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Abstract: Iron is one of the most abundant non-volatile elements in the solar system. As a major
component of planetary metallic alloys, its immiscibility with silicates plays a major role
in planetary formation and differentiation. Information about these processes can   be
gained by studying the equilibrium Fe isotope fractionation between metal alloys and
molten silicates at conditions of core formation. In particular, recent attention has been
paid to    56  Fe/  54  Fe equilibrium isotope fractionation at conditions relevant to
Earth’s core formation and the influence that light elements (O, H, C, Ni, Si and S)
have had in this process. Most of these experimental studies relied on the
measurement of Fe isotope fractionation from quenched phases of silicate melts and
molten iron alloys. The experimental works are extremely challenging, and may suffer
different drawbacks. To overcome this, we use   ab-initio   computational methods to
perform a systematic study of the    56  Fe/  54  Fe equilibrium isotope fractionation in
molten and solid Fe  1-x  S  x    alloys at conditions of the core formation (60 GPa,
3000 K). We show for the first time, that equilibrium isotope fractionation factors from
solid systems can be used as proxies for molten systems with differences between
these two methods less than 0.01 ‰ at the relevant P-T conditions. Additionally, we
discuss the effect of sulphur concentration on the equilibrium Fe isotope fractionation
and show that although there are some structural changes due to atom substitutions,
the wide range of studied concentrations produces   b  -factors that are constant within
~ 0.01‰. Finally, we discuss the implications of our results for the interpretion of recent
experiments and the understanding of core crystallization processes.
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x Equilibrium isotope fraction factors from solid alloys can be used as proxies for 
molten systems 

x The effect of sulphur on isotope fractionation factors are within a 0.02‰ for all the 
studied alloys 

x Bond type and local environment are the controlling parameters of Fe isotope 
fractionation in Fe1-xSx alloys  

x No measurable Fe fractionation should be produced between liquid and solid Fe1-xSx 
alloys at conditions of Earth’s core formation.   

Highlights (for review)
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ABSTRACT 18 

Iron is one of the most abundant non-volatile elements in the solar system. As a major component of 19 

planetary metallic alloys, its immiscibility with silicates plays a major role in planetary formation and 20 

differentiation. Information about these processes can be gained by studying the equilibrium Fe 21 

isotope fractionation between metal alloys and molten silicates at conditions of core formation. In 22 

particular, recent attention has been paid to 56Fe/54Fe equilibrium isotope fractionation at conditions 23 

relevant to Earth’s core formation and the influence that light elements (O, H, C, Ni, Si and S) have had 24 

in this process. Most of these experimental studies relied on the measurement of Fe isotope 25 

fractionation from quenched phases of silicate melts and molten iron alloys. The experimental works 26 

are extremely challenging, and may suffer different drawbacks. To overcome this, we use ab-initio 27 

computational methods to perform a systematic study of the 56Fe/54Fe equilibrium isotope 28 

fractionation in molten and solid Fe1-xSx alloys at conditions of the core formation (60 GPa, 3000 K). 29 

We show for the first time, that equilibrium isotope fractionation factors from solid systems can be 30 

used as proxies for molten systems with differences between these two methods less than 0.01 ‰ at 31 

the relevant P-T conditions. Additionally, we discuss the effect of sulphur concentration on the 32 

equilibrium Fe isotope fractionation and show that although there are some structural changes due to 33 
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atom substitutions, the wide range of studied concentrations produces E-factors that are constant 34 

within ~ 0.02‰. Finally, we discuss the implications of our results for the interpretation of recent 35 

experiments and the understanding of core crystallization processes.   36 
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INTRODUCTION 46 

Iron is the major element of solar system planetary cores, in relation with the nucleosynthesis 47 

sequence. Iron plays a major role in every stance of planetary formation and differentiation. 48 

Geophysical approaches have confirmed the presence of iron for Earth’s core but with almost 10% of 49 

light elements required to make up its mass (Hirose et al., 2013). Traditionally the effects due to the 50 

presence of light elements in the core are being inferred by geophysical studies where the density and 51 

sound velocity propagation are studied as function of light element concentration to match those 52 

values reported from geophysical models such as PREM. However, recently it has been suggested that 53 

the Fe isotopic composition in the mantle could be used to infer the composition of Earth’s core 54 

(Bourdon et al., 2018; Craddock and Dauphas, 2010; Craddock et al., 2013; Lesher et al., 2020; Shahar 55 

et al., 2016; Sossi et al., 2016). This is based on the assumption that the presence of elements such as C, 56 

O, Si, S should affect the partitioning of iron isotopes between the mantle and the core. Originally, it 57 

has been suggested that core-mantle differentiation will leave imprints on the iron isotope signature of 58 

Earth’s mantle because of the difference of Fe valence state and coordination in the mantle (Fe2+) and 59 

in the core (Fe0 metal) (Polyakov, 2009). That study suggested that the mantle should be enriched in 60 

heavy isotopes, product of equilibrium isotope fractionation during differentiation. However, 61 

subsequent explanations argue that the bulk silicate Earth is chondritic in its iron isotopic composition 62 



and that any difference in isotope composition seen in basalts is due to fractionation during partial 63 

melting of the rock from which they have been formed (Craddock et al., 2013). Indeed, isotope 64 

compositions in natural rocks are scattered in values, with G56Fe a -0.01 ‰ for carbonaceous 65 

chondrites, G56Fe a -0.1 to +0.1 ‰ for enstatite chondrites and G56Fe a +0.1 ‰ for basalts (Craddock 66 

and Dauphas, 2011; Liu et al., 2017; Poitrasson et al., 2013). These scattered values are therefore 67 

interpreted to suggest that the accessible mantle has a Fe isotope composition that is indistinguishable 68 

from chondritic composition (i.e. G56Fe a 0 ‰). Apart from expected evidence of the presence of light 69 

elements in the core due to difference in chemical bonds, one must also consider the effects of 70 

pressure and temperature. It is well known that equilibrium fractionation effects should vanish at high 71 

temperatures. However, in the case of lower mantle and core conditions where pressures are also 72 

high, these fractionation effects might still be important. Recently, Shahar et al. (2016) have carried 73 

out experiments and computational modelling on the effects of pressure and light elements (such as H, 74 

C, O) on the equilibrium isotope fractionation of 57Fe/54Fe at the core-mantle boundary. Their work 75 

has found a significant imprint on isotope fractionation due to light elements such as C and H 76 

(G56Fea0.03-0.05 ‰) whilst elements such as O leave almost no imprint (G56Fea0.007-0.01 ‰). Their 77 

results support the suggestions by Craddock et al. (2013) that in order to have a mantle with a G56Fe 78 

near 0‰, light elements such as C and H that provide a large imprint in fractionation should not be 79 

present in the core at a significant level. Additionally, it favours the presence of O as a light element in 80 

the core. However, the effects of other light elements such as S on equilibrium Fe isotope fractionation 81 

at core conditions are yet unclear as well as any pressure induced magnetic effects that can be of 82 

relevance. There has been recent experimental work by (Ni et al., 2020); Shahar et al. (2015) on the 83 

effects of S on Fe isotope fractionation between solid metal and liquid metal, or between metal and 84 

silicate. In both cases, sulfur enters into the metallic phases and preferentially into the liquid metal 85 

phase. Shahar et al. (2015) found that metal-silicate fractionation increases significantly with the 86 

sulfur content in the metal, whereas Ni et al. (2020) observed that the solid-liquid fractionation in this 87 

system does not depend on the sulfur content of the liquid metal. Obviously, much work needs to be 88 



done to understand these effects at temperature and pressure conditions of the terrestrial core, far 89 

away from experimental studies performed below 2 GPa. In this context, the difficulty to carry out 90 

experiments at high pressure and high temperature leads to the use of crystalline phases such as hcp 91 

Iron or I4 Fe3S as proxies of the molten systems leading to large extrapolations and possible errors in 92 

the interpretation of final results. This approach is used for instance in Liu et al. (2017) where high-93 

pressure data (up to 206 GPa) suggest a minuscule Fe isotope fractionation between metal and silicate 94 

that is one order of magnitude lower than the one found by Shahar et al. (2015) at 1-2 GPa. 95 

In recent years, computational techniques have become useful tools to estimate isotope fractionation 96 

factors in mineral systems. This is particularly true for methods based on quantum mechanics that 97 

allow to describe the vibrational properties of light and heavy isotopes at any pressure and 98 

temperature conditions (Blanchard et al., 2017). However, the weakness of these methods typically 99 

lies in the use of the quasi-harmonic approximation that falls when temperature increases or when the 100 

systems become fully molten. In addition, in dynamical systems such as liquids and melts, it has been 101 

shown that configurational disorder needs to be taken into account in order to obtain meaningful 102 

equilibrium fractionation factors (Blanchard et al., 2017; Pinilla et al., 2015).  103 

In this work, we use ab-initio computational methods to perform a systematic study of the 56Fe/54Fe 104 

equilibrium isotope fractionation in molten and solid Fe1-xSx alloys at conditions of the core formation. 105 

By comparing the fractionation factors obtained from solid and molten systems, we estimate the 106 

validity of the experimental approximation consisting in using solid metals as a proxy for molten 107 

alloys. Additionally, we comment on the effects of S concentration on Fe isotope fractionation in liquid 108 

systems. We discuss our findings on view of latest results on equilibrium Fe isotope fractionation and 109 

their relevance for the formation of the Earth’s core. 110 

 111 

METHODS  112 



2.1 Equilibrium isotope fractionation factor from harmonic vibrational modes 113 

The equilibrium isotope fractionation factor of an element displaying two isotopic forms Y and Y* 114 

between two phases a and b is related to the ratio of the isotope concentration ratios:  115 

𝛼(𝑎, 𝑏, 𝑌) =
(𝑛𝑌∗

𝑛𝑌
)

𝑎

(𝑛𝑌∗
𝑛𝑌

)
𝑏

          , 116 

where nY is the mole fraction of isotopes Y in phase a. The equilibrium fractionation factor between 117 

two phases can be related to the reduced partition function ratio β(a,Y) of each phase by: 118 

ln(α(a,b,Y))=ln(β(a,Y)) - ln(β(b,Y)). Isotopic reduced partition function ratios are usually presented as 119 

103 ln(β(a,Y)) in permil. The reduced partition function ratio β(a,Y) describes the isotopic fractionation 120 

properties of a given phase normalized to the properties of a classically behaving system. It can be 121 

shown that within the harmonic approximation and using the Teller-Redlich rule for frequencies 122 

(Wilson et al., 1955), the β(a,Y) factor in a solid phase can be written as (Meheut et al., 2007): 123 

𝛽(𝑎, 𝑌) = [∏ ∏
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𝑒−ℎ𝜐𝑞,𝑖/(2𝑘𝐵𝑇)
]

1/𝑁𝑁𝑞

                          (2) 124 

where νq,i and ν*q,i are the phonon frequencies of the i-th branch with wave vector q for the two 125 

isotopologues. Nat is the number of atoms in the unit-cell and N is the number of sites occupied by the 126 

Y atom in the unit-cell. h and kB are the Planck and Boltzmann constants respectively, and T the 127 

temperature. The second product in equation 2 is usually performed on a grid containing Nq q-vectors 128 

to ensure full convergence of the β(a,Y) value. 129 

 2.2 Equilibrium isotope fractionation factor from the kinetic energy 130 

To calculate the equilibrium fractionation factor directly from molecular dynamics simulations of 131 

liquid systems, we can use the equation relating the β-factor to the atomic kinetic energy (K) 132 

(Polyakov, 1998, 2009): 133 



𝑙𝑛𝛽(𝑎, 𝑌) =
∆𝑚
𝑚∗ (

𝐾
𝑘𝐵𝑇

−
3
2

) ,                    (3) 134 

where Δm=m*-m with m* the mass of the heavier isotope. In this work we have used the definition of 135 

kinetic energy (K) as a function of the partial vibrational density of states (pDOS) that can be 136 

computed directly from computer simulations or experiments using nuclear resonant inelastic X-ray 137 

scattering spectroscopy (NRIXS) (Dauphas et al., 2018; Dauphas et al., 2012; Polyakov, 2009). In this 138 

way, the kinetic energy of an atomic specie in the phase of interest can be defined as a function of the 139 

vibrational density of states of this atomic specie, g(ν), as (Vos et al., 2015): 140 

𝐾 =
3
2

∫ 𝑔(𝜈)𝛼(𝜈, 𝑇)𝑑𝜈𝜈𝑓
𝜈𝑖

∫ 𝑔(𝜈)𝑑𝜈𝜈𝑓
𝜈𝑖

,                             (4) 141 

with α(ν,T) the kinetic energy of a quantum harmonic oscillator. This last term is defined as: 142 

𝛼(𝜈, 𝑇) = ℎ𝜈 (
1

𝑒ℎ𝜈/𝑘𝐵𝑇 − 1
+

1
2

).                      (5) 143 

The vibrational density of states of a system of atoms can be retrieved from the Fourier transform of 144 

the velocity auto-correlation function (VCF) thermodynamically averaged over all atoms of a given 145 

specie. The pDOS for a system of N atoms is given by 146 

𝑔(𝜐) = ∫ 𝑑𝑡
〈𝒗(𝑡) ∙ 𝒗(0)〉
〈𝒗(0) ∙ 𝒗(0)〉

∞

−∞
𝑒𝑖2𝜋𝜈𝑡                (6) 147 

The VCF has been calculated directly from ab-initio molecular dynamics simulations at the 148 

temperature and pressure of interest. 149 

 150 

2.3 Computational details 151 

The calculations in this work are based on density functional theory as implemented in the VASP code 152 

developed by Kresse and Hafner (1994) and updated by Kresse and Furthmuller (1996). The exchange 153 



and correlation energy was represented by the generalized-gradient-approximation GGA approach in 154 

the version for solids, PBEsol, developed by Von Barth (2004). Electronic wave functions were 155 

expanded on a plane-wave basis with a maximum cutoff energy of 600 eV, which guarantees 156 

convergence of all calculated properties. Pseudopotentials of the projector augmented wave type 157 

(Blöchl, 1994; Kresse, 1999) were used for Fe and S, with an electronic configuration of valence states 158 

3s2 3p6 3d6 4s2 and 3s2 3p4, respectively.  159 

Ab-initio molecular dynamics (AIMD) calculations were performed using a Nosé-Poincaré thermostat 160 

(Bond et al., 1999) and a Parrinello-Raman barostat (Hernandez, 2001) to work at temperatures and 161 

pressures of interest. All systems were thermodynamically equilibrated at core formation conditions 162 

(60 GPa, 3000 K) by means of a NPT ensemble for a minimum time of 2 ps, which was found sufficient 163 

to guarantee fully thermodynamic equilibrium. Once the system was equilibrated to the desired 164 

pressure and temperature, calculations were subsequently performed in a NVT ensemble at the same 165 

temperature, using a Nosé-Hoover thermostat (Hoover, 1985; Nosé, 1984). All AIMD calculations were 166 

carried out with an integration time of 0.5 fs. 167 

In order to understand the effect of S on the Fe isotope fractionation, we selected the following 168 

systems: a pure solid hcp iron structure (54 atoms) and its molten counterpart (0 at%S), a solid I4 169 

Fe3S structure (64 atoms) and its molten counterpart (25 at%S) and two liquid alloys with 170 

intermediate compositions of 9.4 at%S and 17.2 at%S (64 atoms each). All calculations besides the one 171 

for pure liquid iron have been carried out at 60 GPa and 3000 K. In the case of pure liquid iron we have 172 

carried out calculations at a higher temperature of 6000 K  due to the fact that at this pressure of 60 173 

GPa and 3000 K, the most stable phase of iron is still the solid hcp structure and not a molten system, 174 

as shown by previous phase diagram calculations (Alfé et al., 2002). In order to understand the effect 175 

of temperature on force constants and isotope fractionation factors, we have run an extra AIMD 176 

calculation of solid hcp Fe at 300 K.    177 



Additional to the AIMD calculations mentioned above, we have also carried out zero-temperature 178 

structural optimizations of the two crystalline systems, to estimate the 56/54Fe equilibrium isotope 179 

fractionation factor from vibrational properties using the harmonic approximation through equation 180 

(2). We estimated vibrational frequencies by using first the perturbation theory method as 181 

implemented in VASP to obtain the dynamical matrix. Then, force constants and vibrational 182 

frequencies have been post-processed using the PHONOPY code (Togo and Tanaka, 2015). Phonon 183 

frequencies are given by the eigenvalues of the dynamical matrix. The k-point for total energy 184 

convergence as well as the q-mesh used to obtain convergence of vibrational properties used in this 185 

work can be found in Table 1. Using these parameters, frequencies and E-factors are converged to 186 

0.001 cm-1 and 0.0001 ‰ respectively. Additionally, we have produced solid solutions at similar 187 

concentration as the two liquid alloys discussed above using the solid solution method reported by 188 

D’Arco et al. (2013); Mustapha et al. (2013). The structures of these solid solutions were found to be 189 

dynamically non-stable and therefore their isotope fractionation factors are not reported in this work. 190 

It should also be noted that we have found magnetic effects to be non-relevant at the studied pressure 191 

and temperature conditions and therefore have not been taken into account in this work (See Valencia 192 

et al. (2020)).  193 

Keeping in mind these methodological part, we can now outline the four different methods used in this 194 

work to estimate E-factors and explain the limitations and advantages of each one of them. Firstly, the 195 

trajectories obtained from finite-temperature AIMD calculations have been used to obtain the velocity 196 

auto-correlation function (VCF) and subsequently, the partial density of states (pDOS) using equation 197 

(6). One limitation of the pDOS method lies on the length of the trajectory used to obtain meaningful 198 

results given that the noise in the velocity auto-correlation function increases with the length of the 199 

time interval and could lead to non-converged pDOS spectra. In this work, the reported pDOS are 200 

obtained as an average of several 6 ps trajectories (at least 5 trajectories) obtained over a longer MD 201 

trajectory. We have estimated the kinetic energy and subsequently the E-factor using equations 4 and 202 



3 respectively. In this method, the interatomic force constant can also be retrieved from the pDOS, 203 

using the following equation (e.g. Dauphas et al. 2012): 204 

〈𝐹〉 =  𝑚
ℏ2  ∫ 𝑔(𝜐)+∞

0 𝜐2𝑑𝜐 (7) 205 

This method has the advantage to include anharmonic effects as well as configurational disorder, of 206 

relevance in the case of liquid systems. We will refer to this method as the “pDOS-melt” results.  207 

Furthermore, we have used the same pDOS methodology applied to Fe-hcp and Fe3S-I4 crystalline 208 

systems with AIMD calculations performed at 300 K and 60 GPa. The E-factors obtained through this 209 

method will be presented as the “pDOS-solid” results.  210 

Using the snapshots from the same AIMD trajectories of the molten systems, we have performed zero-211 

temperature constant-pressure optimisations of the atomic positions in order to minimise the total 212 

energy. Following this, we have used the relaxed configurations to calculate vibrational properties and 213 

estimate the E-factor using equation 2. This method is similar to the one presented in previous works 214 

by Pinilla et al. (2015) and results obtained from this method will be referred as the “RELAX” results. 215 

In the “RELAX-melt” method the obtained snapshots can be seen as those resembling a glassy system 216 

obtained through rapid quenching and characterised by structural disorder but where bond distance 217 

distribution has been evened out due to optimization of atomic positions. Finally, in the case of 218 

crystalline Fe-hcp and Fe3S-I4, we have calculated the vibrational properties within the harmonic 219 

approximation from the optimised structure at zero temperature and used equation 2 to obtain the E-220 

factor. Results from these calculations will be known as “RELAX-solid” results. It should be noted that 221 

in the case of solid structures, the RELAX-melt method (i.e., AIMD at finite temperature followed by 222 

zero-temperature relaxations) converges to the same results as the RELAX-solid method (i.e., direct 223 

zero-temperature structural relaxation). A summary of the methods used in the present study can be 224 

found in Table 2.    225 

    226 



3. RESULTS AND DISCUSSION 227 

3.1 Iron and sulfur kinetic energies 228 

To determine the kinetic energy for Fe and S atoms we calculated the velocity auto-correlation 229 

function (VCF) for all the studied systems as shown in Figure 1. In the case of liquid alloys, the typical 230 

behaviour for dense liquids was observed, with an intermediate negative region produced by atomic 231 

collision and a subsequent rise before oscillating around a zero correlation (Hansen and McDonald, 232 

2005). The fact that the positive part of the VCF is larger than the negative one describes a system with 233 

net diffusion, opposite to what is seen in the case of solids. The corresponding pDOS are also displayed 234 

in Figure 1. It is interesting to note that in the case of solids the pDOS has a zero value at zero 235 

frequency. At low frequency (long times) the pDOS of solids should follow a quadratic trend just like 236 

the one described by the Debye model for the long wavelength limit (Hansen and McDonald, 2005) 237 

and corresponding to acoustic vibrational modes. This is different from what is seen in the case of 238 

liquids where diffusive effects lead to a net pDOS value at zero frequency. Additionally, in the case of 239 

solids we have also displayed pDOS from zero-temperature vibrational frequencies to show the effect 240 

of temperature producing a broader spectrum. 241 

 242 

Using the pDOS we have determined the kinetic energy via equation 4.  Figure 2 shows the iron kinetic 243 

energy as a function of temperature for some of the studied systems. We note the large error bars 244 

reported in these results, where kinetic energies for liquid and solid system are close. However, we 245 

observe in details, systematic trends. Fe atoms have a slightly smaller kinetic energy than S atoms with 246 

a KS  - KFe = 0.8 meV for solid Fe3S at 300 K and 60 GPa. An Fe atom in pure solid Fe hcp lattice has an 247 

average kinetic energy KFe-solid = 43.4 meV at 300 K whereas a similar atom in a Fe3S structure has a 248 

KFe3S-solid = 44.2 meV. This difference complies with the fact that the Fe-S bond has a more covalent 249 

nature thus producing a stronger bond than a pure metallic Fe-Fe bond. This conclusion could also be 250 

extended to liquids but with a smaller magnitude. Similar behaviour has been also reported by Morard 251 



et al. (2008) in the case of Fe-S-Si liquid alloys. Overall, the Fe kinetic energy of Fe1-xSx alloys tends to 252 

be slightly higher than those based on pure Fe. Furthermore, the kinetic energy of an Fe atom in a 253 

solid, liquid and gas phase of these alloys is different due to the bond nature, but the trends are not the 254 

same depending on the composition investigated. All systems possess a larger kinetic energy than that 255 

for a free Fe atom (3kBT/2) = 38.7 meV/atom at 300 K, but in the case of pure Fe, the solid has a lower 256 

kinetic energy than that found for the liquid phase, whereas, this effect is reverted in the case of the 257 

Fe3S system. Finally, we can observe that the kinetic energy difference decreases as temperature 258 

increases, leading to a constant value due to the increase of diffusive-like contributions.   259 

 260 

3.2 Iron β-factors from solid and molten alloys 261 

 262 

The 56Fe/54Fe reduced partition function ratios (β-factors) obtained from all methods described in 263 

Table 2 are shown in Figure 3. A further insight into our results can be obtained from the iron force 264 

constants displayed in Table 3. We need to differentiate the results estimated from calculations at zero 265 

temperature (RELAX-melt and RELAX-solid methods) from those at finite temperature (pDOS-melt 266 

and pDOS-solid methods). At 3000 K, E-factors from the later methods seem to be | 0.02 ‰ lower 267 

than the E-factors from the former one (Fig. 3). Consistently, force constants from pDOS calculations 268 

(pDOS-melt and pDOS-solid) are ~ 100 N/m smaller than those from frequency methods (RELAX-melt 269 

and RELAX-solid) (Table3). This difference is found to be related to shorter Fe-Fe and Fe-S bonds at 270 

zero temperature as well as to the truncation in the kinetic energy integral to a certain maximum 271 

cutoff value of 246 meV (See SI). This truncation procedure is much on the lines to what is done for 272 

NRIXS experiments (Dauphas et al., 2012). 273 

If we now compare solid, glass and liquid results, we can make several observations. For both Fe and 274 

Fe3S compositions, RELAX-melt and RELAX-solid methods present comparable results for the E-factors 275 

(Fig. 3) or the force constants (Table 3). The RELAX-melt method includes some configurational 276 

disorder like in a glass, even if the distribution of bond distances has been diminished by the 277 



optimization of atomic positions. Therefore, these results suggest that the isotopic properties of a glass 278 

system, as that given by the RELAX-melt method, may be equivalent to that of a perfect solid structure. 279 

When dealing with liquid systems taking full account of thermal effects such as in the case of the pDOS 280 

calculations, we see that the E-factors extrapolated at conditions of core formation (3000 K, 60 GPa) 281 

from a liquid Fe simulation run at 6000 K and from a solid simulation run at 300 K are comparable 282 

with βFesolid-βFeliquid ≈ 0.02 ‰ at 3000 K. The same conclusion can be drawn for the Fe3S composition. 283 

Overall, our results highlight that although configurational disorder is different in all systems, bond 284 

type and local environment are the controlling parameters of this modelling.  This shows that β-factors 285 

obtained from solid systems may in principle be used in place of molten ones, with differences not 286 

larger than 0.02 ‰ at conditions of core formation. Hence, we can conclude that crystalline or glassy 287 

iron alloys are good proxies for molten systems for deep Earth studies as has already been done in 288 

several experimental works. 289 

 290 

Finally, we can compare the values of iron force constants calculated for pure Fe-hcp and Fe3S using 291 

the RELAX-melt or RELAX-solid methods to the equivalent NRIXS-derived room-temperature values 292 

reported in previous experimental works by Shahar et al. (2016) and Liu et al. (2017). Calculated and 293 

experimental values are all in good agreement with the largest difference between these values of 294 

about 10% for the pure Fe system (Table 3). It is noteworthy that there are no data for solid alloys at S 295 

concentrations of 5.6 and 10.6 wt% because these solid alloys were found to be dynamically unstable 296 

under the pressure used. 297 

 298 

3.3. Thermal extrapolation of the E-factor  299 

The temperature dependence of the E-factor for zero-temperature calculations (RELAX-solid and 300 

RELAX-melt methods) and finite temperature MD simulations (pDOS-solid and pDOS-melt methods) 301 

has been determined using equations 2 and 3 respectively. The procedure of using vibrational 302 

frequencies or the partial density of states obtained at a given temperature to extrapolate the 303 



functional behaviour of E-factors to other temperatures is a widely used approach both in theory and 304 

experimental analysis, but can be prone to errors. Here we assess the validity of such procedure by 305 

comparing the E-factors obtained using the pDOS method from AIMD simulations performed at several 306 

temperatures (3000 K, 4000 K, 5000 K, 6000 K and 7000 K) with the values obtained using an 307 

extrapolation procedure (Fig. 4). Our results show that the data extrapolation from a simulation at 308 

3000 K toward higher temperatures is perfectly valid. On the other hand, the data extrapolation 309 

towards 3000 K from simulations performed at higher temperature (4000-7000 K) lead to small 310 

uncertainties. Extrapolated values oscillate from one simulation temperature to the other but globally 311 

these oscillations do not exceed the error bar already calculated for the pDOS-melt method (about 312 

±0.01 ‰ at 3000 K, Fig. 4). More critical is the linear extrapolation up to 3000 K of the pDOS-solid 313 

simulation run at 300 K. In order to assess the validity of this extrapolation, we ran an overheated Fe-314 

hcp structure at 60 GPa and 3000 K. This simulation leads to a E-factor close to the melt one at the 315 

same conditions, suggesting that this extrapolation overestimates the force constant by about 30 N/m 316 

(Fig. 4b) and the E-factor by about 0.01 ‰ (Fig. 4a). Data for pDOS-solid displayed in Figure 6 as well 317 

as Tables 3 and 4 have been corrected to account for this overestimation. 318 

Overall, our results suggest that the force constant determined by spectroscopic analysis at room 319 

temperature will be overestimated by 30 N/m when discussing implications at conditions near the 320 

3000 K. This overestimation is of the same order of magnitude as error bars reported in spectroscopic 321 

methods (Dauphas et al., 2012; Roskosz et al., 2015). Therefore, these results warn on the use of solids 322 

as proxies for high-temperature liquids and make this approximation acceptable for a range of 323 

temperatures between 1000-2000 K. It is important to say that the behaviour observed here for the 324 

force constant as a function of temperature is true at the high-pressure regime where this work has 325 

been carried out. However, we expect a more significant correction at low pressures where vibrational 326 

effects, thermal expansion and even magnetic effects might be more pronounced.  327 

 328 

3.4. Correcting for fluidicity effects on estimated E-factors 329 



The pDOS methodology described above has been widely used for the NRIXS-based and static 330 

computation study of isotope fractionation properties in crystalline systems where the harmonic 331 

approximation is most of the time a good assumption (Bourdon et al., 2018; Dauphas et al., 2018). 332 

However, a direct extension to liquids may not be appropriate since entropy and fluidicity effects are 333 

dominated by low-frequency modes. In particular, the pDOS of liquids has a non-zero value at zero 334 

frequency, which corresponds to the diffusion mode (Fig 1).  335 

To assess the effect of fluidicity on the calculated E-factors we have used the two phase approach 336 

proposed by Lin et al. (2003) and Lin et al. (2010) in which the partial density of states (𝑔(𝜈)) of a 337 

system with 3N degrees of freedom can be partitioned into a gas- and a solid-like component: 338 

𝑔(𝜈) = 𝑔𝑔(𝜈) + 𝑔𝑆(𝜈),   (8) 339 

where the gas-like diffusive component 𝑔𝑔(𝜈) corresponds to 3Ng = 3fN degrees of freedom with f 340 

being the gas fraction. The remainder, 𝑔𝑆(𝜈), describes a non-diffuse system in which 𝑔𝑆(0) = 0 (i.e. 341 

no diffusion). Thus, the degrees of freedom from the system that behaves in a solid-like way are 3NS = 342 

3N(1-f). 343 

In order to estimate the solid-like density of states, it is necessary to define the gas-like diffusive 344 

component 𝑔𝑔(𝜈) and the gas fraction f.  In their original paper, Lin et al. (2003) approximate 𝑔𝑔(𝜈)  to 345 

that of a hard sphere fluid defined as: 346 

𝑔𝑔(𝜈) = 𝑠0

1+[𝜋𝑠0𝜈
6𝑓𝑁 ]

2,  (9) 347 

where 𝑠0 is the original 𝑔(𝜈) zero-frequency value. Likewise, the gas fraction, f, can be written as   348 

2Δ−9/2𝑓15/2 − 6Δ−3𝑓5 − Δ−3
2𝑓

7
2 + 6Δ−3

2𝑓
5
2 + 2f − 2 = 0,  (10) 349 

 where  350 

Δ(T, ρ, m, 𝑠0) = 2𝑠0
9𝑁

(𝜋𝑘𝐵𝑇
𝑚

)
1/2

𝜌1/3 (6
𝜋

)
2/3

  (11) 351 

with 𝑚 the mass of the particles and 𝜌 = N/V, the density. ' is a function of the studied alloy. Note that 352 

through MD calculations, the obtained value s0 determines ' and subsequently 𝑔𝑔(𝜈) and the gas 353 



fraction also called fluidicity factor f. In this way, any thermodynamic property can be estimated as a 354 

sum of gas and solid contributions. 355 

The respective decompositions at conditions of the core formation can be seen in Figure 5. Results 356 

show that the pDOS for a gas decays rapidly and monotonically as frequency increases. This behaviour 357 

is expected since in gases usually the mean free path is larger than the particle diameter. In the case of 358 

a solid-like system, and as shown earlier, the velocity auto-correlation function oscillates around zero 359 

with amplitudes decreasing as time increases. In a single particle system oscillating under a harmonic 360 

potential, this oscillation can be fitted to a cosine function and the 𝑔𝑆(𝜈) resembles a Dirac delta. In the 361 

case of a solid the 𝑔𝑆(𝜈) has several peaks reflecting the ordered nature of crystal structures. 362 

Furthermore, the values of the fluidicity factor f increases as a function of temperature showing how 363 

the diffusive character of the alloy increases with temperature (Fig. 5c). We have used these results to 364 

estimate the E-factor corrected for fluidicity effects in the case of Fe and Fe3S melts. Results are 365 

reported in figure 6. The results with or without fluidicity correction are similar with E-factors 366 

differing by less than 0.01 ‰ among them. Therefore, fluidicity effects present in the pDOS are not 367 

relevant when estimating the equilibrium fractionation factor of Fe in liquid Fex-1Sx alloys. 368 

 369 

 370 

3.5. Effect of S concentration on Fe β-factor 371 

 372 

In order to evaluate the effect of S on the iron β-factor we have performed calculations on four systems 373 

with S concentrations ranging from 0.0 to 25 at% (Fig. 6). As already mentioned in part 3.2, results 374 

from zero-temperature methods (RELAX-melt and RELAX-solid) must be discussed separately from 375 

pDOS-based methods. Overall, all methods show a small variation of E-factors (i.e. not larger than 0.02 376 

‰) over the whole S concentration range. However, calculations show subtle trends where the Fe E-377 

factor changes continuously with S concentration (see green and black lines in Fig. 6). In addition, the 378 

change seems to be different for the case of crystalline and non-crystalline systems (Figs. 3 and 6). In 379 



the case of crystalline systems (RELAX-solid and pDOS-solid results) we see the E-factor for pure Fe-380 

hcp to be larger than those of Fe3S-I4. The same trend is observed for the force constants (Table 3). 381 

Conversely, pDOS-melt and RELAX-melt results show the opposite behaviour where E-factors and 382 

force constants increase with S content. However, we note here that experimental uncertainties likely 383 

exceed these differences calculated here for P-T conditions relevant to the Earth’s core formation.  384 

The fact that E-factors and force constants depend on concentration in the case of Fe1-xSx alloys can be 385 

understood from the local structural and chemical environment described through the coordination 386 

number and bond lengths (Smith, 1956). Therefore, we have derived the partial radial distribution 387 

functions and coordination numbers as a function of S content for solid and liquid systems (Fig. 7). In 388 

the case of molten alloys, we see that sulphur shows some covalent bonding with iron in the first shell, 389 

creating shorter Fe-S bonds and increasing slightly the length of the remaining Fe-Fe bonds. Indeed, 390 

Figure 7c clearly shows that the Fe-Fe coordination number (CNFe-Fe) goes from 13.4 at 0 at%S to 9.8 at 391 

25 at%S, showing a decrease in the number of Fe atoms surrounding another Fe atom. Likewise, the 392 

Fe-S coordination number increases from 0.0 in absence of sulphur to 3.1 at 25 at%S. By adding the 393 

Fe-Fe and Fe-S coordination numbers together, we see that the total number of atoms surrounding a 394 

Fe atom in molten systems is fairly constant through all the S concentration range, suggesting that S 395 

atoms substitute readily for Fe atoms within the melt. Therefore, the nearly constant total 396 

coordination number and the increase in the number of shorter Fe-S bonds with sulphur 397 

concentration lead to an increase of E-factors and force constants for all molten alloys. In contrast, in 398 

crystalline systems, atoms are more localized around their equilibrium position and as a result, bond 399 

length distributions tend to be narrower than in melts, as seen in figure 7.  Additionally, Fe3S-I4 400 

displays an average Fe-Fe distance significantly larger (+6%) than in Fe-hcp (Fig. 7) while the total 401 

coordination number remains nearly the same. This observation explains why crystalline Fe3S 402 

presents a smaller E-factor and force constant than Fe-hcp. 403 

A closer look at Fe3S-I4 shows that this structure has three distinct Fe crystallographic sites: FeI, FeII 404 

and FeIII whose E-factors are 0.094, 0.103, 0.117 ‰ at 60 GPa and 3000 K respectively. The first 405 



coordination shell of the FeI site displays 12 Fe atoms (average distance dFeI-Fe=2.44 Å) and 2 S atoms 406 

(average distance dFeI-S=2.08 Å). FeII site is surrounded by 10 Fe atoms (dFeII-Fe=2.40 Å) and 4 S atoms 407 

(dFeII-S=2.14 Å) while FeIII site is surrounded by 10 Fe atoms (dFeIII-Fe=2.38 Å) and 3 S atoms (dFeIII-408 

S=2.13 Å). Iron in site III has the highest E-factor because its total coordination number is the lowest 409 

(13) and is dominated by iron with the shortest Fe-Fe bonds. Between sites I and II, displaying the 410 

same total coordination number of 14, iron in site II has the highest E-factor in relation to a larger 411 

number of S neighbours and a shorter average bond length. 412 

Results thus suggest that the small changes seen in the force constants and E-factors when S 413 

concentration increases in Fe1-xSx alloys are mainly due to a combination of attenuated structural 414 

changes related to atomic coordination and bond stiffness. The geochemical implications and possible 415 

reappraisals of existing experimental data related to these small variations are discussed below. 416 

 417 

3.6. Implications in the context of terrestrial core formation 418 

Our theoretical calculations alleviate a number of controversies and speculations in the field of HP-HT 419 

behaviour of Fe isotopes in solid and liquid alloys. To a certain extent, these conclusions likely hold for 420 

other isotopic systems. 421 

First of all, it is commonly proposed that solids and glasses could be considered as representative of 422 

molten counterparts as a first approximation (Liu et al., 2017; Shahar et al., 2016; Yang et al., 2019). 423 

This was obviously proposed for lack of better alternatives. For pure iron, the simple close-packed 424 

structure of liquids, the similarities between density and compressibility relative to its solid phase 425 

under core conditions made this assumption reasonable (Laio et al., 2000). Similar assumptions were 426 

also made for silicates for which structural data also indicates strong similarities between glasses and 427 

melts at the local scale (Dauphas et al., 2014; Mysen and Pascal, 2005; Sanloup et al., 2013). Our results 428 

demonstrate, in the case of pure iron and iron sulphides that this assumption holds at least in the high 429 

pressure and temperature conditions prevailing during the Earth’s core formation. 430 



Second, another common assumption made to extrapolate experimental spectroscopic results to 431 

planetary conditions (Liu et al., 2017; Shahar et al., 2016; Yang et al., 2019) or, conversely to try to 432 

explain flagrant inconsistencies between spectroscopic and experimental results (Shahar and Young, 433 

2020) focusses on the validity of harmonic approximations. Anharmonicity must indeed be present at 434 

some level as it is the mechanism responsible for thermal expansion, which is present in geological 435 

materials. For example, the volume of forsterite expands by 8% when the temperature is increased 436 

from 300 to 2300 K (Bouhifd et al., 1996) and no expansion would be present if the bonds were 437 

perfectly harmonic. If the bonds were perfectly harmonic, then the force constant of those bonds 438 

should not vary with temperature. Conversely, anharmonicity in interatomic potentials would be 439 

manifested as an apparent variation of the force constant of the iron bonds as temperature changes. 440 

Our results show such a variation (Fig. 4b). The Fe force constant decreases from 288 N/m at 300 K to 441 

262 N/m at 3000 K for solid iron, and the force constant for liquid iron decreases from about 255 N/m 442 

at 3000 K to 238 N/m at 7000 K. However, these variations are of the same order of magnitude as 443 

error bars reported in spectroscopic studies. Consistent results were recently produced in the case of 444 

silicate minerals and glasses (Roskosz et al., in prep.). This is an important result because it 445 

strengthens the use of spectroscopic approach to derive isotopic properties of geomaterials at extreme 446 

conditions. It also highlights one more time the unexplained inconsistency between fractionation 447 

factors derived from experimental petrological experiments (e.g. Shahar et al. (2015) and theoretical 448 

and spectroscopic determinations (Liu et al., 2017; Shahar et al., 2016; Yang et al., 2019). To date this 449 

discrepancy remains unexplained but is clearly beyond the effects related to the anharmonic nature of 450 

metallic materials. 451 

Third, these data can be used to describe Fe isotopes distribution within core forming materials during 452 

its crystallization. At the studied conditions (60 GPa and 3000 K), our calculations suggest that no 453 

measurable fractionation should be produced between liquids and solids even if incongruent 454 

crystallisation of a Fe-S molten alloy is considered. The limited amount of light alloying element and Ni 455 

should not change this conclusion since NRIXS measurements performed on solid analogues 456 



confirmed that reasonable amounts of these elements could not significantly modify the force 457 

constants of the alloy (Liu et al., 2017; Shahar et al., 2016). Moving to milder conditions, experiments 458 

were recently performed to mimic core formation in planetesimals where pressure and temperature 459 

do not exceed a few GPa and 1600 K. Clearly, extrapolations of our calculations to lower temperature 460 

and pressure is limited by phase transitions and no firm conclusion can be drawn in the context of 461 

planetesimal differentiation. Nonetheless, as a first attempt, we have compared our '56/54solid-462 

liquid=103(lnEsolid-lnEliquid) results with those recently reported by (Ni et al., 2020) concerning 463 

planetesimal core crystallization (Table 4). We find our results to be about five times smaller than 464 

their reported average value of '56/54solid-liquid = 0.09r0.04 ‰ at 1573 K for a similar range of S 465 

concentration and much lower pressure.  If our predicted very small fractionation is confirmed by 466 

future calculations performed at lower pressure and temperature, then the relatively heavy iron 467 

isotopic signature of iron meteorites could not be explained solely by core crystallization and may 468 

also derive from fractionation associated to processes involved during the exhumation of core 469 

materials. 470 

 471 

4. CONCLUSIONS 472 

In this work, we have used computational methods to understand the effect of S on Fe equilibrium 473 

isotope fractionation in Fe1-xSx alloys as well as the consequences of using solid metal as proxies of 474 

molten alloys when performing experimental studies. We have shown that although configurational 475 

disorder could be different between these systems, bond type and local environment are the 476 

controlling parameters of Fe isotope fractionation and that β-factors obtained from solid systems may 477 

in principle be used in place of molten ones, with differences not larger than 0.01 ‰ at the high 478 

pressure and temperature conditions investigated here. In addition, while the Fe force constant is 479 

found to decrease with increasing temperature, this consequence of the anharmonicity of the 480 

interatomic bonds remains smaller than the typical error bars of spectroscopically-derived force 481 



constants at high pressure. This result makes valid the extrapolation in temperature of such 482 

experimental force constants. Regarding the S concentration effect, we observe changes in Fe E-factor 483 

and force constant much smaller than the estimated error bars even if the subtle and continuous 484 

trends with S concentration can be rationalized by a combination of structural changes related to 485 

atomic coordination and bond stiffness. Our calculations have thus suggested that no measurable 486 

fractionation should be produced between liquid and solid even if incongruent crystallisation of a Fe-S 487 

molten alloy is considered at conditions of the Earth’s core formation. However, it is important to note 488 

that the results outlined here for Fe1-xSx alloys apply to high pressure and high temperature conditions 489 

and that the effect of anharmonicity, S concentration and possibly magnetization on Fe isotopes 490 

behaviour at milder conditions could be larger than what has been found in this work.     491 
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Figure captions 
 
Figure 1. Calculated velocity correlation function (right) and partial density of states (left) 
for different molten alloys (top) and solid crystalline systems (bottom). For solid systems, 
the pDOS were also calculated from zero-temperature vibrational frequencies (violet 
curves). 
 
 
Figure 2. Iron kinetic energy difference as a function of temperature for the studied solid 
and liquid systems at 60 GPa. The difference has been taken with respect to the kinetic 
energy per atom of an ideal gas (3kBT/2). The inset is a closeup of the kinetic energy for the 
region between 3000K and 6000K. 
 
 
Figure 3. 56/54Fe E-factor in pure Fe and Fe3S liquid and solid systems estimated using the 
RELAX-solid (blue circles) and RELAX-melt (green diamonds) methods, and the integration of 
the pDOS for a liquid (black squares) and solid (red triangles) system. Dashed lines correspond 
to results from NRIXS experiments reported by Liu et al. (2017). 
 
Figure 4.  a) Temperature dependence of the Fe E-factor estimated using the pDOS-melt 
method. Colour-circles show values from independent AIMD simulations performed at 3000, 
4000, 5000, 6000 and 7000 K. Solid lines correspond to temperature dependences estimated 
from a single simulation performed at the displayed temperatures, and then extrapolated to 
other temperatures. Violet dashed line corresponds to results from the pDOS-solid method 
for Fe-hcp run at 300 K and extrapolated at higher temperatures. b) Fe force constant as a 
function of temperature in liquid iron (pDOS-melt method). Violet-dotted line and blue-
dashed line correspond to values obtained from pDOS-solid at 300 K and 3000 K respectively.  
 
 
Figure 5. Partial density of states for a) pure iron at 6000 K and b) Fe3S at 3000 K, both at 60 
GPa. Black-solid line represents total pDOS, dashed and dash-dotted lines are the solid and 
gas contributions respectively. c) fluidicity factor f as a function of temperature for the pure 
iron system. 
 
 
Figure 6. 56/54Fe E-factor as a function of S concentration at 60 GPa and 3000 K using 
different calculation methods. In addition to the four standard methods summarized in 
Table 2, “pDOS decomp.” corresponds to the pDOS-melt result corrected for fluidicity 
effects (cf. section 3.5). Experimental results from Shahar et al. (2016) and Liu et al. (2017) 
are shown for comparison. The small panel on the right hand side corresponds to a zoom up 
of results obtained at 0 and 25 at% and is displayed to facilitate the reading of the reported 
values.  
 
 
Figure 7. Structural properties for molten Fe1-xSx alloys. a) and b) panels correspond to Fe-Fe 
and Fe-S radial distribution functions respectively for various S concentrations. Dotted and 
Dashed-dotted lines are values for crystalline Fe-hcp and Fe3S-I4 at 300K. c) Fe-Fe (black dots) 

Figure Captions Click here to access/download;Figure;Figure_captions.docx



and Fe-S (red squares) coordination numbers as a function of S concentration. Green line 
shows the total coordination number for any concentration. Blue values correspond to 
coordination numbers for Fe-hcp and Fe3S-I4 crystalline structures.  
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Crystalline system Supercell size k-points mesh q-points-mesh 

Fe - hcp 4x4x4  3x3x3 4x4x4 

Fe3S – I4 2x1x2  1x2x1 6x6x6 

Table 1. k and q meshes used for the zero-temperature calculation of electronic and vibrational 

properties of crystalline systems. 

 

Method Details 103ln(E) 

pDOS-melt Full AIMD trajectory at 60 GPa 

and finite temperature (3000 K 

for all alloys besides pure 

molten Fe computed at 6000 K). 

Anharmonic and 

configurational disorder effects 

included.  

Calculated using the pDOS and  

kinetic energy (equations 3, 4 

and 6) 

pDOS-solid Full AIMD trajectory at 60 GPa 

and 300 K. Anharmonic and 

configurational disorder effects 

included 

Calculated using the pDOS and 

kinetic energy (equations 3, 4 

and 6) 

RELAX-melt Snapshots taken from the liquid 

AIMD trajectory – structural 

relaxation at constant P and T = 

0 K. Some configurational 

disorder effects taken into 

Calculated using the vibrational 

frequencies (eq. 2) 

Tables Click here to access/download;Table;tables-revised.docx



account. Frequencies 

estimated using the harmonic 

approximation 

RELAX-solid Optimization of Fe-hcp and 

Fe3S-I4 crystal structures at T = 

0 K. Frequencies estimated 

using the harmonic 

approximation.  

Calculated using the vibrational 

frequencies (eq. 2) 

 

Table 2. Summary of the methods used here for determining the E-factors. 

 

System pDOS-melt pDOS-solid RELAX-melt RELAX-solid Other 
works 

Fe 239±7 258±8 330±23 345±19 3121, 3212 

 

Fe1-xSx with x=5.6 
wt% 

238±26 ---- 340±26 ---- ---- 

Fe1-xSx with 
x=10.6 wt% 

232±14 ---- 344±7 ---- ---- 

Fe3S 244±5 228±7 352±7 330±29 

 

3271 

Table 3. Interatomic force constant of iron for Fe1-xSx alloys in solid, glass and liquid states. Values are 

given in N/m. NRIXS results from 1 Liu et al. (2017) and 2Shahar et al. (2016) are shown for comparison. 

Typical error value for the displayed NRIXS data is of about 20 N/m. 

 

 



 

 '56/54
solid-liquid (‰) 

3000 K 

'56/54
solid-liquid (‰) 

1600 K  

Fe 0.011r0.005 

0.006r0.003 

0.036r0.005 

0.021r0.006 

Fe3S -0.008r0.001 

-0.004r0.002 

-0.028r0.001 

-0.016r0.003 

Fesolid-Fe3Sliquid 0.005r0.002 

0.005r0.003 

0.015r0.002 

0.019r0.004 

Table 4. '56/54
solid-liquid at 1600 and 3000 K calculated using either the RELAX-solid – RELAX-melt 

methods (first line) or the pDOSsolid - pDOSmelt methods (second line). 

 

 

 


