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Abstract
In this paper, we introduce and study a new scoring game on graphs called smash

and grab. In this game, two players, called Left and Right, take turns removing a
vertex of the graph as well as all of its neighbours that become isolated by this removal.
For each player and each of their turns, they score the number of vertices that were
removed on their turn. The game ends when there are no more vertices remaining, and
the player with the highest final score wins. We denote by Ls(G) the difference between
Left and Right’s final scores in G when Left starts and both players play optimally (they
both aim to maximise their scores).

We mainly study this parameter for different graph classes. We notably prove that
Ls(F ) ≥ 0 for any forest F (i.e., the first player cannot lose). We then use this result
to compute the exact value of Ls(G) for particular forests such as unions of paths and
subdivided stars. The result in paths then solves the case of a unique cycle. Finally, we
prove that, for a generalisation of the game, computing the score is PSPACE-complete.

Keywords: Scoring game, Games on graphs, Combinatorial game theory, PSPACE-
complete

1 Introduction
Scoring game theory was introduced by Milnor [12] and Hanner [8] in the 1950s. For the
rest of the 20th century, their work was not followed up, but rather inspired both the con-
struction of the so-called economic and combinatorial game theories. It is only in the last

∗This work has been supported by the ANR project GAG (ANR-14-CE25-0006) and by the European
Research Council (ERC) consolidator grant No. 725978 SYSTEMATICGRAPH.

1



two decades that new results appeared on the topic, in particular, with the introduction
of general frameworks of resolutions for particular families (also called universes) of scoring
games.

Combinatorial game theory deals with finite 2-player games with perfect information
and where players alternate turns. The main difference between scoring and non-scoring
combinatorial game theory lies in the winning convention. In non-scoring combinatorial
games, the winner only depends on who makes the last move. In scoring combinatorial
games, points are awarded to the players as the game progresses, and the winner is the player
having the highest number of points when there is no more move available. In Larsson et
al. [10], the authors summarise the main differences between the two families of games and
explain why non-scoring games are far better understood than scoring ones. They also give
a short survey about the different universes of scoring games studied so far, as well as a
general framework (including scoring notations) to deal with them.

In parallel to these general studies, several particular scoring games played on graphs
have been considered in the literature (see [10] for a list, and, e.g., [1, 3] for more recent
papers). Yet, for almost all these games, the formalism described in [10], as well as the
frameworks of the different universes of the literature, were not considered. To the best of
our knowledge, the work presented in [6] is the first study of a scoring game within the recent
scoring framework of Larsson et al. In the current paper, we propose to study a second game
according to this general framework, indifferently called smash and grab or the 0·6 scoring
game. Before giving the rules, we first give the main motivations of our study:

• this game naturally extends another well-studied scoring game of the literature, namely
the graph-grabbing game [17];

• this game can also be considered as a natural scoring version of the well-known octal
game 0 · 6 [4], where isolated pins are points for the players;

• this game will be studied within the formalism of [10], that should now be considered
as a reference for scoring game theory;

• within this formalism, this game can be embedded in the so-called Ettinger’s universe
(see Section 2 for more details). To the best of our knowledge, there is no other concrete
game studied in the literature that explicitly refers to it;

• in its generalised version, a proof of the PSPACE-completeness of the game is given,
which is rare for combinatorial games (especially in a scoring context).

Definition 1 (smash and grab). The game smash and grab is played on an undirected
graph G without isolated vertices. Two players, called Left and Right, take turns removing
a vertex x of G, as well as all the vertices that become isolated by this removal. The number
of vertices removed by each move of a player is added to his/her score. The objective of each
player is to maximise his/her score.
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Figure 1: An example of smash and grab, where the game ends after three moves. If Left
starts, she scores 3 + 2 points (first and third figures), while her opponent scores 2 points
(second figure). It can be proved that these moves are optimal for both players. Hence,
Ls(G) = 5− 2 = 3.

As usual for finite 2-player games with perfect information, games will be studied by
assuming that both players are playing optimally. By following the definitions of Larsson
et al. [10], we define the Left (Right, resp.) score of a scoring game G, denoted by Ls(G)
(Rs(G), resp.) as the difference between the number of points won by Left and Right,
assuming that Left (Right, resp.) starts. Consequently, a positive (negative, resp.) score
means that the game is winning for Left (Right, resp.). In addition, smash and grab has
the specificity that Left and Right always have the same available moves during the game.
With respect to the combinatorial game terminology, such games are called impartial. We
denote by U the set of all impartial scoring games. Consequently, we have for any game G
in U :

Ls(G) = −Rs(G). (1)

As a direct consequence, an impartial scoring game satisfying Ls(G) > 0 (or, equivalently,
Rs(G) < 0) is a game for which the first player to move has a winning strategy.

Figure 1 gives an example of an optimal sequence of moves in smash and grab. Note
that, for the rest of the paper, since a starting instance of smash and grab is a graph
G, the notation G will be used both to define a graph and an instance of the game. Thus,
Ls(G) will denote the Left score of the game played on the graph G.

Other instances of smash and grab show that the first or second player may win, or
the game may end in a draw. Indeed, it suffices to consider small sizes of paths and cycles:

• Ls(P4) = 0;

• Ls(P5) = 1;

• Ls(C4) = −2.

In what follows, we will denote by s(x,G) the number of points earned by a player after
playing a vertex x in G, and by N1[x] the set {x∪D1}, where D1 is the set of neighbours of
x of degree 1. In other words, s(x,G) is equal to |N1[x]|.

Note that a naïve strategy for smash and grab that would consist in choosing, at each
step, a vertex x that maximises s(x,G) may not be productive. As an example, the optimal
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move on P5 consists in playing the middle vertex or an extremity (yielding only one point
immediately, but two points afterwards). The other possible move (that gives two points
immediately) is losing since the second player can end and win the game with his answering
move. However, the score of smash and grab can be computed recursively as follows:

Ls(G) = max
x∈V (G)

{
s(x,G)− Ls(G \N1[x])

}
,

with Ls(G) = 0 when G is empty.
The main issue of the current work is to determine Ls(G) as the above formula does

not yield a tractable algorithm. In some cases, we will exhibit an optimal strategy that
corresponds to the score. Recall that, like many combinatorial games, there is no trivial
correlation between these two problems.

As announced previously, this game is at the crossroads of several types of games. Firstly,
it can be considered as a variation of well-known scoring games. In the graph-grabbing
game [11], played on a connected graph with coins on its vertices, each player removes a
non-cut vertex x of the graph and pockets the coins on x. By adding to each vertex of an
instance of smash and grab a number of coins equal to one plus its number of neighbors
of degree 1 (and by updating this number when playing), one gets an extension of the graph-
grabbing game, where any vertex x can be removed. For this game, there have been several
results ensuring that the first player wins the game when G is an even tree (with a final proof
in [14]), and it is conjectured that it remains true if the graph is bipartite and of even size.
Compared to this game, a high interest of smash and grab is about non-connected graphs,
as disjoint unions of components are generally the major pitfall when solving combinatorial
games. Another very close game is string and coins [4], that is a dual version of the
well-known dots and boxes. In string and coins, the players take turns removing one
edge of a graph, and each time a vertex becomes isolated, the player gets one point and
plays again. smash and grab is the same as string and coins, except that vertices are
removed instead of edges, and the players do not play again when they get points (which is
a more standard rule).

Secondly, smash and grab can also be considered as a natural scoring version of the
octal game 0 · 6 [5]. In [2], octal games played on graphs were considered. For the game 0 · 6,
a move consists in removing any vertex of the graph, except those that are isolated. The
first player unable to move loses. The use of graphs is a nice way to analyse the algorithmic
complexity of such games in a more generic structure than a simple path. The resolution
of the game 0 · 6 (also called officers) is still open on paths. However, transforming this
game into a scoring version (by getting points for each isolated vertex), radically modifies
the complexity, as we will see that the game will be more easily solved on paths. In addition,
note that this transformation can be generalised for several octal games (not only for 0 · 6),
and thus, opens the door to a new family of scoring games.

The paper is organised as follows. In Section 2, some background on scoring combinato-
rial theory will be given in order to set the context in which the game is played. Section 3 is
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about forests, for which it is proved that Ls(G) is non-negative. The exact value of Ls(G)
will then be given for particular forests, i.e., for unions of paths in Section 4 and subdivided
stars in Section 5. In Section 6, the case of a unique cycle is solved, and the cases where the
first player loses are fully identified. Finally, the algorithmic complexity of computing the
score is examined in Section 7, with a proof of the PSPACE-completeness of an extended
version of the game. The last section is about perspectives, in particular about a character-
isation of the equivalence class of 0.

2 Background on scoring game theory
In the literature, different universes of scoring games have been defined in the last decades
according to structural properties of the games. As pioneers of this theory, Milnor and
Hanner restricted their study to nonzugzwang dicot games, also called Milnor’s universe:

• a game G has no zugzwang if each player always prefers moving rather than missing
his turn. In other words, it satisfies Ls(G) ≥ Rs(G) and Ls(G′) ≥ Rs(G′) for every
subposition G′ of G (i.e., there exists a sequence of legal moves where G′ can be reached
from G).

• a game is a dicot if, for every subposition of the game, a player can move if and only
if his opponent also can.

We will denote by U≥0 the set of all impartial scoring games belonging to the class of
nonzugzwang dicot games. From Equation 1, an impartial scoring game G belongs to U≥0
if and only if Ls(G) ≥ 0 and Ls(G′) ≥ 0 for every subposition G′ of G. Indeed, only the
nonzugzwang property must be verified since every impartial game is a dicot.

smash and grab does not belong to U≥0 in general since it has zugzwang instances like
C4. Yet, there are particular instances of smash and grab that belong to U≥0 (e.g., P5).

Later, in his thesis [7], Ettinger proposed general results for the universe of dicot scoring
games (so-called Ettinger’s universe), where zugzwang positions are allowed. Hence, U ,
the universe of all impartial games, corresponds to the subset of Ettinger’s universe with
impartial games.

Remark 2. Note that, for a better consistency of the paper, all the results will be presented
for the impartial universes U and U≥0. In this paper, we will refer to Milnor’s and Ettinger’s
universes for the extended universes U≥0 and U that are not restricted to impartial games.
According to [12] and [7], if not mentioned explicitly, all the results of the current section
remain true for Milnor’s and Ettinger’s universe.

Clearly, the game smash and grab belongs to U . In what follows, we will only present
the material required for solving the so-called sums of games. Given two scoring games G1

and G2, the sum G1 +G2 is the game where a move consists in choosing to play either on G1
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or on G2. The game ends when no move is available, neither on G1 nor on G2. Naturally, if
G1 and G2 are dicots, then G1 +G2 is also a dicot. Ettinger’s universe is thus closed for the
sum operator.

In smash and grab, playing on a non-connected graph is equivalent to playing on the
sum of its connected components. A major issue of combinatorial game theory is about the
computation of the outcome (i.e., who wins) of a sum of games, from the knowledge of each
term of the sum. For that purpose, researchers introduced an equivalence relation, that also
makes sense in the scoring context [7, 12]:

Definition 3. Let F be a subset of U , and let G and H be two games of U . We say that
G ≡F H if, for any game X ∈ F , Ls(G+X) = Ls(H +X).

When considering equivalence, one generally hopes to have the most general result, i.e.,
for the case F = U . However, two games may not be equivalent over U but may be equiv-
alent in a smaller universe, as we will see later for some instances of smash and grab.
Such weaker results remain interesting, in practice, to simplify the computation of the score
of particular games. In addition, note that the above definition can been extended to all
scoring games (not necessarily impartial), by considering both Left and Right scores in the
definition (see [7]).

In order to solve sums of games, combinatorial game theory (scoring or not) aims at
finding a characterisation of the equivalence of two games G and H that would only require
the examination of them (i.e., without considering any game X as in the definition). If G
and H belong to Milnor’s universe, then the following nice result holds from [12]:

Theorem 4 (Milnor [12]). Let G and H be in U≥0. Then, G ≡U≥0
H if and only if Ls(G+

H) = 0.

Roughly speaking, it suffices to compute the score of the sum G + H to decide whether
G and H are equivalent in Milnor’s universe. If 0 denotes the empty game with a score
of zero, this result states that the equivalence class of 0 corresponds exactly to the games
G satisfying Ls(G) = 0. It means that when playing a sum of games in U≥0, all of the
components whose score is zero can be removed without changing the final score of the sum.
This result also states that each game G of U≥0 is its own inverse, i.e., G+G ≡U≥0

0.

If the nonzuzwang property is removed, we fall into Ettinger’s universe and the char-
acterisation of the equivalence of two games is far trickier. Yet, some characterisations of
the equivalence were given according to the structures of G and H [7]. Among them, the
following nice property is given for the equivalence class of 0. First, we say that a game G
is Left-save if Ls(G) ≥ 0 and, for any Right move G′ from G, there exists a Left answer G′′
that is Left-save. Informally, it means that Left can force an even number of moves when
playing second in G.

Theorem 5 (Ettinger [7]). Let G be in U . Then, G ≡U 0 if and only if Ls(G) = 0 and G
is Left-save.
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As a preliminary result, we give a useful lemma about winning strategies for smash and
grab. It claims that if Left is playing optimally in an instance of U≥0, then after each of
her turns, the current score must be at least Ls(G). As a corollary, a first optimal move of
Left must give at least Ls(G) points.

Lemma 6. Let G a position of smash and grab that is in U≥0. Consider the first 2k + 1
moves of a game in G: x1, x2,..., x2k, x2k+1, where x2i+1 ∈ V (G) are the vertices played by
Left and x2i ∈ V (G) are the vertices played by Right. Let G0 = G and Gi be the remaining
graph after playing xi. If the vertices played by Left correspond to a strategy leading to a
score Ls(G) ≥ 0, then we have:

k∑
i=0

s(x2i+1, G2i)−
k∑

i=1

s(x2i, G2i−1) ≥ Ls(G).

Proof. If it is not the case, then the final score on G is less than Ls(G) since Right plays
first in G2k+1 and Ls(G2k+1) ≥ 0 because G ∈ U≥0.

In addition, since the total number of points won by both players equals |V (G)| (i.e., the
total number of vertices), we have the following observation:

Observation 7. For any instance G of smash and grab, Ls(G) ≡ |V (G)| mod 2.

3 Forests are non-negative games
In this section, we first prove that the family of forests is included in U≥0. Recall that a
forest is the disjoint union of trees. We then give sufficient conditions for the game to be a
draw in forests F , i.e., Ls(F ) = 0. For a union of paths G, we use both of these results to
characterise the score of G and the equivalence classes in G (modulo U≥0) in Section 4.

Theorem 8. For any forest F , Ls(F ) ≥ 0.

Proof. Assume that the result is not true and let F be the smallest forest for which Ls(F ) <
0. In particular, after any even number of moves in F , the relative score of the first moves
must be negative. Indeed, since it will be Left’s turn, if it is not the case, then by the
minimality of F , Left can ensure a non-negative score in total.

In particular, Right’s first move must score at least one more than Left’s first move. This
means that any vertex u that maximises s(u, F ), that is, a vertex with a maximal number of
leaves, must be connected by a vertex of degree 2 to another vertex with the same number of
leaves. This way, if Left plays u, then there is always a move for Right that scores s(u, F )+1.

Let u and v be two such vertices with a maximal number of leaves that are both adjacent
to a vertex z of degree 2. Let F ′ = F −{z}, and note that we must have Ls(F ′) ≥ 2. Indeed,
imagine Left plays on z on her first turn (note that only the vertex z is removed). Then,
since Ls(F ) < 0 and Ls(F ) ≥ 1− Ls(F ′), we necessarily have Ls(F ′) ≥ 2.
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The idea of the rest of the proof is that Left will follow, in F , the strategy she has in F ′
to obtain a relative score of 2 and that she will lose at most 1 point (due to z) by doing so.

Let x1 be the first vertex played in F ′ in a strategy leading to Ls(F ′). If playing x1 in
F ′ removes u (v, resp.) and x1 6= u (x1 6= v, resp.), it means that this component is K2.
Indeed, by the definition of u, u has at least one leaf. Removing u when playing another
vertex x1 means that u is a leaf of x1, and thus, u has degree 1 and x1 is its leaf, hence, the
component is K2. Then, playing u is equivalent to playing x1, and we can consider that in
this case we have played u.

By Lemma 6, s(x1, F ′) ≥ Ls(F ′) ≥ 2. In particular, x1 is not a leaf of u nor v (it will
score at most two points, and two points are won if and only if the component is K2, for
which we have considered that we would have played u instead).

Now, consider the move x1 in F . If a vertex t is a leaf of x1 in F ′, since t /∈ {u, v}, it
is still a leaf of x1 in F . Indeed, the only vertices of F ′ that do not have the same degree
in F are u and v. Hence, s(x1, F ) = s(x1, F

′), and if F1 and F ′1 denote the forests obtained
after playing x1 in F and F ′, respectively, we have F ′1 = F1−{z}, i.e., the same vertices are
removed when playing on x1 in both F and F ′.

Turn-by-turn, and until the vertex z is removed from the game, we will construct a
strategy for Left in F that leads to a non-negative relative score, which will be a contradiction.

Left first plays on x1. Assume that 2k + 1 moves, x1, x2, ..., x2k+1, have been played in
F and that z has not yet been removed. Let F0 = F and, recursively, let Fi be the forest
obtained after playing xi. We assume that:

1. The moves can be played in the game F ′. Precisely, for any i ∈ {1, ..., 2k + 1}, if
F ′i = Fi−{z}, then xi ∈ F ′i−1, and the same vertices are removed when xi is played on
in both F ′i−1 and Fi−1. In particular, s(xi, Fi−1) = s(xi, F

′
i−1).

2. No vertex xi is a leaf of u or v.

3. The game in F ′ is the beginning of a strategy for Left to ensure a relative score of at
least 2.

4. The game in F is the beginning of a strategy for Right to ensure a negative relative
score.

Note that these statements are true for k = 0 and the game starting with x1.
We will now try to construct x2k+2 and x2k+3. Consider the answer x2k+2 of Right in

F2k+1 to ensure a total negative relative score in F . This move exists by Property (4). By
the first remark of this proof, we must have

k∑
i=0

s(x2i+1, F2i)−
k+1∑
i=1

s(x2i, F2i−1) < 0. (2)

By Property (3) and Lemma 6, since Left follows a strategy to obtain a relative score of
at least 2:

k∑
i=0

s(x2i+1, F
′
2i)−

k∑
i=1

s(x2i, F
′
2i−1) ≥ Ls(F ′) ≥ 2. (3)
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By Property (1), the scores in F and F ′ are the same, and thus, combining Equations 2
and 3, we obtain that s(x2k+2, F2k+1) ≥ 3. In particular, x2k+2 is not a leaf in F2k+1.

Note that, by Property (2), no leaf of u or v has been played on previously during the
game. In particular, since z is still in F2k+1, u or v is also still in F2k+1 and is not a leaf.
Thus, we have x2k+2 6= z. Hence, one can play x2k+2 in F ′2k+1. Let F2k+2 and F ′2k+2 be the
two forests obtained after playing x2k+2 in F2k+1 and F ′2k+1, respectively.

If z is removed by x2k+2 in F2k+1, it means that z was a leaf of x2k+2 (in particular, u or
v has been played before, and x2k+2 is the remaining vertex among u and v). Then, we have
F2k+2 = F ′2k+2. Then, Left can use her strategy in F ′2k+2 = F2k+2 to obtain a relative score
of at least 2. The final relative score will be of at least 1 since Right wins one more point
with z when playing x2k+2. Thus, it proves that Ls(F ) > 0, a contradiction.

Otherwise, z is still in the game and playing x2k+2 removes the same vertices in F2k+1 and
F ′2k+1, satisfying Property (1). In particular, F ′2k+2 = F2k+2 − {z} and s(x2k+2, F

′
2k+1) ≥ 3.

Thus, one can consider the answer x2k+3 of Left in F ′2k+2 to ensure a score of at least 2. As
before, using Equation 2 and since we must have

k+1∑
i=0

s(x2i+1, F
′
2i)−

k∑
i=1

s(x2i, F
′
2i−1) ≥ Ls(F ′) ≥ 2, (4)

we necessarily have s(x2k+3, F
′
2k+2) ≥ 3.

Consider this move in F2k+2. As before, this move cannot be z. If it removes z, then now
the two games are the same (F2k+3 = F ′2k+3) and Left follows her strategy to have a relative
score of at least 2 in F ′, and will have a relative score of at least 3 in F since she gets one
more point when playing x2k+3, a contradiction.

Thus, we can assume that x2k+3 does not remove z. Hence, this vertex removes the same
vertices in F2k+2 and F ′2k+2 (Property (1)). Since it scores at least 3, it is not a leaf of u
nor v (Property (2)). By the construction of x2k+2 and x2k+3, the properties (3) and (4) are
satisfied.

In conclusion, until z is removed, one can construct, inductively, a sequence of moves
that satisfy Properties (1) to (4). At some point, z must be removed, but then Left has a
strategy to obtain a positive score in F , contradicting the minimality of F .

In the next theorem, we give sufficient conditions for forests F with Ls(F ) = 0.

Theorem 9. For any forest F , if |V (F )| = 4k for some integer k ≥ 0, and F admits a
perfect matching, then Ls(F ) = 0.

Proof. We will prove the result by induction on |V (F )|. When |V (F )| = 4, we have that F is
either P4 or the disjoint union of two K2’s since F admits a perfect matching. In both cases,
it is trivial to see that Ls(F ) = 0. Let k > 1 be an integer and assume now that the result
is true for all forests of order 4k′ with k > k′ ≥ 0 and k′ an integer. Let F be a forest such
that V (F ) = 4k. First, note that Left may not score more than 2 on her first turn, since,
otherwise, there is a vertex adjacent to at least two leaves, and hence, F does not admit a
perfect matching, a contradiction. Hence, Ls(F ) ≤ 2 by Lemma 6. Secondly, Ls(F ) ≥ 0
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by Theorem 8 since F is a forest, and thus, by Observation 7, we have that Ls(F ) ∈ {0, 2}
since |V (F )| is even. Thus, we just need to show that Ls(F ) 6= 2.

If Left scores less than 2 on her first turn, then by Lemma 6, we have that Ls(F ) = 0
since Ls(F ) ∈ {0, 2}. Thus, assume that Left scores 2 on her first turn since she can score
at most 2 on her first turn by the arguments of the previous paragraph. To do so, Left must
remove a vertex v adjacent to a leaf u on her first turn. The edge uv must have been in the
perfect matching M(F ) since u is a leaf. Let F ′ be the graph remaining after Left’s first
turn. Since uv ∈M(F ), F ′ admits a perfect matching M ′(F ′) = M(F ) \ {uv}, and since F ′
is a forest, it must contain a leaf u′ adjacent to a vertex v′. Right removes v′ and scores 2
since u′ is also removed in the process. Again, u′v′ ∈M ′(F ′) since u′ is a leaf. Let F ′′ be the
graph remaining after Right’s first turn. It is clear that F ′′ is a forest, and that F ′′ admits
a perfect matching M ′′(F ′′) = M ′(F ′) \ {u′v′}. Since |V (F )| − |V (F ′′)| = 4, we have that
Ls(F ′′) = 0 by the inductive hypothesis, and thus, Ls(F ) = 0 since the relative score after
the first turn of Left and Right is 0.

Note that these conditions are not necessary since Ls(P3 + P3) = 0. Thus, there exist
forests F such that Ls(F ) = 0 and F does not admit a perfect matching, and forests such
that Ls(F ) = 0 and |V (F )| 6= 4k for some integer k ≥ 0.

4 Complete characterisation for unions of paths
When G is a union of paths, we are able to completely characterise the score of G and the
equivalence classes in G (modulo U≥0). In particular, the score of G can be computed in
linear time. We denote by Pi the path on i vertices. By convention P0 is the empty graph.

Theorem 10. Let P be the class of unions of paths. For any i ≥ 0, with i 6= 3, Pi ≡U≥0
Pi+4,

and P1 + P2 ≡U≥0
P7. Consequently, there are only eight equivalence classes in P modulo

U≥0 which can be represented by the following graphs (grouped by their scores):

• Score 0: P0;

• Score 1: P1, P2 + P3, P1 + P2;

• Score 2: P2, P1 + P3, P1 + P2 + P3;

• Score 3: P3.

Proof. First, recall that, by Theorem 8, we have that G ∈ U≥0 for any graph G ∈ P . For all
n ≥ 0, let Pn = (v1, . . . , vn). By induction on i, we first prove that, for any i ≥ 0, with i 6= 3,
Pi ≡U≥0

Pi+4. Recall that, by Theorem 4, we need to prove that Ls(Pi + Pi+4) = 0. For the
base cases, we have that Ls(P0) = Ls(P4) = 0, Ls(P1) = 1, Ls(P2) = 2, Ls(P3) = 3 and
Ls(P7) = 1. Now, as the inductive hypothesis, suppose that Pj ≡U≥0

Pj+4 for all 0 ≤ j < i,
with j 6= 3. In what follows, for any two graphs G and H, where |V (G)| ≥ |V (H)|, whenever
G ≡U≥0

H, we replace G by H. There are 3 cases:
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1. i = 0 mod 4 or i = 2 mod 4: Ls(Pi + Pi+4) = 0 by Theorem 9.

2. i = 1 mod 4: by the inductive hypothesis, we have that Pi ≡U≥0
P1. Now, we just

have to prove that Ls(Pi+4 + P1) = 0. To prove that Ls(Pi+4 + P1) ≥ 0, we give a
strategy for Left. Left first plays on the v1 of the Pi+4 and scores 1. This leaves behind
Pi+3 + P1, and since i + 3 = 0 mod 4, by the inductive hypothesis, Pi+3 ≡U≥0

P0, and
thus, Ls(Pi+3 + P1) = Ls(P1) = 1. Therefore, Ls(Pi+4 + P1) ≥ 0.

To prove that Ls(Pi+4 + P1) ≤ 0, we give a strategy for Right. If Left first plays
on the v1 (or vn by symmetry) of the Pi+4, then we are done as above. Similarly,
if Left first plays on the P1, then Right plays on the v1 of the Pi+4, and, as above,
Ls(Pi+4 + P1) ≤ 0. If Left first plays on the v2 (or vn−1 by symmetry) of the Pi+4,
then she scores 2 and this leaves behind Pi+2 + P1, and since i + 2 = 3 mod 4, by
the inductive hypothesis, either Pi+2 ≡U≥0

P7 or Pi+2 = P3. In the latter case, Right
plays on the center vertex of the P3, scoring 3, and thus, Ls(Pi+4 + P1) ≤ 0. In the
former case, Right plays on the v2 of the P7, scoring 2, which leaves behind P5 + P1,
but P5 ≡U≥0

P1 by the inductive hypothesis, and the two P1’s cancel each other out,
and hence, Ls(Pi+4 +P1) ≤ 0. Thus, by symmetry, we can assume that Left first plays
on the vx of the Pi+4 for some 2 < x ≤ d(i + 4)/2e. Hence, Left scores 1 on her first
turn. Since i = 1 mod 4, this leaves behind Py +Pz (y, z ≥ 0), where y = 2 mod 4 and
z = 2 mod 4 or y = 0 mod 4 and z = 0 mod 4 or y = 3 mod 4 and z = 1 mod 4. In the
first (second, resp.) case, Py and Pz cancel out since they are both equivalent (modulo
U≥0) to P2 (P0, resp.) by the inductive hypothesis, and thus, all that remains is P1,
hence, Ls(Pi+4 + P1) ≤ 0. In the last case, Pz ≡U≥0

P1 by the inductive hypothesis,
and thus, the two P1’s cancel out, leaving behind Py, and Ls(Py) ≥ 1 by the inductive
hypothesis, and so Ls(Pi+4 + P1) ≤ 0.

3. i = 3 mod 4: by the inductive hypothesis, we have that Pi ≡U≥0
P7 since i 6= 3. Now,

we just have to prove that Ls(Pi+4 + P7) = 0. To prove that Ls(Pi+4 + P7) ≥ 0, we
give a strategy for Left. Left first plays on the v2 of the Pi+4 and scores 2. This leaves
behind Pi+2 +P7. Since Pi+2 6= P3, Right will score at most 2 on his next move. Then,
by Theorem 8, Left can ensure a non-negative score in the rest of the graph, leading
to a global non-negative score.

To prove that Ls(Pi+4 +P7) ≤ 0, we give a strategy for Right. If Left first plays on the
v2 (or vn−1 by symmetry) of the Pi+4, then Right can play similarly on the resulting
Pi+2 to leave behind Pi + P7, and Ls(Pi + P7) = 0 by the inductive hypothesis. Thus,
by symmetry, if Left first plays on the Pi+4, then we can assume that Left first plays on
the vx of the Pi+4 for some 1 ≤ x ≤ d(i+ 4)/2e and x 6= 2. Hence, Left scores 1 on her
first turn. Since i = 3 mod 4, this leaves behind Py +Pz (y, z ≥ 0), where y = 2 mod 4
and z = 0 mod 4 or y = 1 mod 4 and z = 1 mod 4 or y = 3 mod 4 and z = 3 mod 4. In
the first case, by the inductive hypothesis, we have that Pz ≡U≥0

P0 and Py ≡U≥0
P2,

and thus, all that remains is P2+P7, and hence, Ls(Pi+4+P7) ≤ 0 since Right will play
on the P2 and Ls(P7) = 1. In the second case, Py and Pz cancel out since they are both
equivalent (modulo U≥0) to P1 by the inductive hypothesis, and thus, all that remains

11



is P7, hence, Ls(Pi+4 + P1) ≤ 0 since Ls(P7) = 1. In the last case, by the inductive
hypothesis, either one of Py and Pz is equivalent to P7 and the other is equivalent to
P3 or Py and Pz cancel out since they are both equivalent (modulo U≥0) to P7 or P3.
Since the two P7’s cancel out in the former case, all that remains in either case is either
a P3 or a P7, and thus, Ls(Pi+4 + P7) ≤ 0 since Ls(P3) = 3 and Ls(P7) = 1.

The other case is when Left first plays on the P7. Then, there is P5 + Pi+4 remaining
if Left scored 2, and P5 + Pi+4 ≡U≥0

P1 + Pi+4 since P5 ≡U≥0
P1 by the inductive

hypothesis. Right then plays on the v2 of the Pi+4, leaving behind P1 + Pi+2, and
since i + 2 = 1 mod 4, by the inductive hypothesis, Pi+2 ≡U≥0

P1, and thus, all that
remains is P1 + P1 ≡U≥0

P0, and hence, Ls(Pi+4 + P7) ≤ 0. Otherwise, Left scored 1,
in which case, there is Pi+4 +P6 or Pi+4 +P2 +P4 or Pi+4 +P3 +P3 remaining. By the
inductive hypothesis, the first two cases are equivalent (modulo U≥0) to Pi+4+P2 (since
P6 ≡U≥0

P2 and P4 ≡U≥0
P0), and the last case is equivalent (modulo U≥0) to Pi+4. For

the first two cases, Right plays on the v1 of the Pi+4, leaving behind Pi+3 + P2, which
is equivalent (modulo U≥0) to P2 + P2 ≡U≥0

P0 since Pi+3 ≡U≥0
P2 by the inductive

hypothesis as i+ 3 = 2 mod 4, hence, Ls(Pi+4 + P7) ≤ 0. In the last case, Right plays
on the v2 of the Pi+4, scoring 2, and leaving behind Pi+2, which is equivalent (modulo
U≥0) to P1 since Pi+2 ≡U≥0

P1 by the inductive hypothesis as i + 2 = 1 mod 4, and
hence, Ls(Pi+4 + P7) ≤ 0.

This concludes the proof that, for any i ≥ 0, with i 6= 3, Pi ≡U≥0
Pi+4.

Now, we prove that P1 + P2 ≡U≥0
P7. Recall that, by Theorem 4, we need to prove that

Ls(P1 +P2 +P7) = 0. To prove that Ls(P1 +P2 +P7) ≥ 0, we give a strategy for Left. Left
plays in the P2 first, scoring 2. Then, Right can score at most 2. By Lemma 6, Left can
ensure a non-negative score in the rest of the graph, leading to a global non-negative score.

To prove that Ls(P1 + P2 + P7) ≤ 0, we give a strategy for Right. If Left plays in the P1

first, she scores 1, and then, Right plays in the P2 and scores 2. Then, Ls(P1 +P2 +P7) ≤ 0
since Ls(P7) = 1. If Left plays in the P2 first, she scores 2, and then, Right plays on the
v2 of the P7, scoring 2. Hence, there is P1 + P5 ≡U≥0

P1 + P1 ≡U≥0
P0 remaining, and thus,

Ls(P1 + P2 + P7) ≤ 0. Lastly, if Left plays in the P7 first, then Right plays on the P2,
scoring 2. Then, there is P1 + P5 remaining if Left scored 2, and, as in the previous case,
Ls(P1 +P2 +P7) ≤ 0. Otherwise, Left scored 1, in which case, there is P1 +P6 ≡U≥0

P1 +P2

or P1 +P2 +P4 ≡U≥0
P1 +P2 or P1 +P3 +P3 ≡U≥0

P1 remaining. Hence, in each of the cases,
Ls(P1 + P2 + P7) ≤ 0.

It is then easy to see that any for any P ∈ P , P is equivalent (modulo U≥0) to one of the
eight equivalence classes in the statement of the theorem. To finish, one can check that none
of these eight equivalence classes are equivalent (modulo U≥0). Indeed, summing any two
elements of different classes with the same score leads to a graph with positive score.

In particular, we have the following scores for paths:

Corollary 11. Let n ≥ 1. Then,
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Ls(Pn) =


0 if n = 0 mod 4

1 if n = 1 mod 2 and n 6= 3

2 if n = 2 mod 4

3 if n = 3

5 Relative scores of subdivided stars
In this section, we give closed formulas to compute the score of subdivided stars. A subdi-
vided star is a tree with at most one vertex of degree greater than 2. This vertex is called the
root. A subdivided star is characterised by the lengths of the paths that are starting from
the root (without counting the root as a vertex of the path). We first deal with subdivided
stars with at least two paths of length 1.

Proposition 12. Let G be a subdivided star with root r, k ≥ 2 paths of length 1, and t paths
of length `1, ..., `t with `i ≥ 2 for all 1 ≤ i ≤ t. Then, an optimal first move for Left is to
remove r, leading to a score of Ls(G) = k + 1− Ls(

∑t
i=1 P`i).

Note that the score of
∑t

i=1 P`i can be directly computed using Theorem 10: reduce the
paths modulo 4 (except for P7 that must be reduced to P1 + P2) and remove the pairs of
paths of the same size.

Proof. First, note that playing the central vertex r ensures a non-negative relative score for
Left since she scores at least 3, and, in a union of paths, the relative score is at most 3.

Assume that playing r is not an optimal first move for Left. In particular, this means
that Ls(G) > 0. Consider an optimal first move x for Left.

If this move scores 1, then Ls(G) = 1 since Right can ensure a non-negative relative score
in the rest of the graph. Thus, by Observation 7, G has an odd number of vertices. But
since r is not an optimal move, it means that the score given by playing r, which must be
non-negative, is necessarily 0. This would imply, again by Observation 7, an even number
of vertices in G, a contradiction.

Therefore, playing x scores 2 (there is no vertex other than r that gives a score larger
than 2) and does not remove r nor one of its leaves. Hence, x is a vertex of a path Pj for
some j, adjacent to an extremity of Pj. Consider that Right answers by playing r, and note
that he scores at least k + 1 this way. Let H be the graph obtained after these two moves.

We have that Ls(G) ≤ 2− (k+ 1) +Ls(H) since x is an optimal first move in G. By our
hypothesis, since r was not an optimal first move, we have that Ls(G) > k+1−Ls(

∑t
i=1 P`i).

From these two inequalities, we obtain that Ls(H) + Ls(
∑t

i=1 P`i) > 2k ≥ 4. Note that H
is a union of paths, hence, Ls(H) ≤ 3. Furthermore, H is exactly

∑t
i=1,`i 6=j P`i + Pj−2.

Thus, by Observation 7, the relative score of H and the relative score of
∑t

i=1 P`i must be
of the same parity, and so, we must have that Ls(H) + Ls(

∑t
i=1 P`i) = 6, meaning that

Ls(H) = Ls(
∑t

i=1 P`i) = 3. But using Theorem 10, since there is a unique equivalence class
of unions of paths of score 3, it means that H and

∑t
i=1 P`i are equivalent. This is clearly a

13



contradiction, since it would imply that Pj and Pj−2 are equivalent (which is also not true
by Theorem 10).

We now consider subdivided stars with at most one path of length 1.

Proposition 13. Let G be a subdivided star with root r and t paths attached to r of length
1 ≤ `1 ≤ ... ≤ `t with `i ≥ 2 for i > 1. Let n =

∑t
i=1 `i + 1 be the total number of vertices

in G and let todd be the number of paths of odd length. Then:

Ls(G) =

{
1 if n is odd
(n− 3(todd − 1)) mod 4 if n is even.

Note that this result includes the case where G is a path.

Proof. Since Left scores at most 2 on her first turn, we have that Ls(G) ≤ 2 by Lemma 6.
Since the relative score must be non-negative (Theorem 8) and of the same parity as n
(Observation 7), it is necessarily equal to 1 if n is odd and to 0 or 2 if n is even. This proves
the odd part of the result.

Consider now that n is even. In particular, todd is odd. Let p(G) = n− 3(todd − 1). This
number corresponds to the number of vertices that remain after removing a P3 in all the
paths of odd length except one. Since there is at most one path of odd length of size 1, a P3

is counted for todd − 1 paths. In particular, p(G) is even since we remove an even number of
vertices, and p(G) ≥ 2 since at least one path of odd length and the root remain.

Note that if we consider that the P3’s we removed all start by an adjacent vertex of the
root, then there exists a perfect matching M(G) in the remaining vertices. The proposition
says that if the number of edges in this matching is odd, then the score is 2, and otherwise
the score is 0.

We prove by induction on p(G) that Ls(G) = p(G) mod 4. The base case is p(G) = 2.
In this case, there are only paths of odd length. In particular, there is one path of length
1, and all the other (an even number) are of length 3. Left can score 2 by playing on
the root (and thus, also scoring the leaf adjacent to it). Now what remains is a union of
an even number of P3’s, and so, the relative score in the graph that remains is 0. Thus,
Ls(G) = 2 = p(G) mod 4.

Let k > 2 be an even integer and assume now that the result is true for any subdivided
star H of even order with at most one attached path of length 1 and with p(H) < k. Let G
be a subdivided star of even order n with at most one attached path of length 1 and such
that p(G) = k.

Assume first that p(G) = 2 mod 4. Since p(G) > 2, there is a vertex x 6= r adjacent to
a leaf that is not in a path of length 3. Indeed, if all the paths were of length 3, then we
would have p(G) = 4 6= 2 mod 4. Since p(G) > 2, we are also not in the case where all the
paths are of length 3 except for one, which is of length 1. Thus, the vertex x always exists.
By playing on x, Left scores 2 and the remaining graph H is still a subdivided star of even
size with at most one attached path of length 1 (note that H could be a path). We have
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p(H) = p(G) − 2, and, by induction, Ls(H) = 0. Thus, playing on x ensures a score of at
least 2, which is optimal by the first remark of the proof.

Assume now that p(G) = 0 mod 4. Assume for the sake of contradiction that Ls(G) 6= 0.
Then, it must be that Ls(G) = 2, and Left must score 2 on her first move. There are several
possibilities for Left:

a. She plays on the root and scores a leaf adjacent to the root.

b. She plays on a neighbour of a leaf not in a P3.

c. She plays on a neighbour of a leaf in a P3.

In case (a), the remaining graph H is a union of paths with an even number of paths
of odd length and it must be that Ls(H) = 0. Since Ls(H) = 0, then by Theorem 10, this
means that the paths of H that have length not equal to 0 modulo 4 can be partitioned into
pairs of paths of equal length modulo 4, or into triples (Pi, Pj, P7) where i = 1 mod 4 and
j = 2 mod 4 (since P7 ≡ P1 + P2). Besides, by definition, p(G) is invariant modulo 4 by
removing paths of length equal to 0 or 3 modulo 4, by removing pairs of paths of the same
length modulo 4, and by removing a triple of the form (Pi, Pj, P7) as above. Hence, p(G) has
the same value (modulo 4) as a graph with a root and a leaf, i.e., p(G) = 2 mod 4, which is
a contradiction.

In case (b), the remaining graph H is still a subdivided star of even size with at most
one attached path of length 1. By induction, since p(H) = p(G) − 2, we have Ls(H) = 2,
and thus, Right can ensure a final score of 0, a contradiction.

Finally, in case (c), there is one more attached path of length 1 in the remaining graph
H. If H has only one attached path of length 1, then the reasoning is the same as in case
(b). Otherwise, by Proposition 12, Right should answer by playing on the root, thus scoring
3, and leaving behind a union of paths H ′. Since we assume that Ls(G) = 2, we must have
Ls(H) = 0 and Ls(H ′) = 3. By Theorem 10, there must be an odd number of P3’s in
H ′, and every other path that has a length not equal to 0 modulo 4 must be either paired
with another path of equal length modulo 4, or in a triple (Pi, Pj, P7) with i = 1 mod 4 and
j = 2 mod 4. This means that p(G) has the same value modulo 4 as a graph that has a root,
a leaf, and an adjoined P3, i.e., is equal to 2 mod 4, which is a contradiction.

Note that it would be interesting (but seems difficult) to obtain a complete characterisa-
tion with equivalence classes, as in Theorem 10 for paths, which would permit us to compute
the relative score for the disjoint unions of (subdivided) stars.

6 Unions of cycles
Since the first move in Cn always leads to Pn−1, Corollary 11 immediately gives the score of
a unique cycle:
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Corollary 14. Let n ≥ 3. Then,

Ls(Cn) =


−2 if n = 4

0 if n = 0 mod 2 and n > 4

1 if n = 1 mod 4

−1 if n = 3 mod 4

We can actually go further and decide which cycles are equivalent to 0:

Theorem 15. Let n > 2. Then, C2n ≡U 0.

Proof. By Theorem 5, it suffices to prove that Ls(C2n) = 0 and C2n is Left-save. By
Corollary 14, Ls(C2n) = 0. Regardless of Right’s first move in C2n, Right scores 1 and what
remains is P2n−1. Left then plays the center vertex of the P2n−1, i.e., the vertex of minimal
eccentricity. Then, what remains is Pn−1 + Pn−1. It is clear that Ls(Pn−1 + Pn−1) = 0 and
that Pn−1 +Pn−1 is Left-save (recall from Section 2 that, ∀G ∈ U≥0, G+G ≡U≥0

0, and that
Pn−1 ∈ U≥0 by Theorem 8).

Studying the class of unions of paths and cycles (or just unions of cycles, since after one
move on a cycle Cn, what remains is a path Pn−1) is difficult, in the sense that it would solve
the octal game 0 · 6:

Theorem 16. For all n ≥ 1, Ls(Pn + nC3) ≥ 0 if and only if Left wins in Pn in the game
0 · 6.

Proof. First note that Ls(C3) = −1, and that after a player plays in a C3, what remains is
a P2, and so, the next player removes what remains of the C3 on his next turn. Thus, in
Pn +nC3, neither player wants to play first on any of the C3’s since the other player will gain
a score of 1 more than them once the C3 is removed and it will again be their turn. Hence,
both players will play on Pn until it is no longer possible. If Left wins in Pn in the game
0 · 6, then Right is forced to be the first player to play on a C3, and thus, Left will force him
to play first on all n of the C3’s, and hence, Left will gain a score of n over Right just with
the C3’s. Hence, Ls(Pn + nC3) ≥ 0 in this case. If Right wins in the game 0 · 6, then Left
will be forced to play first on all of the C3’s, and hence, Ls(Pn + nC3) < 0 in this case.

7 Complexity
In this section, we define a generalisation of smash and grab, called generalised smash
and grab, and show that determining the outcome of this new game is PSPACE-complete.
This shows evidence that smash and grab is most likely PSPACE-complete as well. gen-
eralised smash and grab is as follows. It is a two-player scoring game where, at each
turn, a player must remove a vertex v from the graph, and, for all u ∈ N(v), if deg(u) ≤ d
(for some integer d ≥ 1 taken as an input for the game) prior to v being removed, then u is
also removed. The player scores the number of vertices removed from the graph on his turn.
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The player with the highest score at the end of the game (when no vertices remain) wins.
Analogously to smash and grab, for a graph G, we let Ls(G, d) be the relative score in
generalised smash and grab, where the graph G and the integer d ≥ 1 are the inputs.
Note that generalised smash and grab is equivalent to smash and grab when d = 1.

We begin by defining the problem that we will modify and then reduce from. It was
shown to be PSPACE-complete in [13], and is as follows:

Definition 17 (The 6-uniform Maker-Breaker Game). Two-player game in which the
input consists of a set of variables X = {x1, . . . , xn} and a conjuctive normal form (CNF)
formula F consisting of clauses C1, . . . , Cm, each containing exactly 6 variables from X, all
of which appear in their positive form. At each turn, first, the player called Left must set a
variable (that is not yet set) to true, and then, the player called Right must set a variable
(that is not yet set) to false. Once all of the variables have been assigned a truth value, Left
wins if the truth assignment has rendered F true, and otherwise, Right wins.

From an instance F of the 6-uniform Maker-Breaker Game, we will replace every clause
C by all n− 6 of the clauses with exactly 7 variables that are a superset of C. Hence, each
clause now contains exactly 7 variables, and we call this new instance (of the now 7-uniform
Maker-Breaker game) φ. Left wins in F if and only if she wins in φ, and thus, the 7-uniform
Maker-Breaker game is also PSPACE-complete. Indeed, the first direction is trivial, and if
Left wins in φ, then she must satisfy each clause C in F since this is the only way to satisfy
all of the supersets of each clause C as Right will set half the variables of X to false (and
hence, for each C in F , there exists a superset in φ that will only be satisfiable in φ by the
variables of its subset in F). Note that 6 is the smallest integer k for which it is known that
the k-uniform Maker-Breaker Game is PSPACE-complete. In general, the main difficulty in
the construction in the proof of the next theorem, is to be able to control the parity of the
number of turns while ensuring some of the vertices are played on before others (with at most
one exception). In order to do so, our construction requires that each clause contains an odd
number of variables which is the reason why we reduce from the 7-uniform Maker-Breaker
game and the reason why d ≥ 15, since in the construction we will require that each of the
clause vertices have degree d+ 1.

Theorem 18. Given a graph G and a fixed integer d ≥ 15 with d 6= 16, determining if
Ls(G, d) ≥ 0 is PSPACE-complete.

Proof. Since the number of turns and the number of possible moves at each turn are both
bounded above by |V (G)|, the game is in PSPACE. To show the problem is PSPACE-hard,
we reduce from an instance φ of the 7-uniform Maker-Breaker Game. We construct, in
polynomial time, an instance G of generalised smash and grab such that Left wins in
φ if and only if Ls(G, d) ≥ 0.

Let x1, . . . , xn be the variables and C1, . . . , Cm be the clauses in the instance φ of the 7-
uniform Maker-Breaker Game. We assume that n is even since we can add a dummy variable
if needed (e.g., a variable that is not contained in any of the clauses). The construction of
G is as follows (see Figure 2 for an illustration): for each variable xi (1 ≤ i ≤ n), there are
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Figure 2: The construction of G from an instance φ of the 7-uniform Maker-Breaker Game.
For legibility, only two variables x1 and x2, and two clauses C1 and C4 are shown. Further-
more, α = d(d− 15)/2e and β = b(d− 15)/2c. Both C1 and C4 contain x1 in φ, and C4 also
contains x2 in φ. Edges to blobs indicate adjacency to all of the vertices in the blob.
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the vertices xi and x̃i, and an independent set of 2m8n8d8 vertices. For each variable xi, the
vertices xi and x̃i are both adjacent to all of the vertices of the independent set of 2m8n8d8

vertices associated to that variable xi. For each clause Cj (1 ≤ j ≤ m), there are 2md
vertices C1

j , . . . , C
2md
j . For each 1 ≤ j ≤ m and 1 ≤ t ≤ 2md, a Kd(d−15)/2e and a Kb(d−15)/2c

are added, and all of their vertices are made adjacent to the vertex Ct
j (if d = 15, then these

are both K0, and so, nothing is added, and recall that d 6= 16, so they both exist unless
d = 15). There are two vertices C∗ and C ′ that are both adjacent to each of the vertices
Ct

j . There are 2m2 + 2m Kd+2’s (clique with d + 2 vertices). Let H be a Kd with d − 3
of its vertices adjacent to the two vertices of an additional K2, one of which is called the
“attachment" vertex. Let the 3 other vertices of this Kd that are non-adjacent to the K2 be
the “triangle". For each variable xi and each clause Cj, if the variable xi is in the clause Cj

in φ, then, for each 1 ≤ t ≤ 2md, there is an H whose attachment vertex is adjacent to xi
and Ct

j , and the other vertex of the K2 of the H is also adjacent to Ct
j . Then H’s are added

and made adjacent to each of the xi and x̃i via their attachment vertices, so that all the xi
and x̃i have degree 2m4n4d4 + 2m8n8d8. An additional 2m6n6d6 H’s are added and each of
their attachment vertices are made adjacent to C∗. Another 2m6n6d6 − 2md H’s are added
and each of their attachment vertices are made adjacent to C ′. For every 1 ≤ i ≤ n and for
each vertex v that is adjacent to both xi and x̃i, v is made to be the attachment vertex of a
new H. This completes the construction.

Note that, for all 1 ≤ j ≤ m and all 1 ≤ t ≤ 2md, the vertex Ct
j has degree d + 1 since

each variable that appears in the clause Cj in φ contributes 2 to the degree of each of the
vertices C1

j , . . . , C
2md
j , each clause in φ contains exactly 7 variables, C∗ and C ′ are adjacent

to each clause vertex, and each clause vertex is adjacent to d−15 additional vertices through
its adjacencies to its associated Kd(d−15)/2e and Kb(d−15)/2c. For each H, each of the vertices
in the Kd−3 also have degree d + 1. For all 1 ≤ i ≤ n, the vertices xi and x̃i both have
degree 2m4n4d4 + 2m8n8d8. The vertex C∗ has degree 2m6n6d6 + 2m2d, and the vertex C ′
has degree 2m6n6d6 + 2m2d − 2md. Lastly, each of the vertices in the Kd+2’s have degree
d+ 1. Every other vertex in G has degree at most d, and hence, is removed when any of its
neighbours are played on.

The main idea behind the construction of G, is to initially incentivise the two players to
play on the variable vertices in G as they would in the instance φ of the 7-uniform Maker-
Breaker Game. Then, to reward Left if she followed a winning strategy in φ in generalised
smash and grab in G, the vertices C∗ and C ′ are adjacent to all of the clause vertices,
which all have degree at most d if Left followed such a winning strategy, and so, if she plays
on C∗ or C ′, she will score all of the clause vertices. The idea from there is to make the
players remove the remaining variable vertices in order to make what remains all simple
disconnected components, and from there, it is easy to decide the outcome of the game in
G. To force the players to play on the vertices in a certain order, large amounts of vertices
of degree at most d are made adjacent to the vertices in such a way that, the earlier we want
the players to play on certain vertices, the greater the order of the number of vertices of
degree at most d there are adjacent to those vertices.

The main difficulty of the proof is the second direction, i.e., proving that if Right wins
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in φ, then Ls(G, d) < 0. Essentially, in G, there are many Kd+2’s so that if Left does not
score all of the clause vertices when she plays on C∗ or C ′ (which is the case if she does not
have a winning strategy in φ), then Right will win in G by making Left play first on all of
the Kd+2’s. Indeed, no player wants to play first on a Kd+2 since they will only score one
vertex, while the other player can then play on the same Kd+2 (now a Kd+1) and score all
d+ 1 of its vertices. Note that Left could also be forced to play first on all of the Kd+2’s in
the proof of the first direction, but there are not enough of them for Right to win in G. The
key difficulty of the proof of the second direction is that Left does not always have to play
on the vertices in the order we want her to, since she is the first player. This is the reason
we add many copies of the graphs H. They are there to ensure that Right can always force
Left to play first on all of the Kd+2’s, even if she deviates from playing on the vertices in the
desired order. In particular, once the attachment vertex of an H is removed, its structure
ensures that a player can either remove it entirely in one turn (by playing on a vertex of its
Kd−3), or play on one of its vertices and leave behind a graph that is removed in one turn,
regardless of the vertex that is played on (by playing on one of the vertices of its triangle,
which leaves behind a singleton). Later, we will see that once all of the variable vertices have
been played on (the last of the vertices that we force the order on), there are no longer any
H’s with attachment vertices. At this point, if it is necessary due to Left deviating earlier,
Right can choose how to play on one of these H’s, in order to ensure Left plays first on the
Kd+2’s.

In what follows, we will refer to two phases for the game in G: the initial phase consists
of all the turns that take place while there still exists a variable vertex, while the final phase
consists of the remainder of the turns after the initial phase.

Now that we have given some intuition regarding the construction of G and the strategies
to follow, the next claims will be useful for proving that there is some structure in terms of
the order the vertices should be played on in optimal strategies as discussed above.

Claim 19. If a player plays on a vertex xi or x̃i for an i for which both xi and x̃i still exist
on each of their first n/2 + 1 turns, then that player has a winning strategy in G.

Proof of the claim. Assume, w.l.o.g., that on each of his first n/2+1 turns, Right has played
on a vertex xi or x̃i for an i for which both xi and x̃i still exist. Then, on each of his first
n/2 + 1 turns, Right scored Ω(m8n8d8). Note that playing on any other vertex in G only
scores o(m8n8d8). Hence, after Right’s (n/2+1)th turn, Right has a score of Ω(m8n8d8) more
than Left since Right played on at least one more such vertex xi or x̃i (for an i for which both
still exist) than Left (recall that n is even). From then on, Right has a strategy that ensures
that, at the end of the game, he will have a score of Ω(m8n8d8) more than Left. Indeed,
while possible, for his next turns, Right continues playing on a vertex xi or x̃i for an i for
which both xi and x̃i still exist, and then, once this is no longer possible, Right plays on the
H’s whose respective attachment vertices make up the independent sets of order 2m8n8d8.
In particular, when playing on those H’s, Right first plays on the H’s for which only their
attachment vertex has been removed, and he plays on a vertex of the Kd−3 when doing so,
which ensures scoring the entire remaining H on that turn. Since Right can ensure scoring
at most n+1 less than Left of these 2m8n9d8 H’s (which each have order O(d)), and the rest
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of the vertices in the graph (excluding the independent sets of order 2m8n8d8 and the H’s
associated with them) amount to o(m8n8d8) vertices, then at the end of the game, Right’s
score will be Ω(m8n8d8) more than Left’s score. �

Claim 20. If a player plays on a vertex xi or x̃i for an i for which both xi and x̃i still exist
on each of their first n/2 turns, and that same player plays on C∗ and C ′ on their next two
turns, then that player has a winning strategy in G.

Proof of the claim. Assume, w.l.o.g., that on each of his first n/2 turns, Right has played on
a vertex xi or x̃i for an i for which both xi and x̃i still exist, and that Right played on C∗ and
C ′ on his next two turns. Then, on each of his first n/2 turns, Right scored Ω(m8n8d8), and,
on his next two turns, he scored Ω(m6n6d6). Since n is even and playing on a vertex xi or x̃i
for an i for which both still exist scores the most possible in G, then Left’s score is at most
the same as Right’s score after Right’s (n/2)th turn. Note that playing on any other vertex
that is not C∗ nor C ′, nor a vertex xi or x̃i for an i for which both still exist, only scores
o(m6n6d6). Hence, after Right’s (n/2 + 2)th turn, Right has a score of Ω(m6n6d6) more than
Left, and by Claim 19, we can assume that after Left’s next turn, there no longer exists an
i for which both xi and x̃i still exist. From then on, Right has a strategy that ensures that,
at the end of the game, he will have a score of Ω(m6n6d6) more than Left. Indeed, while
possible, for his next turns, Right plays on the H’s whose respective attachment vertices
make up the independent sets of order 2m8n8d8 (as in the proof of Claim 19) and the H’s
associated to the independent sets of order 2m6n6d6 and 2m6n6d6 − 2md (those adjacent to
C∗ and those adjacent to C ′, respectively). Since Left can have played in at most 2 of these
H’s before Right plays in one, and Right can pair the H’s associated to the independent sets
of order 2m6n6d6 and 2m6n6d6−2md, so that he plays symmetrically to Left in the H paired
with the one Left plays in, then, at the end of the game, Right’s score will be Ω(m6n6d6)
more than Left’s score. Indeed, this follows since each of the H’s has order O(d) and the
rest of the vertices in the graph amount to o(m6n6d6) vertices. �

Claim 21. If a player plays on a vertex xi or x̃i for an i for which both xi and x̃i still exist
on each of their first n/2 turns, C∗ or C ′ on their (n/2 + 1)th turn, and a vertex xi or x̃i on
each of their next n/2 + 1 turns, then that player has a winning strategy in G.

Proof of the claim. Assume, w.l.o.g., that Right has played on a vertex xi or x̃i for an i for
which both xi and x̃i still exist on each of his first n/2 turns, that he played on C∗ or C ′
on his next turn, and that he played on a vertex xi or x̃i for his subsequent n/2 + 1 turns.
Then, on each of his first n/2 turns, Right scored Ω(m8n8d8), on his next turn, he scored
Ω(m6n6d6), and on each of his subsequent n/2 + 1 turns, he scored Ω(m4n4d4). As in the
proof of Claim 20, Left’s score is at most the same as Right’s score after Right’s (n/2)th

turn. Furthermore, after Right’s (n/2 + 1)th turn, Left’s score is at most 2m2d+ 2md more
than Right’s score (the case where Left played on C∗ before Right played on C ′, and all
the clauses were satisfied by the variable vertices played on thus far). Note that playing
on any other vertex that is not C∗ nor C ′, nor a vertex xi or x̃i, only scores o(m4n4d4).
Hence, after Right’s (n+ 2)th turn, Right has a score of Ω(m4n4d4) more than Left, and by
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Claims 19 and 20, we can assume that after Left’s next turn, C∗ and C ′ no longer exist,
and that, for any i, at most one of xi and x̃i exist. From then on, Right has a strategy
that ensures that, at the end of the game, he will have a score of Ω(m4n4d4) more than
Left. Indeed, while possible, for his next turns, Right plays on a vertex xi or x̃i, and once
this is no longer possible, Right plays on the H’s whose respective attachment vertices make
up the independent sets of order 2m8n8d8 (as in the proof of Claim 19), the H’s associated
to the independent sets of order 2m6n6d6 and 2m6n6d6 − 2md (those adjacent to C∗ and
those adjacent to C ′, respectively), and the H’s associated to the independent sets of order
2m4n4d4 whose attachment vertices were not adjacent to any clause vertex. Since Left can
have played in at most n+ 1 of these H’s before Right plays in one, and Right can pair the
H’s associated to the independent sets of order 2m6n6d6 and 2m6n6d6−2md (as in the proof
of Claim 20), as well as the latter ones associated to the independent sets of order 2m4n4d4,
so that he plays symmetrically to Left in the H paired with the one Left plays in, then, at
the end of the game, Right’s score will be Ω(m4n4d4) more than Left’s score. Indeed, this
follows since each of the H’s has order O(d) and the rest of the vertices in the graph amount
to o(m4n4d4) vertices. �

First, we prove the forward direction, that is, if Left wins in φ, then Ls(G, d) ≥ 0. Assume
Left has a winning strategy in φ. We give a strategy for Left ensuring that Ls(G, d) ≥ 0.
Left first only plays on vertices xi for which neither of xi and x̃i have been played on yet. By
Claim 19, we can assume Right always responds by playing on an x` or x̃` for an ` for which
neither of these vertices have been played on as of yet, as otherwise, Ls(G, d) ≥ 0. Left first
follows her winning strategy in φ in the instance G of generalised smash and grab by
removing the vertex xi when she sets the variable xi to true in φ. Therefore, after n turns,
for all 1 ≤ i ≤ n, exactly one of xi and x̃i has been played on, and both players have the
same score since all the xi and x̃i have the same degree. Also, since Left followed a winning
strategy in φ, each clause is satisfied, and thus, for all 1 ≤ j ≤ m and all 1 ≤ t ≤ 2md,
Ct

j has degree at most d (initially it has degree d + 1). Indeed, for each Ct
j , there exists at

least one ` (1 ≤ ` ≤ n) such that the attachment vertex of the H that is adjacent to x` and
Ct

j was removed, since the vertex of at least one variable x` from the clause Cj was played
on and removed by Left (or Right if he did not play optimally) by her strategy (and this
attachment vertex got removed in the same move since it had degree d). Since n is even, it
is Left’s turn. Left plays on C∗ and scores 2m6n6d6 + 2m2d+ 1 since, for all 1 ≤ j ≤ m and
all 1 ≤ t ≤ 2md, Ct

j has degree at most d and each of the other neighbours of C∗ has degree
d− 1. By Claim 20, we can assume Right plays on C ′, as otherwise, Ls(G, d) ≥ 0. Left now
has a score of 2m2d+ 2md more than Right.

Left now plays on the remaining xi and x̃i. By Claim 21, we can assume Right always
responds by playing on an x` or x̃` as well, as otherwise, Ls(G, d) ≥ 0. Let H1 be the
graph obtained from the graph H by removing its attachment vertex. Then, we can assume
it is Left’s turn, Left has a score of 2m2d + 2md more than Right, and there are an even
number of H1’s (since, initially, there were an even number of H’s in G), an even number
of Kd(d−15)/2e’s, an even number of Kb(d−15)/2c’s, and 2m2 + 2m Kd+2’s, and all of these
components are disconnected. Indeed, for each H, its attachment vertex was removed when
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a player played on either C∗, or C ′, or a vertex of the form xi or x̃i. When excluding the
2m2 + 2m Kd+2’s, since any of the other components can be removed in one turn and they
are all disconnected, Left can ensure scoring at least the same number of vertices as Right in
the final phase (excluding the Kd+2’s). However, note that Ls(Kd+2, d) = −d since the first
player to play in a Kd+2 only removes the vertex they play on, while the second player to
play in a Kd+2 removes the remainder of it. Thus, when including the 2m2 + 2m Kd+2’s, it
is possible that Left will be forced to play first on each of the Kd+2’s, but even in this case,
Right will gain a score of only 2m2d+ 2md back on Left, and thus, Ls(G, d) ≥ 0.

Now, we prove the other direction, that is, if Right wins in φ, then Ls(G, d) < 0. Assume
Right has a winning strategy in φ. We give a strategy for Right ensuring that Ls(G, d) < 0.
Right follows the following pairing strategy in the initial phase:

• While there exists an i for which both xi and x̃i exist, Right plays on x̃i according
to his winning strategy in φ. In the case Left just previously played on xi for some
i, Right assumes that Left set xi to true in φ. In any other case or if Right already
played his desired move in φ on a previous turn, then Right plays on any arbitrary x̃i
for an i for which both xi and x̃i still exist.

• Otherwise, if there is no i for which both xi and x̃i exist, then while C∗ or C ′ still
exists, Right plays on C∗ if possible, and if not, then he plays on C ′.

• Otherwise, if there is no i for which both xi and x̃i exist, and C∗ and C ′ do not exist,
then while there exists any variable vertices xi or x̃i, Right plays on one of them.

The following claim proves that any optimal strategy for Left does not require her to
deviate more than once from playing on the same “type" of vertices as Right in the initial
phase. By “type", we mean that variable vertices (xi and x̃i) for which both xi and x̃i exist
are of the same “type", C∗ and C ′ are of the same “type", and variable vertices where only
one of xi and x̃i exist are of the same “type". Thus, to be more precise, in the initial phase,
we say that Left deviated from playing on the same “type” of vertices as Right if Left does
not play on the same “type” of vertex Right just played on and there still exists a vertex of
that “type”. First, note the cases in which Left can deviate multiple times.

• While there exists an i for which both xi and x̃i exist, Left must either play on C∗, C ′
or a variable vertex xi or x̃i for which only one of them exists. That way, in the former
case, when Right plays on C∗ or C ′ (whichever is remaining), Left can again deviate.
In the latter case, when Right plays on a variable vertex xi or x̃i for which only one of
them exists, Left can again deviate.

• Otherwise, if there is no i for which both xi and x̃i exist, then while C∗ and C ′ still
exist, Left must play on a variable vertex xi or x̃i for which only one of them exists.
That way when Right plays on a variable vertex xi or x̃i for which only one of them
exists, Left can again deviate.
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In any other case, by Right’s strategy in the initial phase and Claims 19 – 21, we can
assume that Left can only deviate from playing on the same “type" of vertices as Right once
in the initial phase, since otherwise Ls(G, d) < 0.

Claim 22. Assuming Right follows the strategy above during the initial phase, for any strat-
egy for Left where she deviates multiple times from playing on the same “type" of vertices as
Right in the initial phase, there exists a strategy for Left where she deviates only once that
results in at least the same final relative score for Left.

Proof of the claim. Assume that Left deviates while there exists an i for which both xi and
x̃i exist. If Left plays on C∗ or C ′, then she clearly scores at most the same on that turn as
if she plays on that vertex in a strategy that does not deviate. Indeed, by Right’s strategy
in the initial phase and Claim 19, Left must then only play on an xi or x̃i for an i for which
both exist until no such i exist, at which point it is Right’s turn, and he plays on whichever
of C∗ and C ′ that is remaining. Moreover, she does not change the parity of the number of
turns since all of the clause vertices are removed once C∗ and C ′ are played on.

If Left plays on a variable vertex xi or x̃i for which only one of them exists, then she
scores the same on that turn as if she plays on one of them in a strategy that does not
deviate. Moreover, she does not change the parity of the number of turns since all of the
vertices that will be played on until these variable vertices are played on, are at distance at
least 3 from these variable vertices and all neighbours of these variable vertices have degree
at most d to begin with. Indeed, by Right’s strategy in the initial phase and Claims 19
and 20, Left must then only play on an xi or x̃i for an i for which both exist, and then once
none of these exist anymore, she must play on C∗ or C ′ (in this case it will be C ′).

The case where Left deviates while C∗ and C ′ still exist is analogous to the case described
in the paragraph above. �

Therefore, by Right’s strategy in the initial phase and Claims 19 – 22, we can assume
Left can only ever deviate from playing on the same “type" of vertices as Right once in the
initial phase. Moreover, by Claim 22, we can assume Left never deviates by playing on a
variable vertex, C∗ or C ′. There are two cases for the final phase (recall that the final phase
begins after the initial phase, that is, when there are no longer any variable vertices left).

Case 1: Left never deviated from playing on the same “type" of vertices as Right in the
initial phase. Since Right followed a winning strategy in φ, there was at least one clause C`

for which all of the vertices Ct
` had degree at least d + 1 the first time one of C∗ and C ′

was played on. Therefore, Left has a score of at most 2m2d − 2md more than Right, and,
by parity, it is Left’s turn. Indeed, if Left played on C∗, then Left did not score any of the
2md copies of at least one of the clauses while Right did, and otherwise, if Right played on
C∗, then Left played on C ′ and scored 2md less attachment vertices of H’s since C ′ has 2md
less H’s whose attachment vertices are adjacent to it than C∗. Note that once both C∗ and
C ′ have been played on, there are no longer any vertices of the form Ct

j left (they all have
degree d + 1 initially and both C∗ and C ′ are adjacent to all of them). Thus, there are an
even number of H1’s, an even number of Kd(d−15)/2e’s, an even number of Kb(d−15)/2c’s, and
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2m2 + 2m Kd+2’s, and all of these components are disconnected. Right employs a simple
pairing strategy for the H1’s, where he just plays on the same vertex Left played on during
the previous turn, in the H1 paired with the one Left just played on. Similarly, whenever
Left plays on a Kd(d−15)/2e (Kb(d−15)/2c, resp.), it is removed, and then, Right also plays on a
Kd(d−15)/2e (Kb(d−15)/2c, resp.), which removes it. Thus, by parity, Right can ensure the same
score as Left in the final phase when excluding the Kd+2’s, but Left will always be forced to
play first on each of the Kd+2’s, since Right responds by playing on the same Kd+2 (now a
Kd+1) each time, and thus, Right will gain a score of 2m2d+ 2md back on Left in this way.
Hence, Ls(G, d) < 0 since Left had a score of at most 2m2d− 2md more than Right at the
beginning of the final phase.

Case 2: Left deviated from playing on the same “type" of vertices as Right once in the
initial phase. There are 4 subcases.

Case 2.1: Left played on a clause vertex, w.l.o.g., C1
q for some 1 ≤ q ≤ m. Hence, at

the beginning of the final phase, Left has a score of at most 2m2d− 2md+O(d) more than
Right, and, by parity, it is Right’s turn. Since φ is an instance of the 7-uniform Maker-
Breaker Game, 7 Kd’s are what remains of the H’s whose respective attachment vertices
were adjacent to C1

q . Thus, there are 7 Kd’s, an odd number of H1’s, an odd number
of Kd(d−15)/2e’s, an odd number of Kb(d−15)/2c’s, and 2m2 + 2m Kd+2’s, and all of these
components are disconnected. Right plays on one of the vertices of the triangle of an H1,
which leaves behind a singleton. Now, there are 7 Kd’s, one singleton, an even number of
H1’s, an odd number of Kd(d−15)/2e’s, an odd number of Kb(d−15)/2c’s, and 2m2 + 2m Kd+2’s,
and all of these components are disconnected. For a single Kd and the singleton, when Left
plays on one of them, Right plays on the other (which removes them both). For the other 6
Kd’s, whenever Left plays on one of them, it is removed, and then, Right plays on another
one, which removes it. For a single Kd(d−15)/2e and a single Kb(d−15)/2c, when Left plays on
one of them, Right plays on the other (which removes them both). The rest of what remains
is analogous to what remains in Case 1, and so, Right follows his strategy as in Case 1 for
the rest. Thus, Ls(G, d) < 0 since even though Left may gain a score of O(d) over Right in
the final phase when not considering the Kd+2’s, Right will gain a score of 2m2d+ 2md back
on Left because of the Kd+2’s.

Case 2.2: Left played on a vertex of an H. Hence, at the beginning of the final phase, Left
has a score of at most 2m2d−2md+O(d) more than Right, and, by parity, it is Right’s turn.
If the H that Left played in is completely gone, then Right plays on the Kd−3 of another
H1, thereby removing it entirely. Right then follows his strategy as in Case 1 since what
remains is analogous to what remains in Case 1. Clearly, Ls(G, d) < 0 since Right will gain
a score of 2m2d+ 2md back on Left because of the Kd+2’s.

If the H that Left played in is not entirely gone, call it H ′, then Right plays on the
triangle of another H1, call it H ′′. Now, what remains is analogous to what remains in
Case 1 except for H ′ and H ′′. Then, Right follows his strategy as in Case 1, except that
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when Left plays on H ′ or H ′′ (H ′′ is a singleton), Right plays on the other, and note that,
no matter where a player plays in H ′, all of H ′ is removed. Since H ′ and H ′′ each have order
O(d), and Right will gain a score of 2m2d+2md back on Left because of the Kd+2’s, we have
that Ls(G, d) < 0.

Case 2.3: Left played on a vertex of a Kd(d−15)/2e or a Kb(d−15)/2c. Hence, at the beginning
of the final phase, Left has a score of at most 2m2d− 2md+O(d) more than Right, and, by
parity, it is Right’s turn. If Left played on a Kd(d−15)/2e (Kb(d−15)/2c, resp.), then Right plays
on a Kd(d−15)/2e (Kb(d−15)/2c, resp.) and both are gone. Right then follows his strategy as in
Case 1 since what remains is analogous to what remains in Case 1. Clearly, Ls(G, d) < 0
since Right will gain a score of 2m2d+ 2md back on Left because of the Kd+2’s.

Case 2.4: Left played on a vertex of a Kd+2. Hence, at the beginning of the final phase,
Left has a score of at most 2m2d−2md+1 more than Right and, by parity, it is Right’s turn.
Right plays on another vertex of the same Kd+2 that Left previously played on, and then
Right follows his strategy as in Case 1 since what remains is analogous to what remains
in Case 1 except that there is one less Kd+2. Clearly, Ls(G, d) < 0 since Right will gain a
score of 2m2d+ 2md− d back on Left because of the remaining 2m2 + 2m− 1 Kd+2’s.

In all of the cases, Ls(G, d) < 0, and this completes the proof.

8 Further work

8.1 Equivalence classes of 0

Playing smash and grab on a graph G where each connected component belongs to U≥0 al-
lows for more simplifications according to Theorem 4. For example, we can immediately con-
clude that Ls(P5+P4) = 1 since P4 ≡U≥0

0, or that Ls(P5+P5+P4) = 0 since P5+P5 ≡U≥0
0.

For the instances of smash and grab that do not belong to U≥0, similar simplifications
turn out to be harder. For example, the game C4 +C4 is not equivalent to 0 and has a score
of −4. For this reason, characterising the equivalence class of zero is the first natural study
that must be considered, as it allows to remove all such games in a sum without changing
the score.

Games satisfying G ≡U 0

From Theorem 4, we know that all the instances of smash and grab that are in U≥0 are
equivalent to 0 if and only if their score is 0. But this equivalence is proved to be true only
in the universe U≥0. Can it be extended to the whole universe U? For example, we have the
following positive result:

P4 ≡U 0.
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It means that all the connected components isomorphic to P4 can be removed from any in-
stance of smash and grab. The proof of this result comes from the fact that P4 is Left-save
and Ls(P4) = 0 (from Theorem 5). However, it does not hold for all the instances of U≥0
satisfying Ls(G) = 0. For example, consider the graph P8 that satisfies Ls(P8) = 0 and
belongs to U≥0. This game is not equivalent to 0 since it is not Left-save. Indeed, if the first
player in P8 plays in a such a way that P5 +P2 remains after their turn, then they can force
an odd number of moves by playing in such a way that P2 + P2 remains after their second
move. As a consequence, we have the somehow suprising result Ls(P8 + C4) = 2 since Left
can force Right to start in the C4.

Therefore, it would be interesting to characterise the instances of smash and grab that
are in U≥0 and satisfy Ettinger’s property, and, as a first step, to do it for unions of paths.
Indeed, in Section 4, we have characterised the equivalence classes of unions of paths modulo
U≥0, but the problem remains open modulo U , even for deciding what are the single paths
equivalent to 0. Note however that this question has been solved in the case of cycles in
Section 6.

Games for which G+G ≡U 0

A second interesting question concerns the inverse of a game G. From Theorem 4, we
know that every instance G of smash and grab belonging to U≥0 satisfies G + G ≡U≥0

0.
Moreover, from Theorem 5, this equivalence is extended to U :

∀G ∈ U≥0, G+G ≡U 0.

This result holds since Ls(G + G) = 0 and G + G is Left-save (it suffices that Left plays
symmetrically to Right on the other component). If G belongs to U , this result is no longer
valid as shown by the example of C4 + C4. Solving this in general would imply first to
characterise the graphs G for which Ls(G+G) = 0 when G ∈ U \U≥0. Figure 3 below shows
that Ls(G) = 0 is not a sufficient condition for that. Indeed, for the graph G from this
figure, we have that Ls(G) = 0 and Ls(G+G) = −2. Indeed, on G+G, whatever the first
moves of Left (playing first) are, Right can answer until reaching either the position C3 +C3

(of value −2) or C3 + G (of value −1, but in that case, he has already won one additional
point before).

Figure 3: An example of a graph satisfying Ls(G) = 0 and Ls(G+G) = −2.
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8.2 Other perspectives

As we have shown for forests, it would be nice to find other graph classes in which Left
never loses, assuming both players play optimally. This seems like a very difficult question
in general, since already for cycles this is not true. Thus, an interesting direction to take
would be to find necessary and sufficient conditions for this. It would also be intriguing
to know if there exists a polynomial-time algorithm to determine LS(F ) for any forest F .
Another direction to take would be to study generalised smash and grab for at least
the same graph classes we considered in this paper. Lastly, we wonder in which complexity
class smash and grab lies in. Due to our result that generalised smash and grab is
PSPACE-complete, it seems likely that smash and grab would also be PSPACE-complete
(note that it is in PSPACE). A first step towards answering this question would be to prove
that smash and grab is NP-hard.
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