1.

Let PI'(S) be the pure mapping class group of S, that is to say, the subgroup of I'(S)
consisting of elements which pointwise preserve each puncture of S (note that in [4], [6],
[7], [10] and [11] the pure mapping class group is denoted by I'(S)). It is described by the
short exact sequence:

(2) 1= PIL'(S) —=TI(S) — %, =1,
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where 2, is the symmetric group on n letters.

The group I'(S) (resp. PT'(S)) is centerfree, except for the types (1, 1), (1,2) and (2,0)
(resp. (1,1) and (2,0)), where the center is isomorphic to the cyclic group of order 2 and
is generated by the hyperelliptic involution.

Sometimes, for S = S ,,, we will denote PI'(S) and I'(S) by I'y,, and Iy ), respectively.

2.5. A level T is a finite index subgroup of I'(S). The level structure M?* is the finite
étale covering of the DM stack M(S) which is naturally associated to the level T* by
the above identification of I'(S) with the topological fundamental group of M(S)c. An

important role in this paper will be played by the DM compactification MA of M*, which
is defined to be the normalization of the DM compactification M(S) in the function field

of M*. We also call M the level structure over M(S) associated to T,

2.6. We now briefly summarize the definitions pertaining to various curve complexes,
referring to any of the many references (e.g. [26, 27, 29] etc.) for more details.

Given a hyperbolic surface S of finite type, let £(S) denote the set of isotopy classes
of simple closed curves on S and L(S), the subset consisting of non peripheral curves. A
multicurve o is a set of distinct elements of £(S)y which admit disjoint representatives.
We say that o is a k-multicurve if it consists of k elements. The curve complex C(S) is the
abstract simplicial complex whose k-simplices are (k + 1)-multicurves oo = (av, . . ., ).

Note that C'(S) is a (non locally finite) simplicial complex of dimension d(S) — 1 where
d(S) is the modular dimension of S (see §2.2). We will write C*)(S) for the k-dimensional
skeleton of C'(S) and use a similar notation for the other complexes. There is a natural
action of I'(S) on C(S).

2.7. The set L(S)y parameterizes the Dehn twists of T'(S) (cf. Section 3.1.1 in [14] for the
definition). We denote by 7., the right Dehn twist associated to an element v € £(.5)o. Such
Dehn twists generate the pure mapping class group PI'(S). Multicurves then parameterize
sets of pairwise commuting distinct Dehn twists.

Although Dehn twists generate the pure mapping class group PI'(S), we need more
elements to generate the full mapping class group I'(S). Denote by £°(S) C L(S) the
classes of simple closed curves bounding a 2-punctured disc on S. For v € Lb(S), let
D C S be a disc with boundary 9D = 7. The mapping class group I'(D, 9D) is isomorphic
to Z and a standard generator is the braid turning once to the right and interchanging
the two punctures. The braid twist b, about v is the image in I'(S) of this braid via the
natural monomorphism I'(D,dD) < T'(S). Note that b> = 7,. Moreover, the mapping
class group I'(S) is generated by Dehn twists and braid twists.

2.8. The pants complez Cp(S) was mentioned in the appendix of the classical paper by A.
Hatcher and W. Thurston (see [20] or [30]) and first studied in [15] and [20] where it is shown
to be connected and simply connected for d(S) > 2. It is a two dimensional, not locally
finite, simplicial complex whose vertices are given by the pants decomposition (i.e. maximal
multicurves) of S; these correspond to the facets (simplices of highest dimension = d(S)—1)
of C(S). Given two vertices o, o € Cp(5), they are connected by an edge if @ and o/ have
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d(S)—1 elements in common, so that up to relabelling a; = o}, i = 1,...,d(S)—1, whereas
ap and oy differ by an elementary move, which means the following. Cutting S along the
a;’s, i > 0, there remains a surface S’ of modular dimension 1, so S’ is of type (1,1) or
(0,4). Then, ag and ag, which are supported on S’ should intersect in a minimal way, i.e.
they have geometric intersection number 1 in the first case and 2, in the second case.

We have thus defined the 1-skeleton C’g)(S ) of Cp(S) which, following [30], we call the
pants graph of S. We will not give here the definition of the 2-cells of Cp(S) (see [20] or
[30]), since we will not actually use them. Here, it suffices to say that, for d(S) = 1, the
pants complex coincides with the Farey tessellation of the hyperbolic plane. It is shown in
[30] how to recover the 2-dimensional pants complex from the pants graph.

We will only use the pants graph, i.e. the 1-skeleton C’I(Dl)(S) of Cp(S), which in order to
simplify notation we will simply denote by Cp(S). For d(S) = 1, this is the 1-skeleton of
the Farey tessellation which we call the Farey graph and denote by F'.

2.9. Sometimes it will be useful to consider a disconnected surface S such that all its
connected components are hyperbolic surfaces of the above type. It is easy to reformulate
all the above definitions for this case. Thus the mapping class groups I'(S) and Map(.S)
are just the direct product of the corresponding mapping class groups of the connected
components of S. The same holds for the moduli stack and Teichmiiller space associated
to S. The curve complexes C'(S) and Cp(S) are defined exactly in the same way in the
connected and disconnected case. It is not difficult to see that, if S = ]_[f:1 S; is the
decomposition of S in connected components, then we have:

o C(S) =+ ,C(S;), where x denotes the join of simplicial complexes;

e Cp(8) = Iis Cr(S).
Let us observe that C'(S;) = Cp(S;) = 0, when S; is a 3-punctured sphere, and the empty
set is the neutral element both for the join and the disjoint union (coproduct) operators.

3. RIGIDITY OF CURVE COMPLEXES

In this section we prepare the ground by recalling some rigidity results for the various
curve complexes introduced above in a manner which will be later adapted to the procon-
gruence setting; as a side benefit, it provides a simpler proof of the main result of [30], that
is the rigidity of the pants graph.

3.1. Automorphisms of the curve complex. Let Aut(C(S)) be the group of simplicial
automorphisms of the curve complex C(S). There is a natural homomorphism Map(S) —
Aut(C(9)) induced by the action of diffeomorphisms on the set of simple closed curves.

It is useful to introduce a group theoretic version of this map. Let C7z(S) be the abstract
simplicial complex whose set of k-simplices consists of the set of abelian subgroups of I'(.S)
of rank k + 1 generated by Dehn twists. We denote by 7., the Dehn twist about the simple
closed curve v on S. For all f € Map(S), we then have the identity:

-1 _ _e(f)
forf = Ti(y)
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where e: Map(S) — {£1} is the orientation character. Therefore, conjugation determines
a simplicial action of the extended mapping class group Map(S) on Cz(S) and there is a
natural Map(S)-equivariant surjective map of simplicial complexes C'(S) — Cz(.S), defined
assigning to a multicurve o the abelian subgroup of I'(S) generated by the Dehn twists
7y, for v € 0. Since a Dehn twist 7, is determined by the isotopy class v, this map is an
isomorphism. We will hence identify C(S) with C7z(.S) and the natural geometric action of
Map(S) on multicurves with its action by conjugation on abelian subgroups of I'(S).

In particular, we see that the homomorphism Map(S) — Aut(C(S)) factors through
a homomorphism #: Inn(Map(S)) — Aut(C(S)), where Inn(G) denotes the group of
inner automorphisms of a group GG. From the description of centralizers of Dehn twists
in Map(5), it follows that, for S # Sy 4, this homomorphism is injective. A fundamental
result by Ivanov (cf. [27]) then asserts that, in most cases, 6 is also surjective. Ivanov’s
theorem was subsequently refined by Luo (cf. [29]), who settled the exceptional cases. The
precise statement is as follows:

Theorem 3.1. Let S be a connected hyperbolic surface of type (g,n) with d(S) > 1. Then,
the natural map 6 : Inn(Map(S)) — Aut(C(S)) is an isomorphism except if (g,n) = (1,2),
in which case it is injective but not surjective; in fact 6§ maps Inn(Map(S;i2)) onto the
proper subgroup consisting of the elements of Aut(C(S12)) which globally preserve the set
of vertices representing nonseparating simple closed curves.

As Ivanov showed, Theorem 3.1 allows to determine the automorphisms groups of the
mapping class groups. The basic result needed here is that the group-theoretical action
0: Inn(Map(S)) — Aut(C(5)) extends to an action of the automorphism group of Map(.S).
As shown by McCarthy in Section 1 of [32], in genus < 2, it is not always the case that an
automorphism of Map(.S) preserves the cyclic subgroups generated by Dehn twists. So we
need to tweak a little the definition of # in order to be able to extend it to all Aut(Map(S)).
The crucial remark is that the stabilizer Map(S), of a simplex o € C(S) for the action
of Map(S) is a self-normalizing group. Therefore, if we define Cg(S) to be the abstract
simplicial complex whose set of k-simplices consists of the set of stabilizers of k-simplices
in C(9), there is a natural Map(.S)-equivariant isomorphism C(S) — Cg(S), defined by
the assignment o — Map(S),. It is a deep fact that the set of subgroups {Map(S)s }secc(s)
is preserved by an automorphism of Map(S). Therefore, we get a natural homomorphism:

©: Aut(Map(5))) — Aut(C(S)),

which extends 6. The complete result by Ivanov (cf. [26] and references therein) is the
following;:

Theorem 3.2. The group theoretic action of Inn(Map(S)) on C(S) extends to an action
of Aut(Map(S)) and, if the center of Map(S) is trivial and S # Sp4, then the resulting
natural homomorphism ©: Aut(Map(S)) — Aut(C(S)) is injective.

Proof. We already observed that the natural homomorphism € : Inn(Map(S)) — Aut(C(S5))
is injective for S # Sy 4. Then, the theorem follows from this fact and the group theoretic
lemma:
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Lemma 3.3. Let G be a group with trivial center and H a subgroup of Aut(G) containing
Inn(G). If : H — K is a homomorphism of groups such that its restriction to Inn(G) is
injective, then the homomorphism ¢ is also injective.

Proof. For all f € H and = € (G, we have the identity:

¢(f) - o(imnz) - ¢(f) ™" = ¢(f oinnz o f) = ¢(inn f(2)).
If f # id, then there is some a € G such that inna # inn f(a), because the center of
G is trivial. If ¢(f) were trivial, then the above identity would imply that ¢(inna) =
¢(inn f(a)), in contradiction with the hypothesis that the restriction of ¢ to Inn(G) is
injective. U
O

Throughout this paper we denote by Z(G) the center of a group G. For future appli-
cations, it is interesting to consider in detail also the cases when the center Z(Map(S)) of
Map(S) is not trivial. The Map(.S)-equivariant isomorphism C(S) = Cg(S) implies, more
generally, that, for a finite index subgroup I'* of Map(S), there is a natural homomorphism:

0 Aut(l) — Aut(C(S)).

Proposition 3.4. For I'* a finite index subgroup of Map(S), where d(S) > 1, there is a
natural isomorphism ker ©* = Hom([/Z(I'*), Z(T?)).

Proof. By Theorem 3.2, for d(S) > 1, an automorphism f € Aut(I'*) which acts trivially on
the curve complex C(.9) descends to the identity on the quotient I'*/Z(T'*). The conclusion
then follows from the lemma:

Lemma 3.5. Let G be a group and Aut(G)a the subgroup of elements of Aut(G) which
preserve a normal abelian subgroup A of G. Then, there is a natural exact sequence:

1 = Der(G/A, A) — Aut(G) 4 — Aut(G/A) x Aut(A),

where the action of G/A on A is induced by the inner action of G on A. If, moreover, the
subgroup A is central, there is also an exvact sequence:

1 — HY(G/A, A) — Out(G) 4 — Out(G/A) x Aut(A).

Proof. The first exact sequence is a weak form of Wells’ Theorem in [41] which can be
proved as follows. An automorphism f € Aut(G)4 whose image in Aut(G/A) is trivial and
which restricts to the identity on A, is of the form x + a - x, for some a € A depending
on z € (G. Note that, for x € A, we have a = 1. Let us then define a map Ly: G — A by
L¢(x) := f(x)x~'. This map factors through a map log f: G/A — A which satisfies the
identity:

log f(zy) = f(x)f(y)(zy) ™ = f(2)z™" inn(z)(f(y)y~") = log f() - inn(z)(log f(y)),
where inn(x) denotes conjugation by x, so