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Abstract

A graph algorithm is truly subquadratic if it runs in O(m®) time on connected m-edge graphs,
for some positive b < 2. Roditty and Vassilevska Williams (STOC13) proved that under
plausible complexity assumptions, there is no truly subquadratic algorithm for computing the
diameter of general graphs. In this work, we present positive and negative results on the existence
of such algorithms for computing the diameter on some special graph classes. Specifically, three
vertices in a graph form an asteroidal triple (AT) if between any two of them there exists a
path that avoids the closed neighbourhood of the third one. We call a graph AT-free if it
does not contain an AT. We first prove that for all m-edge AT-free graphs, one can compute
all the eccentricities in truly subquadratic O(m?3/2) time. For the AT-free bipartite graphs, it
can be improved to linear time. Then, we extend our study to several subclasses of chordal
graphs — all of them generalizing interval graphs in various ways —, as an attempt to understand
which of the properties of AT-free graphs, or natural generalizations of the latter, can help in
the design of fast algorithms for the diameter problem on broader graph classes. For instance,
for all chordal graphs with a dominating shortest path, there is a linear-time algorithm for
computing a diametral pair if the diameter is at least four. However, already for split graphs
with a dominating edge, under plausible complexity assumptions, there is no truly subquadratic
algorithm for deciding whether the diameter is either 2 or 3.

Keywords: AT-free graphs, Chordal graphs, Dominating pairs, Fine-grained complexity in P.

1 Introduction

For any undefined graph terminology, see [3]. All graphs studied in this paper are finite, simple and
connected. Given a graph G = (V, E), let n = |V| be its order and m = |E| be its size. Note that,
since we assume G to be connected, m > n — 1. For a vertex u € V', let Ng(u) ={v €V | uv € E}
and Ng[u] = {u} U Ng(u) be, respectively, the open and closed neighbourhoods of u. The distance
between two vertices u,v € V is equal to the minimum number of edges on a wwv-path, and it
is denoted by distg(u,v). The maximum such distance between a fixed vertex u and all other
vertices is called its eccentricity, denoted by eq(u) = maxyey distg(u,v). We sometimes omit the
subscript if the graph G is clear from the context. Finally, the diameter of a graph G is equal to
diam(G) = max, yev dist(u,v) = maxycy e(u). The purpose of this note is to study the complexity
of diameter computation within some graph classes. On general graphs, the best known algorithms
for this problem run in @(nm) time and in O(n**+°() time, respectively, where w < 2.3729 is the
exponent of square matrix multiplication [33]. In particular, both algorithms run in Q(m?) time
on sparse graphs, where by sparse we mean that m < c¢-n for some universal constant c.



Improving the quadratic running time for diameter computation — in the number m of edges — is
an important research problem, both in theory and in practice. Since any algorithm for this problem
must run in Q(m) time, some authors have considered whether we can compute the diameter in
linear time or in quasi linear time on certain graph classes. Notably, this is the case for the interval
graphs — i.e., the intersection graphs of intervals on the real line — [30]. All graph classes that are
considered in this work are superclasses of the interval graphs. For general graphs, less than a
decade ago [31], Roditty and Vassilevska Williams gave convincing evidence that the complexity
of diameter computation cannot be improved by much. Specifically, the Strong Exponential-Time
Hypothesis (SETH) says that for any ¢ > 0, there exists a k such that k-SAT on n variables
cannot be solved in O((2 — ¢)") time [23]. The Orthogonal-Vector problem (OV) takes as input
two families A and B of n sets over some universe C, and it asks whether there exist a € A,b € B
s.t. anNb = 0. Some older works have named this problem D1sJOINT SETS [8]. The following result
is due to Williams:

Theorem 1 ([36]). Under SETH, for any € > 0, there ezists a constant ¢ > 0 such that we cannot
solve OV in O(n*7¢) time, even if |C| < c-logn.

In what follows, by truly subquadratic we mean a running time in O(N?7¢), for some ¢ > 0,
where N denotes the size of the input (for connected graphs, N ~ m). Theorem 1 was used in order
to prove that many classic problems that can be solved in polynomial time do not admit a truly
subquadratic algorithm (e.g., see [34] for a survey). In particular, as far as we are concerned in
this note, under SETH there is no truly subquadratic algorithm for computing the diameter, even
on sparse graphs [1]. This negative result has motivated a long line of papers, with some trying
to characterize the graph classes for which there does exist a truly subquadratic algorithm for the
diameter problem. We refer to [1, 5, 6, 11] for recent relevant work in this area. In particular,
several authors have studied whether some important properties of interval graphs could imply on
their own fast diameter computation algorithms. This is the case for Helly graphs [16], and graphs
of bounded distance VC-dimension [18], but not for chordal graphs (a.k.a., graphs with no induced
cycle of length larger than three) [4].

We recall that a graph is called AT-free if there does not exist a triple x,y, z such that, for any
two of them, there exists a path that avoids the closed neighbourhood of the third one. The interval
graphs are exactly the chordal AT-free graphs [26]. The complexity of (exact and approximate)
diameter computation within AT-free graphs was studied in [9] (see also [14, 22]), where the authors
emphasize a kind of duality between AT-free graphs and chordal graphs. For instance, on both
graph classes, two consecutive executions of LexBFS always yield a vertex whose eccentricity is
within one of the diameter — this is the so-called 2-sweep LexBFS algorithm, see Fig. 2. However,
there is no constant ¢ such that ¢ consecutive executions of LexBFS on these graph classes always
output the exact diameter. The authors from [9] further sketch a reduction from OV to diameter
computation within AT-free graphs and chordal graphs, as evidence that the diameter problem on
these graph classes cannot be solved in linear time. This same reduction was revisited in [4] in
order to prove that, indeed, under SETH there is no truly subquadratic algorithm for computing
the diameter on chordal graphs. But the same cannot be done for AT-free graphs, because for the
latter, the reduction in [9] from OV to diameter computation already runs in Q(n?) time.

e Our first main result is an O(m3/?)-time algorithm in order to compute all the eccentricities
(and so, the diameter) in an AT-free graph (Theorem 2).



The proof of this above result stays simple. Nevertheless, it comes to us as surprise given the
evidence for SETH-hardness in [9]. On dense graphs — with m > ¢ - n? edges, for some constant ¢
— our algorithm does no better than the brute-force O(nm)-time algorithm for All-Pairs Shortest-
Paths.

e We show that it is unlikely the running time can be improved, in the following sense: comput-
ing the diameter, resp. all eccentricities, in an AT-free graph, is at least as hard as computing
a simplicial vertex in an arbitrary graph, resp. as finding a triangle (Theorem 3). The best
known algorithms for both problems run in O(nm) time and O(n%) time.

Our reductions are inspired from the one in [9] and to reductions from these problems to many
more graph problems in [25]. In particular, due to the large web of equivalences in [35] between
triangle and matrix problems, we see our reduction from the triangle detection problem as strong
evidence of impossibility for (combinatorial) subcubic computation of the eccentricities in dense
AT-free graphs. Our reduction from the problem of computing a simplicial vertex to the diameter
problem on dense AT-free graphs is also interesting because of similar reductions to a more diverse
set of graph problems in [25]. By comparison, the complexity status of OV for dense instances i.e.,
for which we have C' = O(n), remains unclear.

For claw-free AT-free graphs, there is a linear-time algorithm in order to compute the diameter
and all the vertices of minimum eccentricity [22]. As a special case of Theorem 2, we prove that the
same holds for AT-free bipartite graphs: for these graphs, one can compute all the eccentricities in
linear time (Corollary 1). Note that the AT-free bipartite graphs have attracted some attention on
their own in the literature [20].

The ball hypergraph of G has for hyperedges the balls of all possible centers and radii in G. On
our way, we observe that for the family of ball hypergraphs of AT-free graphs, classic geometric
parameters such as the Helly number and the VC-dimension are unbounded (Proposition 1). It sets
AT-free graphs apart from most known graph classes with a truly subquadratic algorithm for the
diameter problem [18, 16]. We initiate the investigation of the complexity of diameter computation
within graph classes sharing a common property with AT-free graphs. In this paper, we only study
such classes which are subclasses of chordal graphs. This is for the following two main reasons.
On one hand, under SETH, there is no truly subquadratic algorithm for computing the diameter,
already for chordal graphs. On the other hand, chordal graphs are more structured than general
graphs, thereby making easier the design and the analysis of our algorithms. We summarise our
results for subclasses of chordal graphs (we postpone their technical definitions to appropriate places
throughout the paper):

e For every chordal graph with asteroidal number at most k, there is a randomized O(km log? n)-
time algorithm in order to compute the diameter with high probability (Theorem 4). The
same holds for chordal graphs with leafage at most k. In contrast to this positive result,
it is easy to prove that under SETH, there is no truly subquadratic algorithm for diameter
computation within k-AT-free chordal graphs, for every k > 2 (Proposition 3);

e For every chordal dominating pair graph, there is a truly subquadratic algorithm for com-
puting the diameter (Theorem 7). For the larger class of chordal graphs with a dominating
shortest path, there is a linear-time algorithm for computing a diametral pair if the diameter
is at least four; however, already for split graphs with a dominating edge, under SETH there
is no truly subquadratic algorithm for computing the diameter (Theorem 6);



e For every chordal graph with a dominating triple, if the diameter is at least 10, then there is
a linear-time algorithm in order to compute a diametral pair (Theorem 9).

We stress that all the aforementioned graph classes generalize interval graphs in various ways, that
are incomparable one with another. For chordal Helly graphs and chordal graphs of bounded VC-
dimension: two other generalizations of interval graphs that are incomparable with each other and
with the other subclasses presented above, there also exist truly subquadratic algorithms for the
diameter problem [16]. We left open whether Theorem 4 can be derandomized. It is also open
whether the lower bound of 10 on the diameter for Theorem 9 is tight. Finally, we point out
the dichotomy of Theorem 6, where we show that the only difficulty for a chordal graph with a
dominating shortest-path is to decide whether the diameter is either two or three. By contrast,
for any d > 1, under SETH there is no truly subquadratic algorithm for distinguishing the chordal
graphs of diameter < 2d from those of diameter > 2d + 1 (to see this, just start from any split
graph, and replace every vertex of its stable set by a path of length d — 1).

2 All eccentricities for AT-free graphs

2.1 Preliminaries

We start recalling a few results from prior work, that we will use in this paper.

Graph searches. The Lexicographic Breadth-First Search (LexBFS) is a standard algorithmic
procedure, that runs in linear time [32]. We give a pseudo-code in Fig. 1. Note that we can always
enforce a start vertex u by assigning to it an initial non empty label. Then, for a given graph
G = (V,E) and a start vertex u, Lex BFS(u) denotes the corresponding execution of LexBFS. Its
output is a numbering o over the vertex-set (namely, the reverse of the ordering in which vertices
are visited during the search). In particular, if o(i) = , then o~ (z) = 1.

Input: A graph G = (V,E)
Output: An ordering ¢ of the vertices of V

begin
assign the label () to each vertex ;
fori=nto 1 do

pick an unnumbered vertex x with the largest label in the lexicographic order ;
for each unnumbered neighbour y of x do
L add i to label(y) ;
(i) —x |/ * number x by i */ ;
end

Figure 1: Algorithm LexBFS [32].

The 2-sweep LexBFS consists of two consecutive execution of LexBF'S, with the start vertex of the
second execution being the last one visited during the first LexBFS. See also Fig. 2. More generally,
for any positive integer ¢, the algorithm c-sweep LexBFS consists of ¢ consecutive applications of
LexBFS, with for any i > 2, the start vertex of the i*" execution being the last vertex visited
during the (i — 1)th. We prove most of our results using 3-sweep LexBFS, but often use the known
properties of 2-sweep LexBFS in our proofs.



Input: A graph G

Output: A vertex v

begin
Let w be an arbitrary vertex;

u «— the last vertex numbered by LexBFS(w);
v «+ the last vertex numbered by LexBFS(u);

return v;
end

Figure 2: Algorithm 2-sweep [9].

AT-free graphs. We now recall several useful properties of LexBFS orderings within AT-free
graphs. A dominating pair in a graph is a pair (u,v) of two vertices such that, for every vertex x,
every uv-path intersects its closed neighbourhood N|z].

Lemma 1 ([10]). For an AT-free graph G = (V, E), let u be the last vertex visited during a LexBFS,
and let 0 = Lex BFS(u). Then, for every vertex y, the pair (u,y) is dominating for the subgraph
induced by {z € V | o71(2) > o7 (y)}. In particular, if o(1) = v, then (u,v) is a dominating pair
for G.

Lemma 2 ([15]). For an AT-free graph G = (V,E), let u be the last vertex visited during a
LexBFS, and let 0 = LexBFS(u). If x,y € V are such that: zy ¢ E, dist(u,x) = dist(u,y) =
i, and o=t (z) < o~ 1(y), then we have N(x) N {z € V | dist(u,z) =i—1} C N(y)N{z € V|
dist(u,z) =i —1}. In particular, dist(z,y) = 2.

2.2 The algorithm

In what follows, we prove that all eccentricities in an AT-free graph can be computed in truly
subquadratic time (Theorem 2). Before that, we need to prove a few intermediate lemmas.

Lemma 3. Let (u,v) be a dominating pair in a graph G = (V, E) (not necessarily AT-free). Every
vertex x € V' s.t. e(x) > 3 is at distance e(x) from a vertex in Nu] U N[v].

Proof. Let x € V be s.t. e(z) > 3, and let y € V s.t. dist(z,y) = e(r). In what follows, we
assume y ¢ N[u] U N[v] (otherwise, we are done). Name P a shortest uv-path in G s.t. dist(y, P)
is minimized. In particular, we have y € V(P) if and only if dist(u,v) = dist(u,y) + dist(y,v).
We pick any two vertices z* € Nz] N V(P) and y* € N[y] N V(P), that always exist because,
by the hypothesis, P is dominating. By symmetry, we may assume that y* is on the subpath of
P between u and x*. We claim that e(x) = dist(u,x), that will prove the lemma. Suppose for
the sake of contradiction that it is not the case. Consider the (not necessarily simple) uv-path P’
that is obtained from the concatenation of P[v,z*]: the subpath of P between v and z*, with an
arbitrary shortest zu-path Q. Since (u,v) is a dominating pair, N[y] NV (P’) # (. However, we
prove in what follows that y has no neighbour on Pv,z*]. Suppose by contradiction that there
exists a vertex z € N[y| on the subpath P[v,z*]. Then, dist(y*,z) < 2. Observe that we have
dist(y*,z) = dist(y*,z*) + dist(z*, z). Furthermore, z* ¢ N[y| because we assume dist(x,y) =
e(x) > 3. Since P is a shortest uv-path, it follows that y*,z € N(y) N N(z*) and dist(y*, z) = 2.
But then, we could replace * by y on our shortest uv-path, thus contradicting the minimality of
dist(y, P). As a result, and since N[y] NV (P’) # (), we must have N[y] N V(Q) # (. Since Q is a



shortest uxz-path and we also have u ¢ Ny], we derive from the above that dist(x,y) < dist(z,u),
thus contradicting our assumption that e(z) > dist(x,u). O

By using Lemma 3, we will prove that in order to compute all eccentricities, it suffices to perform
a BFS from all vertices in the first and two last distance layers of some shortest-path tree, whose
root is the vertex output by the algorithm 3-sweep LexBFS. However, there does not seem to be a
simple way in order to upper bound the number of vertices in these layers. We complete our result,
as follows:

Lemma 4. For an AT-free graph G = (V, E), let u be the last vertex visited during a LexBF'S, and
let o = LexBFS(u). Letxz,y € V be s.t.: xy ¢ E, dist(u,x) = dist(u,y) =i, and o~ (z) < o7 1(y).
For any vertex z € V, if dist(u, z) < i then we always have dist(y, z) < dist(x, z).

In particular, if G has no universal vertex and dist(u,x) = dist(u,y) = e(u), then e(x) > e(y).

Proof. Let z € V be such that dist(u,z) < i. In particular, c=1(z) > o~ !(y) > o~ !(x). For any
shortest zz-path P, we claim that N[y] NV (P) # 0. Note that, since we assume zy ¢ F, this will
prove that dist(y,z) < dist(z,z). In order to prove the claim, let ' € V(P) minimize o~ !(2/).
By construction, 0~ !(z') < 07 !(x) < 67 (y). Let P, be the subpath of P between 2’ and z. We
complete P,/ into an uz’-path P’ (not necessarily simple) by adding to it a shortest uz-path @Q. In
particular, all the vertices w € V(P') = V(Py) U V(Q) satisfy o~ (w) > o~!(2'). Since we also
have 0~1(y) > o~1(2'), it follows by Lemma 1, N[y] NV (P’) # (). Furthermore, since any vertex
w € V(Q)\ {z} satisfies dist(u,w) < dist(u,z) —1 < dist(u,y) — 2, we get N[y]N(V(Q)\{z}) = 0.
The latter proves, as claimed, N[y] NV (P) D N[y| NV (Py) # 0.

Finally, let us assume that dist(u,x) = dist(u,y) = e(u). If z € V is such that dist(u, z) < e(u),
then we proved above that we have dist(y,z) < dist(x,z). Otherwise, dist(u,z) = e(u), and by
Lemma 2 we get that dist(y,z) < 2. Altogether combined, e(y) < max{e(z),2}. If moreover, G
has no universal vertex, then e(z) > 2, and so, we conclude that e(y) < e(x). O

If we execute three consecutive LexBFS instead of two, then a weaker converse of Lemma 4 for
lower distance layers (instead of upper ones) also holds. Namely:

Lemma 5. For an AT-free graph G = (V, E), let u be the last vertex visited during a LexBFS, let
o = LexBFS(u), and let v = o(1) be the last vertex visited during LexBFS(u). Let x,y € V be s.t.:
ry ¢ B, dist(v,x) = dist(v,y) =i, and o~ (z) < o~ (y). For any vertex z € V, if dist(v,z) > i
then we always have dist(y, z) < max{dist(z,z),2}.

Proof. Since we have o~ 1(z) < o71(y), dist(u,z) > dist(u,y) = j. Now, let z € V be s.t.
dist(v, z) > i. If furthermore, dist(u, z) < j, then we claim that dist(y, z) < dist(z, z). Indeed, if
dist(u,x) = dist(u,y), then the claim follows from Lemma 4. From now on, we assume dist(u, z) >
dist(u,y). Any shortest zz-path must contain a vertex z, s.t. dist(u,x,) = dist(u,y). We may
further assume z, € N(z) (otherwise, since by Lemma 2 we have dist(y,x,) < 2, dist(y,z) <
2+dist(z,, z) < dist(z, z), and we are done). In particular, dist(u,z) = j+1. In the same way, we
may assume that y, z, are nonadjacent, and that any neighbour 2’ € N(z,) on a shortest z,z-path
satisfies dist(u,2’) = j — 1. Then, consider an xzu-path P starting with [z, z,,2'] and continuing
with any shortest ’u-path. By Lemma 1, P dominates all vertices w s.t. o~ '(w) > o~ (). In
particular, N[y] N V(P) # 0. Since we assume z,z, ¢ N[y, it implies 2’ € N(y). In such case,
dist(y,z) <1+ dist(a’, z) < dist(z, z), thereby proving our claim.



We are left with the case dist(u,z) > j. In order to prove the lemma, it suffices to prove that
dist(y,z) < 2. If dist(u, z) = j, then this follows from Lemma 2. Thus, from now on we assume
dist(u,z) > j. In order to conclude here, we need the following observation: for every vertex w,
we always have dist(u,v) < dist(u,w) + dist(w,v) < dist(u,v) + 2. Indeed, the first inequality
follows from the triangular inequality. The second inequality follows from Lemma 1 saying that
any shortest uv-path is dominating (to see this, consider any w* € N[w] on such a shortest-path,
and observe that dist(u,w) + dist(w,v) < dist(u,w*) + dist(w*,v) + 2 = dist(u,v) + 2). In our
case, dist(u, z) +dist(z,v) > j+1+i+1 = dist(u,y) + dist(y,v) + 2. Therefore, y is on a shortest
uwv-path @, and in addition dist(u,z) = j + 1, dist(v,z) = ¢ + 1. By Lemma 1, there exists a
z* € N[zl N V(Q). The only possibility w.r.t. dist(u,z), dist(v,z) is to have z* = y, and so,
dist(y,z) = 1. O

We are now ready to prove the main result in this section:

Theorem 2. For every m-edge AT-free graph G = (V, E), we can compute the eccentricities in
O(m%) time.

Proof. Let u be the last vertex visited during a LexBFS, and let 0 = Lex BF S(u). Similarly, let
v = o(1) be the last vertex visited during Lex BF'S(u), and let 7 = Lex BF'S(v). Set d = e(v). For
any 0 < i < d, we define L; = {w € V| dist(v,w) = i}. We compute the set A from L; U {v} and
o as follows. We scan all the vertices v € L1 U {v} by increasing value of ~!(v'), removing from
this set the non-neighbours of v/. Similarly, we compute the set B (resp., C') from Ly_1 (resp., Lg)
and 7 as follows. We scan all the vertices u’ € Ly_; (resp., u' € Lq) by increasing value of 771 (u/),
removing from this set the non-neighbours of «’. The three of A, B,C can be computed in linear
time. Furthermore, by construction every vertex added in A (resp., in B or in (') is adjacent to
all the vertices previously added into this set (otherwise, this vertex should have been removed).
Therefore, the sets A, B, C are cliques, and so, their cardinality is in O(y/m).
For every vertex w € V, we claim that we have:

(w) = 1 if w is a universal vertex
| max{2} U {dist(w,z) | € AU B UC} otherwise.

Indeed, w is universal if and only if e(w) = 1. The above formula is also trivially true if e(w) = 2.
Therefore, let us assume in what follows e(w) > 3. By Lemma 1 (7(1),v) is a dominating pair,
and therefore by Lemma 3, w is at distance e(w) from some vertex in N[7(1)] U N[v]. Note that
N[r()JUN[v] C{v} UL ULj 1 ULy Lety € {v} UL ULg_1ULgs.t. e(w) = dist(y,w). We
consider in what follows four different cases:

e Case y = v. By construction, v € A. Therefore, the above formula for e(w) holds in this case.

e Case y € L1. We assume w.l.o.g. 0~ !(y) is minimized for this property. Suppose for the sake
of contradiction y ¢ A (otherwise, we are done). By the construction of A, there exists a
x € Ly st. o7 (z) < o !(y) and x,y are nonadjacent. Furthermore, dist(v,w) > 1 because
otherwise, we would get e(w) = dist(y, w) < 2. By Lemma 5, dist(y, w) < max{2, dist(z,w)}.
Since in addition we have dist(y,w) = e(w) > 3, we conclude in this case that we have
dist(z,w) = e(w), that contradicts the minimality of o~ (y).



e Case y € Lg. The proof is quite similar as for the previous case, but slightly simpler. We
assume w.l.o.g. 77!(y) is minimized for this property. Suppose for the sake of contradiction
y ¢ C. By the construction of C, there exists a z € Lg s.t. 7 1(z) < 77 !(y) and =,y
are nonadjacent. Furthermore, dist(v,w) < d because otherwise, we would get by Lemma 2
e(w) = dist(y,w) < 2. By Lemma 5, dist(y,w) < dist(z,w). Since in addition we have
dist(y,w) = e(w), we conclude in this case that we have dist(x,w) = e(w), that contradicts
the minimality of 71 (y).

e Case y € Lg_1. Here also, the proof is essentially the same as for the previous case. In fact,
we only need to detail the special case w € Lg. We claim that we have e(w) = 3. Indeed,
let x € N(w) N Lyg_1. By Lemma 2 we have dist(w,y) < 1+ dist(z,y) < 3. We may further
assume w.l.o.g. d —1 > 1 (otherwise, y € {v} U L1). But then, dist(v,w) =d > 3 = e(w).

Finally, we claim that the above formula can be computed, for all vertices, in total (’)(m3/ 2) time.
Indeed, it suffices to perform a BFS from every vertex of AU B U C, and we observed above that
there are only O(y/m) many such vertices. O

We observe that the actual running time of our algorithm is in O(km) on m-edge AT-free graphs
with cliqgue-number at most k. In particular, we get:

Corollary 1. For every AT-free bipartite graph, we can compute the eccentricities in linear time.

2.3 Digression: properties of the neighbourhood hypergraph

For a graph G = (V, E), its neighbourhood hypergraph is N'(G) = (V,{N[v] | v € V}). Note
that it is a subhypergraph of the ball hypergraph (as defined in the introduction). The Helly
number of N'(G) is the smallest k s.t. every family of k-wise intersecting neighbourhoods of G (i.e.,
hyperedges) have a nonempty common intersection. Its VC-dimension is the largest d s.t., for some
vertex-subset X of cardinality d, for every subset Y C X, there exists a v € V s.t. NpyJnX =Y
(we say that X is shattered by N (G)). It was proved recently that a bounded Helly number
or bounded VC-dimension for the ball hypergraph implies fast diameter and radius computation
algorithms [18, 16]. Actually, for most graph classes for which we know how to compute the
diameter in truly subquadratic time, one of these two parameters above is always bounded. For
instance, on interval graphs, both parameters are at most two. We prove that such a property does
not hold for the AT-free graphs:

Proposition 1. There are AT-graphs whose neighbourhood hypergraph has a Helly number (resp.,
VC-dimension) that is arbitrarily large.

Proof. We take the opportunity to recall the reduction in [9] from OV to AT-free graphs. Let A, B
be two families of sets over a universe C'. The graph H4 g ¢ has vertex-set AUBUC. Its edge-set
is as follows. The sets A, B, C are cliques. For every a € A and ¢ € C, a and ¢ are adjacent if and
only if ¢ € a. In the same way, for every b € B and ¢ € C, b and c are adjacent if and only if ¢ € b.
In [9], the authors observed that H4 p ¢ is a cocomparability graph (and so, it is AT-free). We
prove that for some suitable A, B and C, the neighbourhood hypergraph of H4 p ¢ has arbitrarily
large Helly number (resp., VC-dimension).

First, for any fixed d, we consider a family A over some universe C' and VC-dimension > d. Let
X be of cardinality d and shattered by A. For every Y C X, there exists aset a € As.t. aNX =Y.



In particular, identifying X C C with a vertex-subset of Hy o, we also get N[a] N X =Y. As a
result, the VC-dimension of N'(H4 g ) is at least d (since X is shattered by this hypergraph).

In the same way, for any fixed k, let F' be a minimal family of Helly number > k + 1 over some
universe C'. By minimality of the family, all sets in F' k-wise intersect, but they have an empty
common intersection. We arbitrarily bipartition F' into nonempty subfamilies A and B. Then, we
claim that the neighbourhood hypergraph of H4 g ¢ has Helly number at least k 4 1. Indeed, by
construction the neighbour sets Nla],a € A and N[b],b € B k-wise intersect. However, since their
common intersection must be in C, then by the choice of F' the latter is empty. 0

2.4 Hardness results

Our algorithm for computing the eccentricities in an AT-free graph, presented in Theorem 2, is
combinatorial, and it runs in O(n?) time on n-vertex (dense) graphs. We show, via the following
reduction, it is unlikely that such a running time can be improved without the use of algebraic
techniques. If we do allow such algebraic manipulations, then we can use the well-known Seidel’s
algorithm [33] in order to compute all the distances in a general n-vertex graph in O(n“logn) =
O(n?379) time. Combined with Theorem 2, it leads to an O(n*/3m) = O(n®m)-time algorithm
for computing the eccentricities of n-vertex m-edge AT-free graphs.

Theorem 3. The problem of deciding whether an n-vertex graph contains a simplicial vertex can
be reduced in O(n?) time to the diameter problem on O(n)-vertex AT-free graphs.

Furthermore, the problem of finding a triangle in an n-vertex graph can be reduced in O(n?) time
to the problem of computing all the diametral vertices (and so, all eccentricities) in an O(n)-vertex
AT-free graph.

Proof. Consider an n-vertex graph G = (V, E). We construct the following graph H:

o V(H)=V1UVaUVJUV3UVy UV, where each set V; or V/ is a copy of V. For every v € V
we denote by v; (resp., v}) its copy in V; (resp., in V/);

e The sets Vi, Vo U VY, V3U V3, Vj are cliques;
e We add edges vjvh, vhvh for every v € V;

e For every v € V, we add the edges vjug for every u € Ng(v). Similarly, we add the edges
vauy for every u € Ng(v). However, we add the edges vows for every w € V' \ Ng[v];

e Finally, for every v € V, we add the edges vhwy for every w € V' \ v.

This graph H has 6n vertices, and it can be constructed in O(n?) time. We claim that H is AT-free.
Indeed, suppose by contradiction that there exists an AT x,y, z in H. Since the three of x,y, z are
pairwise non adjacent, each clique Vi, VaUVy, V3UVY, Vj contains at most one such vertex. Then,
let us totally order these four cliques as Vi < VoUVY < V3U VY < V4, and let us define the following
partial ordering over V(H): uw < v if and only if, for A, B € {Vi, Vo U VY, V3 U VY, V,} such that
u € A, v € B, we have A < B. W.lo.g.,, z <y < z. But then, there is a clique containing y
that disconnects x from z. The latter contradicts that z, z are in the same connected component
of H\ Ng[y]. Therefore, we proved as claimed that H is AT-free.

By construction, all vertices in H are pairwise at distance at most 3, except maybe some
pairs of vertices v1 € Vi,wy € V4. Furthermore, if v # w then, due to the existence of the path



[v1, vy, U5, wa), we have disty(vi,ws) = 3. As a result, for every v € V, ey (v1) = disty(vi,vs) €
{3,4}, and diam(H) = max,cy eg(v1). It now remains to characterize the vertices v € V' such
that em(v1) = 4. We claim these vertices to be exactly the simplicial vertices of G. To see this,
assume disty(vi,v4) = 3, and let [v1, z,y,v4] be a corresponding shortest path. By construction,
x € VaUVY, y € V3UVY. Since v} is the only neighbour of v; in Vj, v} is the only neighbour
of v} in V3 U VY and vj and vy are non adjacent, z ¢ Vj. In particular, since no vertex of V4 has
a neighbour in V4, y ¢ V§. Overall, x = ug and y = ws for some u,w € V. By construction
of H, u,w € Ng(v). Furthermore, since upws € E(H), we get w € V \ Ng[u]. Conversely, if
u # w are non adjacent neighbours of v then, due to the existence of the path [v1, ua, w3, v4], we
get disty(v1,v4) = 3. Summarizing disty(vi,v4) = 3 if and only if vertex v has two non adjacent
neighbours in G. Equivalently, ex(vy) = distg(vi,vq) = 4 if and only if v is simplicial in G.

Our claim implies that diam(H) = 4 if and only if G contains a simplicial vertex. Furthermore,
if diam(H) = 4, then the diametral vertices are exactly those v1,v4 such that v is simplicial in G.
It is known [25] that the problem of finding a triangle in an n-vertex graph can be reduced in O(n?)
time to the problem of counting the number of simplicial vertices in an O(n)-vertex graph. O

3 Chordal graphs with bounded asteroidal number

Let us recall that an asteroidal set in a graph G = (V, E) is an independent set A C V' s.t., for every
v € A, all vertices in A\ {v} are in the same connected component of G\ N[v]. In particular, an AT
is exactly an asteroidal set of cardinality three. The asteroidal number of a graph G is the largest
cardinality of its asteroidal sets. Since with this terminology, the interval graphs are exactly the
chordal graphs of asteroidal number two, the following result generalizes the celebrated linear-time
algorithm [30] for computing the diameter in this graph class:

Theorem 4. There is a randomized O(km log? n)-time algorithm for computing w.h.p. the diam-
eter of chordal graphs with asteroidal number at most k.

Our results are based on a general framework for computing the diameter of chordal graphs [16].
We recall that a split graph G is a graph whose vertex-set can be bipartitioned into a clique K and a
stable set S. We may assume G to be given under its sparse representation, defined in [17] as being
the hypergraph (K U S,{Ngls| | s € S}). The SPLIT-OV problem is a special case of OV where
A ={N¢gla] | a € Sa} and B = {Ng[b] | b € Sp}, for some split graph G and for some partition
Sa,Sp of its stable set. An instance of SPLIT-OV can be encoded as a triple (G, Sa, Sp), with G
being given under its sparse representation. Note that the size of such an instance is dominated by
=73 esusy INGs]], that is <m +n.

Theorem 5 (Theorem 8 from [16]). For a subclass C of chordal graphs, let S be the subclass of
all split graphs that are induced subgraphs of a chordal graph in C. If for every (G,Sa,Sg), with
G € S connected, we can solve SPLIT-OV in O(£%) time, for some b > 1, then there is a randomized
O(mPlog? n)-time algorithm for computing w.h.p. the diameter of chordal graphs in C.

Recall that having asteroidal number at most k is a hereditary property. Hence, by Theorem 5,
in order to prove Theorem 4, it suffices to solve SPLIT-OV in O(k/) time for connected split graphs
of asteroidal number at most k. Before presenting such an algorithm (Proposition 2), we need a
few preparatory lemmas.
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Lemma 6. For a split graph G with stable set S, and A C S of cardinality |A| > 3, A is an asteroidal
set if and only if the neighbour sets N(a), a € A are pairwise incomparable w.r.t. inclusion.

Proof. In one direction, if N(a') C N(a) for some distinct a,a’ € A, then we claim that A is
not an asteroidal set. Indeed, o’ is isolated in G \ NJa], and so disconnected from A\ {a,a’},
that is nonempty because |A| > 3. In the other direction, let us assume the neighbour sets
N(a), a € A to be pairwise incomparable w.r.t. inclusion. Let a € A be arbitrary. By the
hypothesis all the subsets N(a') \ N(a),a’ € A\ {a} are nonempty. Since G is a split graph,
N(A\{a}) \ N(a) = Uyea\fay N(a’') \ N(a) is a clique. Therefore, the vertices of A\ {a} are in
the same connected component of G \ NJa]. O

Lemma 7. Let F be a family of pairwise different subsets, and £ =Y g5 |S|. If there are at most
k inclusionwise minimal subsets in F, then all these subsets can be computed in total O(kl) time.

Proof. 1t suffices to prove that in O(¢) time, we can compute an inclusionwise minimal subset and
remove all its supersets from F. Specifically, let S € F be of minimum cardinality. Since all sets
in F are pairwise different, .S is inclusion minimal. Furthermore, if we first mark all elements in S,
and we store the cardinality |.S| of this set, then we can remove all its supersets from F by scanning
the family in total O(¢) time. O

Combining Lemmas 6 and 7, we get the following algorithm for SPLIT-OV on split graphs of
asteroidal number at most k:

Proposition 2. For every (G,S4, Sg) where G has asteroidal number at most k > 2, we can solve
SPLIT-OV in O(kl) time.

Proof. Two vertices a,a’ € Sy are twins if N(a) = N(a'). It is now folklore that by using partition
refinement techniques, we can compute all twin classes of Sy in O(¥) time [21]. Note also that in
order to solve SPLIT-OV, it is sufficient to keep only one vertex per twin class of S4. Thus, from
now on we assume that the neighbour sets N(a),a € S4 are pairwise different. Observe that if
a,a’ € Sy and b € Sp satisfy N(a’) C N(a) and N(a) N N(b) = 0, then N(a') " N(b) = (. In
particular, we may further restrict S to the vertices a s.t. N(a) is inclusion wise minimal. By
Lemma 6, there are at most k such vertices. Therefore, by Lemma 7, we can compute all these
vertices in total O(kf) time. Finally, for each a € Sy s.t. N(a) is inclusion wise minimal, we
can compute a vertex b € Sp s.t. N(a) N N(b) = 0 (if any) simply by scanning N(a) and all the
neighbour sets N(b), b € Sp. It takes total O(¢) time. O

Theorem 4 now follows from Theorem 5 and Proposition 2. 0

Chordal graphs are exactly the intersection graphs of a collection of subtrees of a host tree [19]. We
call such a representation a tree model. The leafage of a chordal graph is the smallest number of
leaves amongst its tree models. Since the leafage is an upper bound on the asteroidal number [27],
we obtain:

Corollary 2. There is a randomized O(km log? n)-time algorithm for computing w.h.p. the diam-
eter of chordal graphs with leafage at most k.

Finally, a k-AT in a graph is a triple x, y, z of vertices such that, for any two of them, there exists
a path that avoids the ball of radius k of the third one, where the latter is defined, for any vertex
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v, as N*[v] = {u | dist(u,v) < k}. A graph is k-AT-free if it does not contain any k-AT. Note that
in particular, the AT-free graphs are exactly the 1-AT-free graphs. This generalization of AT-free
graphs was first proposed in [28], where the performances of BF'S for the latter were studied. Before
concluding this section, we make the following simple observation:

Proposition 3. Under SETH, there is no truly subquadratic algorithm for computing the diameter
of k-AT-free chordal graphs, for every k > 2.

Proof. Under SETH, there is no truly subquadratic algorithm for computing the diameter of split
graphs [4]. Therefore, it suffices to prove that split graphs are k-AT-free, for every k > 2. Indeed,
for a split graph with clique K, the ball of radius 2 for any vertex contains K. In particular, its
removal either leaves an empty graph, a singleton, or an independent set. As a result, there can be
no k-AT in a split graph, for every k > 2. O

4 Chordal graphs with a dominating shortest-path

Recall (see Lemma 1) that every AT-free graph has a dominating pair. A dominating pair graph
is one s.t. every induced subgraph has a dominating pair. We study diameter computation within
chordal dominating pair graphs in Sec. 4.2. A weaker property for a graph is to have a dominating
shortest-path. We first study chordal graphs with a dominating shortest-path, in Sec. 4.1, for which
we derive an interesting dichotomy result.

4.1 Dichotomy theorem

The purpose of this section is to prove the following result:

Theorem 6. For every chordal graph with a dominating shortest-path, if the algorithm 3-sweep
LexBFS outputs a vertexr of eccentricity d > 3, then it is the diameter. In particular, there is a
linear-time algorithm for deciding whether the diameter is at least four on this graph class.

However, already for split graphs with a dominating edge, under SETH there is no truly sub-
quadratic algorithm for deciding whether the diameter is either two or three.

We start with the following easy lemma:

Lemma 8 ( [12]). If a graph has a dominating shortest-path, then it has a dominating diametral
path.

Roughly, the first part of Theorem 6 follows from Lemma 8 combined with the following prop-
erties of LexBFS on chordal graphs:

Lemma 9 ( [9]). Let u be the vertex of a chordal graph G last visited by a LexBFS, and let
x,y be a pair of vertices such that dist(x,y) = diam(G). If e(u) < diam(G) then e(u) is even,
dist(u,x) = dist(u,y) = e(u) and e(u) = diam(G) — 1.

Corollary 3 ([9]). If the vertex u of a chordal graph G last visited by a LexBFS has odd eccentricity,
then e(u) = diam(G).
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Proof of Theorem 6. Let u be last visited by a LexBFS, and let v be last visited by Lex BF'S(u).
Assume toward a contradiction e(v) < diam(G). Since e(u) = dist(u,v) < e(v), and by Lemma 9,
e(u) > diam(G) — 1, we have e(u) = e(v) = dist(u,v) = diam(G) — 1. Let z,y be the two ends
of a dominating diametral path P, that exists by Lemma 8. We pick v* € V(P) N N[u] and
v* € V(P) N N|u], that exist because P is dominating. W.l.o.g., dist(z,u*) < dist(z,v*). Then:

diam(QG) = dist(x,y) = dist(x,u™) + dist(u*,v*) + dist(v*,y)
> (dist(z,u) — 1) + (dist(u,v) — 2) + (dist(v,y) — 1)
= (diam(Q) — 2) + (diam(G) — 3) + (diam(G) — 2) = 3 - diam(G) — 7

where the equalities of the last line follow from Lemma 9. It implies diam(G) < 3. Therefore, if
e(v) > 3, we cannot have e(v) < diam(G).

For the second part of the theorem, we essentially rely on a previous observation from [17]. The
bichromatic diameter problem consists of, given a graph and two vertex-subsets A and B, to
computing the maximum distance between any vertex of A and any vertex of B. Under SETH,
we cannot compute the bichromatic diameter of split graphs [4]. Now, given a split graph G with
clique K along with two subsets A, B in its stable set, we can add in linear time fresh new vertices
a,b ¢ V(G) s.t. Nja] = AUK U{a,b} and N[b| = BU K U {a,b}. In doing so, we get a new split
graph G’, for which solving the diameter is equivalent to computing the bichromatic diameter of
G. Note that by construction, ab is a dominating edge of G’. As a result, already for split graphs
with a dominating edge, we cannot decide whether the diameter is either two or three. O

4.2 Chordal dominating pair graphs

We complete the results of Sec 4.1 by showing that the stronger property of having a dominating
pair for each induced subgraph implies a truly subquadratic algorithm for diameter computation.

Theorem 7. There is a truly subquadratic algorithm for computing the diameter of chordal domi-
nating pair graphs.

Note that in contrast to Theorem 7, the dichotomy result of Theorem 6 also applies to the
chordal graphs with a dominating pair (a.k.a., chordal weakly dominating pair graphs). Indeed,
having a dominating shortest-path and a dominating edge are a weaker and a stronger property
than having a dominating pair, respectively.

The remainder of this subsection is devoted to the proof of Theorem 7. Note that according to
Theorem 6, the only difficulty is in order to decide whether the diameter is either two or three. If
we further use Theorem 5 (at the price of having a randomized algorithm), then we are left solving
SPLIT-OV for the split dominating pair graphs. The following result is an easy corollary of the
characterization proven in [13]:

Lemma 10 ( [13]). A split graph is a dominating pair graph if and only if it is By-free, where By
is the graph of Fig 3.

Our main technical contribution in this subsection is as follows:

Lemma 11. Fvery Bi-free split graph has VC-dimension at most 3.
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Figure 3: Forbidden induced subgraph Bj.

Proof. Let G = (K U S, E) be a split graph with clique K and stable set S. Suppose for the sake
of contradiction G is Bj-free and there exists a X C K U S, |X| > 4, that is shattered.

We first prove that either X C K or X C S. Indeed, by contradiction let u € XNK, v € XNS.
Since X is shattered, there exists a z s.t. N[z]N X = {u,v}. Furthermore, since G is a split graph
and v € S, either 2 = v or z € K. But if 2 = v, then, for any 2’ € N[z] we have u € N[2], and so
there can be no such 2’ s.t. N[2/] N X = {v}. Thus, necessarily, z € K. It implies X \ {u,v} C S
(otherwise, since K N X C N|z], we could not have N[z] N X = {u,v}, a contradiction). However,
let w e X \ {u,v}. Again, since X is shattered, there exists a 2’ s.t. N[2'] N X = {v,w}. But
necessarily, 2/ € K, and therefore we also have u € N[Z/], a contradiction. The latter proves, as
claimed, either X C K or X C S. Note that the above still applies if | X| > 3, and that we did not
use in our proof the fact that G is Bi-free.

If X C K then, let u,v,w € X. There exist zy, 2y, 2 s.t. N[zy] N X = {u}, N[z, ]NX =
{v}, Nz N X = {w}. Necessarily, zy, zy, 2y € S. But then, u,v,w, zy, 2y, 2y, induce a copy of
By, that is a contradiction. Conversely, if X C S then, let u,v,w,r € X. There exist zy, 2y, 2y S.t.
Nz ]NX =A{u,r}, N[z|NX = {v,r}, N[z NX = {w,r}. Necessarily, zy, 2y, 2y € K. But then,
W, U, W, 2y, 2y, 2y induce a copy of By, that is a contradiction. ]

Lemma 11 gives us the opportunity to use powerful techniques from previous work in order to
solve SPLIT-OV.

Theorem 8 (special case of Theorem 1 in [18]). For every d > 0, there exists a constant €4 €
(0,1) s.t. for any (G,Sa,Sp) where G has VC-dimension at most d, we can solve SPLIT-OV in
deterministic O(¢n'=¢4) time.

Some additional remarks are needed. First of all, Theorem 1 in [18] addresses a monochromatic
variant of DISJOINT SETS, that is slightly different than OV. A simple trick (presented in the
proof of Theorem 10 in [16]) allows us to reduce SPLIT-OV to this monochromatic variant, up
to increasing the VC-dimension from d to some value in O(dlogd). Second, the time complexity
for Theorem 8 is in O(fn'~%), and not in O(¢*) for some b > 1 as it was stated in Theorem 5.

However, since fn!=¢ = O(£27¢4), Theorem 5 can still be applied in this case. O

5 Dominating triples

A dominating target for a graph G is a subset of vertices D s.t. every connected graph containing
all of D is a dominating set. In particular, dominating pairs are exactly dominating targets of
cardinality two. An interesting generalization of Lemma 1 is that every graph of asteroidal number
at most k contains a dominating target of cardinality at most k [24]. In this last section, we study
chordal graphs with a dominating triple (dominating set of cardinality three).
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Theorem 9. For every chordal graph with a dominating triple, if the algorithm 3-sweep LexBFS
outputs a vertex of eccentricity d > 10, then it is the diameter. In particular, there is a linear-time
algorithm for deciding whether the diameter is at least 10 on this graph class.

We use in our proof a few results from Metric Graph Theory, that we now introduce. A geodesic
triangle with corners z,y,z € V, denoted in what follows by A(z,y,z), is the union P(x,y) U
P(y, z)UP(z,x) of three shortest-paths connecting its corners. The three of P(z,y), P(y, ), P(z, x)
are called the sides of the triangle. We say that A(x,y, z) is 0-slim if the maximum distance between
any vertex on one side P(z,y) and the other two sides P(y,z) U P(z,z) is at most . A graph is
called d-slim if all its geodesic triangles are.

Lemma 12 ([29]). Every chordal graph is 1-slim.

Three vertices x, y, z form a metric triangle if, for any choice of shortest-paths P(x,y), P(y, z), P(z, )
connecting them, the latter can only pairwise intersect at their endpoints. If furthermore, dist(z,y) =
dist(y, z) = dist(z,z) = k, then we say of this metric triangle that it is equilateral of size k. The
following result was proved in [2] for meshed graphs, that are a superclass of chordal graphs.

Lemma 13 ([2]). Every metric triangle in a chordal graph G is equilateral.

We next refine Lemma 13 by also bounding the size of metric triangles for chordal graphs. The
following result is known by some researchers in Metric Graph Theory, but we were unable to find
a reference.

Corollary 4. Fvery metric triangle in a chordal graph G is equilateral of size at most two.

Figure 4: Situation in the proof of the first case of Corollary 4.

Proof. Suppose for the sake of contradiction that there exists a metric triangle x,y, z of size at
least three. By Lemma 13, this triangle is equilateral of size & > 3. Fix three shortest-paths
P(z,y), P(y, z), P(z,x) connecting these vertices, thus obtaining a geodesic triangle A(z,y, z).
Let u € P(z,y) s.t. dist(r,u) = 2. By Lemma 12, there exists a neighbour v € N(u) N
(P(y,z) U P(z,z)). We need to consider two cases.

e Case v € P(z,z). Then, dist(z,v) > 2 because otherwise, there would be a shortest zy-
path going through the edge uv, thus contradicting that x,y, z is a metric triangle. In the
same way, dist(z,v) > k — 2, and therefore, we have: dist(z,v) = 2, dist(z,v) = k — 2 (see
Fig. 4). Let [z,s,u] and [z,t,v] be shortest subpaths of P(z,y) and P(z,x), respectively.
Since [z, s,u,v,t, ] is a cycle of length five, there exists a chord. However, the only possible
such chord is st (i.e., because ut € E and vs € E imply ¢ is on a shortest zy-path and s is on
a shortest xz-path, respectively). In this situation, u,v, s, t induces a cycle of length four, a
contradiction.
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e Casev € P(y,z). We prove next that k£ < 4. Indeed, this is the case if v € {y, z}. Otherwise,
since x,y, z is a metric triangle, we cannot have v on a shortest xy-path nor on a shortest
xz-path. Then, dist(y,v) > k — 2, dist(z,v) > k — 2, and therefore, k = dist(y,z) =
dist(y,v)+dist(v,z) > 2k—4. It implies k < 4. If k = 4 then, since we also have dist(y,u) = 2,
we are back to the previous case up to replacing x by y. From now on, let us assume k = 3.
Since the geodesic triangle considered is a cycle of length nine, there exists a chord. However,
consider any such chord st. Vertices s and ¢ are adjacent to some vertices amongst {x,y, z},
and so, the edge st is on a path of length three between two corners of the triangle. Since
x,, 2z is a metric triangle, the only possible chords are, for every of z,y, z, between their two
neighbours on different sides of the triangle. However, in this situation we are left with an
induced cycle of length at least six, thus contradicting that G is chordal.

O]

Note that the bound of Corollary 4 is sharp, as it is shown, e.g., by the 3-sun.

Finally, a quasi-median for z,y,z € V is a triple ™, y*, z* € V s.t.:

dist(x,y) = dist(z,z*) + dist(x*, y*) + dist(y*, y)
dist(y, z) = dist(y,y*) + dist(y*, z*) + dist(z*, z)
dist(z,z) = dist(z, z*) + dist(z*, x*) + dist(z*, x).

Chalopin et al. [7] observed that every triple of vertices has a quasi median which is a metric
triangle.

Proof of Theorem 9. Let z,y, z be a dominating triple, and let x*, y*, z* be a corresponding pseudo
median that is also a metric triangle. We fix shortest-paths P(x, z*), P(y,y*), P(z, z*) along with a
geodesic triangle A(x*, y*, 2*) with sides P(x*,y*), P(y*, z*), P(z*,2*). In doing so, since z*, y*, z*
is a pseudo median, we also get shortest-paths P(z,y), P(y, z), P(z,z). For instance, P(x,y) =
P(z,z*) U P(z*,y*) U P(y*,y). Furthermore, since z,y, z is a dominating triple, the union H of
these above shortest-paths is a dominating set of G. Let u be last visited by a LexBFS, and let
v be last visited by LexBFS(u). Finally, let (s,t) be a diametral pair of G. Assume toward a
contradiction that diam(G) > 11 and e(v) < diam(G) (we will explain at the end of the proof how
to lower the bound on the diameter to 10).

We first prove as an intermediate claim that for some two vertices o, 8 € {x,y, 2z}, we have
that dist(u, P(a, B)) + dist(v, P(a, 8)) < 3. Indeed, let u* € Nful|N H and v* € N[v]NnH. If
u*,v* € P(a, B) for some «, 8 € {x,y, z}, then we get dist(u, P(c, 3)) + dist(v, P(a, 5)) < 2. From
now on, we assume that it is not the case. If u*,v* € A(x*, y*, z*), then since by Corollary 4
this metric triangle is equilateral of size < 2, dist(u*,v*) < 3. However, it implies by Lemma 9
that diam(G) < dist(u,v) + 1 < dist(u*,v*) + 3 < 6, a contradiction. Hence, let us assume for
instance that u* € P(z,2*) but v* € P(y*,2*) is on the only side of A(z*,y*, z*) that is not on
a shortest-path between x and one of {y, 2z} (all other cases are symmetrical to this one). Since
x*,y*, z* is equilateral of size at most two, for any 8 € {y, 2z} we get dist(v*, P(z*,5*)) = 1. As a
result, dist(u, P(x,)) + dist(v, P(z,)) < 1+ 2 = 3, thus proving the claim. Furthermore, as a
by-product of our proof, we also have in this case max{dist(u, P(a, f)), dist(v, P(c, 3))} < 2.

We prove as another intermediate claim that for some w € {s,t} we have dist(w, P(«, 3)) <
2. Indeed, let s* € N[s]N H and t* € N[t]N H. If one amongst s* and t* is a vertex of
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A(z*,y*, z*), say it is the case of s*, then since the latter triangle is equilateral of size at most
two, dist(s, P(a,3)) < 1+ dist(s*, P(a*,3*)) < 2. From now on, we assume that s* and t*
are not vertices of A(x*, y*, 2*). If we write {a, 8,7} = {x,y, 2}, then we may assume w.l.o.g.
s*,t* € P(v,7") (otherwise, one amongst s*,t* is a vertex of P(«, [3), and so we are done). We prove
as a subclaim that dist(u*, P(a,v)UP(8,7)) < 1. Indeed, to see this, it suffices to recall that either
u* € Pla, a®)UP(S, 5*) or u* € P(a*, 5*). In the former case, dist(u*, P(a,y)UP(B,7)) = 0, while
in the latter case, since we have a metric triangle that is equilateral of size two, dist(u*, P(a*,v*)) =
dist(u*, P(5*,~7*)) = 1. Thus, choosing v’ € P(«,~) U P(3,7) at minimum distance from u*:

dist(s*,u*) < dist(u*,u') + (dist(y,u’) — dist(y, s*))
<1+ diam(G) — dist(y,s™).

In particular, dist(s,u) < dist(s*,u*) + 2 < diam(G) + 3 — dist(vy, s*). Since we have dist(s,u) =
diam(G)—1 by Lemma 9, it follows from the above inequalities that we have dist(~, s*) < 4. We get
in the exact same way dist(~y,t") < 4. However, it implies diam(G) = dist(s,t) < 2+ dist(s*,t*) <
2 + dist(s*,7y) + dist(~,t*) < 10, a contradiction.

Overall, let v/,v',w" € P(a, ) at minimum distance from u,v,w respectively. By Lemma 9,
u,v,w are pairwise at distance diam(G) — 1. Let {ri,re,r3} = {u,v,w} s.t. rh is (metrically)
between 7} and r4 onto the shortest-path P(a, 3). Then:

diam(G) > dist(a, )
> dist(ry,ry) + dist(rh, rh)
> dist(r1,re) + dist(re,r3) — dist(ry,r]) — 2 - dist(rq,r49) — dist(r3, rh)
> 2(diam(G) — 1) — dist(u,u') — dist(v,v") — dist(w,w")
— max{dist(u,u’), dist(v,v"), dist(w,w’)}
>2-diam(G) =2 -3 —-2—-2=2-diam(G) — 9.

But then, diam(G) < 9, a contradiction.

Finally, let us sketch how we can decide in linear time whether the diameter is at least equal to
d, for any d > 10. For d = 10, we claim that it suffices to execute a 2-sweep LexBFS. Indeed, by
Lemma 9, the output vertex has eccentricity either 9 or 10, and if it is 9 then, by Corollary 3, we
have diam(G) = 9 < 10. Otherwise, d > 11 and we apply the algorithm 3-sweep LexBFS, whose
correctness follows from the above analysis. O

We left open the following intriguing question. For any k > 2, does there exist a di > 0 s.t.,
for any (chordal) graph with a dominating target of cardinality at most k, we can decide in truly
subquadratic time whether the diameter is at least di, and if so compute the diameter exactly?
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