

Ceftriaxone compared with benzylpenicillin in the treatment of neurosyphilis in France

Thomas Bettuzzi, Aurélie Jourdes, Olivier Robineau, Isabelle Alcaraz, Victoria Manda, Jean Michel Molina, Maxime Mehlen, Charles Cazanave, Pierre Tattevin, Sami Mensi, et al.

▶ To cite this version:

Thomas Bettuzzi, Aurélie Jourdes, Olivier Robineau, Isabelle Alcaraz, Victoria Manda, et al.. Ceftriaxone compared with benzylpenicillin in the treatment of neurosyphilis in France: a retrospective multicentre study. The Lancet Infectious Diseases, 2021, 21 (10), pp.1441-1447. 10.1016/S1473-3099(20)30857-4. hal-03370861

HAL Id: hal-03370861 https://hal.science/hal-03370861

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1 Ceftriaxone versus benzylpenicillin in the treatment of neurosyphilis: a French 2 retrospective multicentre study 3 4 Thomas Bettuzzi, MD^{1,2*}, Aurélie Jourdes, MD^{3*}, Olivier Robineau, MD⁴, Isabelle Alcaraz, 5 MD⁴, Victoria Manda, MD^{5,6}, Prof Jean Michel Molina, PhD^{5,6}, Maxime Mehlen, MD⁷, Prof 6 Charles Cazanave, PhD⁷, Prof Pierre Tattevin, PhD⁸, Sami Mensi, MD⁸, Prof Benjamin 7 Terrier, PhD⁹, Alexis Régent, PhD⁹, Prof Jade Ghosn, PhD¹⁰, Caroline Woerther, PhD^{11,6}, 8 Prof Guillaume Martin-Blondel, PhD^{3, 12,^}, Prof Nicolas Dupin, MD^{1,13,^} 9 10 ¹ Service de Dermatologie, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, APHP, 11 12 Paris ² EpiDermE, Univ Paris Est Créteil, F-94010 Créteil, France 13 ³ Service des Maladies Infectieuses et Tropicales, CHU de Toulouse 14 ⁴ Service Universitaire des Maladies Infectieuses et du Voyageur, Hôpital Dron, Tourcoing 15 ⁵ Département des Maladies Infectieuses, Hôpital Saint Louis et Lariboisière, Assistance 16 Publique Hôpitaux de Paris 17 18 ⁶ Université de Paris, Paris ⁷ Service de Maladies Infectieuses, Hôpital Pellegrin, CHU de Bordeaux 19 20 ⁸ Service de Maladies Infectieuses, CHU de Rennes ⁹ Service de Médecine Interne, Hôpital Cochin, APHP, Paris 21 ¹⁰ Service de Maladies Infectieuses, Hôpital Bichat, APHP, Paris 22 23 ¹¹ Service de Maladies Infectieuses, Hôpital Necker, APHP, Paris 24 ¹² UMR INSERM/CNRS 1043, Centre de Physiopathologie Toulouse Purpan, Toulouse ¹³ Centre National de Référence de la Syphilis, Institut Cochin, Unité Inserm U1016, 25 26 Université de Paris 27 28 * these two authors contributed equally to this work and should be considered joint first 29 authors [^] these two authors contributed equally to this work and should be considered joint last 30 31 authors 32 Corresponding author: 33 34 Nicolas Dupin, MD, PhD 35 Tel: 00 33 1 58 41 18 49 Fax: 00 33 1 5841 17 65 36 37 nicolas.dupin@aphp.fr 38 39 Word count: 2763 40 Abstract word count: 263 41 Tables: 2 42 Figure:1 **Supplementary Tables: 2** 43 44 **Supplementary figures:**2 45 46 Key words: neurosyphilis, penicillin G, ceftriaxone 47 48 49 50

34 Abstract

1 2

5
6 Background Intravenous benzylpenicillin is the gold-standard treatment for neurosyphilis but
7 it requires prolonged hospitalization. Ceftriaxone is a possible alternative treatment, the
8 effectiveness of which remains unclear.

9 Methods We performed a retrospective multicentre study at eight tertiary care centers in 10 France, from January 1st 1997 to December 31st 2017. Patients with neurosyphilis defined by 1) positive treponemal and non-treponemal tests and 2) otic syphilis and/or ocular syphilis 11 12 and/or either neurological symptom with positive CSF-VDRL or positive CSF-PCR or >5 leukocytes on CSF cell count, were identified from medical information department database 13 14 of each center and assigned to two groups on the basis of the treatment received 15 (benzylpenicillin or ceftriaxone). The primary outcome was overall clinical response (OCR, i.e. complete and partial responses) one month after treatment initiation. The secondary 16 17 endpoints were complete response (CR) at one month, serological response at six months and 18 length of hospital stay. 19 Findings We included 208 patients in this study (42 in the ceftriaxone group and 166 in the 20 benzylpenicillin group). We observed 41 OCR (98%) in the ceftriaxone group, versus 125

21 (76%) in the penicillin group. After propensity score weighting, OCR rates differed between 22 the groups (OR 1.22 [1.12-1.33], p < 0.0001), whereas CR rates did not (OR 1.08 [0.94-1.24],

23 p=0.269). Serological response at six months did not differ between the groups (21/24 (88%))

24 vs. 76/93 (82%), p=0.50), but hospital stay was shorter for the ceftriaxone group than for the

25 penicillin group (13.8 \pm 6.4 vs. 8.9 \pm 9.9 days, p<0.0001).

26 Interpretation

Our results suggest that ceftriaxone is as effective as benzylpenicillin for neurosyphilis
 treatment, potentially decreasing the length of hospital stay. Randomised controlled trials

- should be conducted to confirm these results.
- 30 **Funding**
- 31 None
- 32

1 Introduction

- Syphilis is a sexually transmitted disease (STD) caused by Treponema pallidum. A 3 4 resurgence has been reported since the turn of the century, in high- and low-income countries, 5 as observed for other STDs, particularly among men who have sex with men (MSM). A large 6 proportion of those affected are patients living with HIV/AIDS (PLWHA). The incidence of 7 syphilis was 9.5 cases per 100,000 inhabitants in the USA in 2017,¹ and 22 cases per 100,000 inhabitants in China in 2008.² Neurosyphilis accounts for 1.8% to 3.5% of syphilis cases³ and 8 9 its diagnosis is often challenging, due to polymorphic clinical manifestations. It is strongly associated with HIV infection.^{3,4} Early neurosyphilis usually presents as meningitis, cranial 10 11 nerve palsies, ocular and otic syphilis, whereas late neurosyphilis encompasses general paresis and tabes dorsalis. Neurovascular syphilis can occur at both stages.^{3,5} 12
- 13 According to European, US and UK guidelines, the gold-standard treatment for neurosyphilis is intravenous benzylpenicillin (24 M IU per day for 10-14 days).⁶⁻⁸ However, 14 15 this treatment requires four daily injections, potentially resulting in a long hospital stay. Few 16 data are available concerning the safety and efficacy of alternative treatments for 17 neurosyphilis that could lessen the burden of patient care and could be used in patients allergic to penicillin. Ceftriaxone is active against *T. pallidum* in experimental models, ⁹ has 18 intermediate diffusion in cerebrospinal fluid (CSF)¹⁰ and can be administered once daily. 19 Several studies have suggested that it is an effective treatment for neurosyphilis, but most of 20 the clinical data obtained to date originate from case reports and small studies.¹¹ Other studies 21 have mostly been limited to syphilitic uveitis¹² and PLWHA,^{13,14,15} and had unclear outcome 22 23 definitions, different treatment durations, and some included combination treatments.
- If ceftriaxone proves to be as effective as benzylpenicillin, it could be used as outpatient parenteral antimicrobial therapy (OPAT). This would decrease the length of hospital stay, which would be beneficial both economically and in terms of the patients' quality of life.

- In this study, we compared the effectiveness of ceftriaxone with that of the recommended
 regimen of 14 days of benzylpenicillin for the treatment of neurosyphilis.
- 3

4 **Patients and methods**

5 *Study overview*

We performed a retrospective multicentre study from January 1st 1997 to December 31st 2017 at eight French tertiary care centers. This study conducted in accordance with good clinical practice and the Declaration of Helsinki was approved by the Toulouse University Hospital (RnIPH 2020-16) and covered by the MR-004 reference methodology (CNIL number: 2206723 v 0). According to French law on ethics, patients were informed that their codified data will be used for the study. The study was also declared to the "Institut National des Données de Santé" under number MR2914170420.

13

14 *Study population*

15 Patients were selected from the medical information department database of each 16 center for the 1997-2017 period (CIM-10 coding A504, A521, A523). The inclusion criteria 17 were: patient over the age of 18 years, with a confirmed diagnosis of neurosyphilis. 18 Neurosyphilis was defined as: 1) ocular syphilis or otic syphilis; and/or the presence of 19 neurological symptoms associated with more than five leukocytes on CSF cell counts and/or 20 positive CSF VDRL, and/or positive CSF Treponema pallidum PCR; 2) at least one positive 21 treponemal test on serum, such as ELISA, FTA or TPHA, and one positive non-treponemal 22 test, such as a serological VDRL test or RPR test. All diagnoses were made by an infectious 23 diseases or ophthalmology specialist and retrospectively reviewed by AJ and TB. Patients 24 with late neurosyphilis, defined as tabes dorsalis, general paresis, dementia, parenchymatous

syphilis and/or negative serological VDRL tests, asymptomatic neurosyphilis or an alternative
 diagnosis were excluded.

3

4 Treatment groups

5 Two groups of patients were defined on the basis of initial treatment: intravenous 6 ceftriaxone (2 g once daily) or intravenous benzylpenicillin (3-4 million units every four 7 hours). Patients had to be treated for at least 10 days to be eligible for inclusion.

8

9 Covariables of interest

10 We assessed clinical data from medical charts, including age, sex, HIV and 11 immunosuppression status, history of previous episodes of syphilis and other STDs. Data 12 concerning systemic glucocorticoid treatment were also collected. Neurosyphilis was separated into five different subtypes according to clinical characteristics, including 13 14 meningitis, facial palsy, otic syphilis, neurovascular syphilis, and ocular syphilis 15 (encompassing overlapping forms, including: anterior, intermediate, posterior uveitis and 16 optic neuritis). A single patient could present with several subtypes of neurosyphilis, such as 17 ocular syphilis and meningitis, for example. Extraneurological and/or ophthalmological 18 symptoms, such as skin rash, lymphadenopathy and alopecia, were also assessed. The 19 following biological variables of interest were collected: serum VDRL or RPR titer at 20 diagnosis and six months after treatment, CSF VDRL titer at diagnosis and six months after treatment, CSF cell count and CSF protein levels. Data were collected retrospectively. 21

22

23 *Outcomes*

24 Clinical response obtained from medical charts was assessed one month after 25 treatment initiation retrospectively by the investigators. Clinical complete response (CR) was

1 defined as the total disappearance of neurological or ophthalmological symptoms. Clinical 2 partial response (PR) was defined as a significant improvement in symptoms, without a return 3 to baseline. For uveitis, CR was defined as a total recovery of previous vision, PR as a 4 recovery of vision without reaching CR. For otic syphilis, CR was defined as a total recovery 5 of previous hearing and PR as a recovery without reaching CR. For meningitis, CR was 6 defined as a total recovery from meningeal symptoms, and PR as a recovery with sequelae. 7 For facial palsies, CR was defined as total recovery from the palsy and PR as partial recovery, 8 and, for neurovascular syphilis, CR was defined as a recovery from neurological symptoms 9 and PR as a recovery with sequelae. In the case of overlapping forms, recovery in both 10 categories was required for patients to be considered to display CR or PR. The primary 11 outcome was overall response (CR + PR) at one month after treatment initiation. Secondary 12 outcomes were CR, a four-fold decrease in serum VDRL titer six months after treatment, and 13 length of hospital stay. It was not possible to evaluate CSF control due to the small size of the 14 sample.

15

16 Statistical analysis

17 *Descriptive statistics*

Quantitative variables are reported as the median (interquartile range (IQR)) or mean (standard deviation (SD)) and categorical variables are reported as numbers (percentages). The ceftriaxone and benzylpenicillin groups were compared in chi-squared or Fisher's exact tests, as appropriate, for categorical variables, and Student's *t*-tests or Wilcoxon-Mann-Whitney tests for quantitative variables.

23 Causal inference

We initially estimated the association between treatment and clinical response with an unadjusted logistic regression model. Given the variability of the baseline covariates of

1 interest, we then performed a weighted logistic regression, with inverse probability of treatment weighting (IPTW method) for overall response and CR. We estimated a propensity 2 3 score, defined as the probability of treatment allocation conditional on measured baseline 4 covariates. Each patient's weight was equal to the inverse of the probability of receiving the 5 treatment that the patient received. This method is used to reduce the indication bias of 6 treatment allocation. A non-parsimonious multivariable logistic regression analysis was 7 performed to estimate the probability of each patient receiving ceftriaxone given their 8 baseline covariates (i.e., the propensity score of each patient). The variables included in the 9 propensity score were prespecified before outcome analysis and included center, age at 10 diagnosis, HIV status, history of previous episodes of syphilis, and clinical form of neurosyphilis (i.e. uveitis, optic neuritis, labyrinthitis, meningitis, vasculitis or facial 11 12 paralysis). We did not include CSF VDRL in the primary analysis because 30% of patients 13 presented with missing data, which we decided not to impute. Moreover, to avoid bias, we did 14 not include systemic glucocorticoid use in the model because this treatment was always 15 initiated several days after the introduction of antibiotic treatment, mostly in cases of negative 16 outcome, and was unlinked to treatment allocation. Standardised differences were used for 17 quantitative comparisons of the baseline covariates measured between the benzylpenicillin 18 and ceftriaxone groups in the sample weighted by the inverse probability of treatment. A 19 threshold of 10% was used to assess imbalance.¹⁶

Patients who changed treatment regimen remained in their initial treatment group for the intention-to-treat analysis. Two sensitivity analyses were performed. The first included CSF VDRL in the model, and the second was a per-protocol analysis. Moreover, for the assessment of response homogeneity, several subgroup analyses were also performed, according to HIV status, neurosyphilis subtype and CSF leukocytosis > 5 per mm³. All

1	statistical analyses were performed with R software (CRAN R Project 3.6.3). All tests were
2	two-tailed, and values of $p < 0.05$ were considered significant.

3

4 Role of the funding source

5 This study was not funded. The corresponding author had full access to all the data in 6 the study and had final responsibility for the decision to submit for publication.

- 7
- 8

9 **Results**

10 *Study population*

11 We included 208 patients (Figure 1), with a median age of 47 years (IQR: 36-56) in 12 this study: 193 (93%) were men and 102 (49%) were PLWHA. The PLWHA included 99 (97%) men. The clinical characteristics of the patients are presented in Table 1 and 13 14 Appendix p3. The choice of treatment was left to the clinicians caring for patients. Forty-two 15 patients were initially treated with ceftriaxone and 166 patients were initially treated with 16 benzylpenicillin. In total, 67 (40%) patients from the benzylpenicillin group and 14 (33%) 17 from the ceftriaxone group presented with signs of secondary syphilis, such as eruptions, 18 affected lymph nodes, or both. The two groups differed principally in terms of the clinical 19 type of neurosyphilis (p=0.006), with uveitis more frequent in the benzylpenicillin group 20 (55%) than in the ceftriaxone group (33%). Similarly, a higher proportion of the patients in 21 the benzylpenicillin group had positive CSF VDRL results (42% vs. 28%, p=0.05), which 22 may have influenced the choice of treatment. CSF Treponema pallidum PCR was performed 23 on 32 patients and was positive for seven (22% 1/4 in the ceftriaxone group and 6/28 in the 24 penicillin group). During the study, 38 patients (23%) initially treated with benzylpenicillin 25 were switched onto ceftriaxone, after a median of 7 days (IQR: 5-12), but these patients were

kept in the benzylpenicillin group for the intention-to-treat analysis. This group consisted of
16 patients with uveitis, 14 with otic syphilis, six with meningitis, and two with facial palsies
but no patients with neurovascular syphilis. Conversely, none of the patients initially treated
with ceftriaxone were switched onto benzylpenicillin. The median duration of treatment was
14 days (IQR:14-14, range: 10-21 days) for each group.

6

7 Propensity score

Median propensity score was 0.10 (IQR: 0.00-0.18) in the benzylpenicillin group and 0.54 (IQR: 0.25-0.58) in the ceftriaxone group. (p < 0.001) (**Appendix p5**). The C statistic of the model was 0.88 (95% CI: 0.82-0.92). After application of the IPTW method, 16 of the 17 variables included had a standardised mean difference below 10% (**Appendix p6**). The threshold was exceeded, and even then only slightly (10.3%), for optic neuritis, due to its higher prevalence in the ceftriaxone group. We nevertheless retained this variable in the model because we considered it to be a subvariable of the clinical form of neurosyphilis.

15

16 Endpoints

17 The primary and secondary endpoints are presented in Table 2. In total, 41 overall 18 clinical responses (98%) were observed in the ceftriaxone group, versus 126 (76%) in the 19 benzylpenicillin group (crude OR 13.02 [1.73-97.66], p=0.02). This difference persisted after 20 propensity score weighting (OR 1.22 [1.12-1.33], p<0.0001). Likewise, 22 complete 21 responses (52%) were observed in the ceftriaxone group, versus 55 (33%) in the 22 benzylpenicillin group (crude OR 2.26 [1.12-4.41], p=0.03). However, this difference was 23 not significant after propensity score weighting (OR 1.08 [0.94-1.24], p=0.269). Consistent 24 results were obtained for the sensitivity analyses (Table 2). For the subgroup of 38 patients switched from benzylpenicillin to ceftriaxone, 32 (84%) presented an overall clinical response 25

1 and 17 (45%) presented a CR. Serological responses at six months did not differ between the 2 groups (88% vs. 82%, p=0.50), but patients were hospitalized for a shorter length of time in 3 the ceftriaxone group than in the benzylpenicillin group $(13.8 \pm 6.4 \text{ vs. } 8.9 \pm 9.9 \text{ days})$ 4 p < 0.0001). Subgroup analyses according to HIV status, neurosyphilis subtype and CSF 5 leukocytosis revealed no differences in complete response rates between groups (Figure 2). 6 Given the small size of the groups, neurovascular syphilis and facial palsies were grouped 7 with meningitis. It was not possible to calculate the OR for overall response in the different 8 subgroups, due to a lack of events. Absolute values and percentages are provided in 9 Appendix p4. No major adverse effects were reported in either group.

10

11 **Discussion**

In this study, ceftriaxone was found as effective as the gold-standard, benzylpenicillin, for the treatment of neurosyphilis, according to the rates of complete clinical response at one month and serological response at six months, and the use of ceftriaxone was associated with a shorter stay in hospital.

16

17 A prospective study considering all forms of syphilis has already reported a better 18 serological response to ceftriaxone at a dose of 1 g daily for 10 days than for two weekly 19 injections of benzathyl-benzylpenicillin,¹⁷ but a meta-analysis reported an absence of difference between ceftriaxone and penicillin.¹⁸ Focusing on neurosyphilis, T. pallidum 20 21 probably invades the CNS early on, as *T. pallidum* is isolated in the CSF of 30% of patients with primary and secondary syphilis.¹⁹ Relapses of neurosyphilis have been shown to occur 22 after benzathine penicillin treatment, particularly among PLWHA,^{4,20} but the risk of 23 24 developing symptomatic neurosyphilis is unknown, and there is no evidence available to determine whether asymptomatic neurosyphilis is predictive of treatment failure.²¹ 25

1 Ceftriaxone has similar and intermediate CSF diffusion features to benzylpenicillin in uninflamed and inflamed meninges,¹⁰ and may therefore be considered to offer a good 2 alternative to benzylpenicillin.²⁰ Focusing on neurosyphilis, a few studies have reported 3 ceftriaxone to be effective in PLWHA¹⁴ and in patients with uveitis,¹² with response rates of 4 5 80% and 67%, respectively, but US and UK guidelines are not in line with European guidelines concerning the use of ceftriaxone.^{6–8} Our subgroup analyses were consistent with 6 7 these previous findings. However, as the number of patients in each subgroup was small, the 8 results must be interpreted with caution, without extrapolation beyond a general homogeneity 9 of the results. Thus, our results support the use of ceftriaxone as an alternative to benzylpenicillin for the treatment of neurosyphilis, several potential benefits. First, for 10 11 patients allergic to penicillin, a penicillin desensitization treatment regimen is often 12 recommended, but this delays syphilis treatment, which may have negative consequences. For 13 such patients with no contraindication to cephalosporins, particularly in the absence of cross 14 allergy, ceftriaxone may be an appropriate first-line treatment. Second, once-daily ceftriaxone is already widely and safely used in OPAT programmes.²² Selected patients with 15 16 neurosyphilis ready for hospital discharge are therefore potential candidates for the 17 completion of OPAT with ceftriaxone, which would greatly decrease costs and improve quality of life.²³ However, these advantages must be weighed up against the broader 18 19 antimicrobial spectrum of ceftriaxone, resulting in a higher ecological burden on microbiota, 20 and a higher risk of the emergence of antibiotic resistance and Clostridioides difficile infection.²⁴ 21

There is still no consensus definition of neurosyphilis, and its diagnosis remains challenging. In this study, we chose to exclude cases of asymptomatic neurosyphilis, because treatment is not consensual, clinical outcome is difficult to assess, and CSF abnormalities are likely to resolve with classical treatment for secondary syphilis.^{3,5} The sensitivities of CSF-

VDRL, and CSF-PCR for the diagnosis of neurosyphilis have been estimated at 30-70%,²⁵ 1 and 6-77%, respectively.²⁶ Moreover, although CSF pleocytosis is a marker of meningitis,³ 2 CSF examination may be normal in up to 30% of ocular syphilis²⁷ and 90% of otic syphilis 3 cases.²⁸ A diagnosis of neurosyphilis cannot, therefore, be ruled out on the basis of a normal 4 5 CSF examination. However, positive findings on clinical examination associated with positive 6 treponemal and non-treponemal tests remain strongly suggestive of neurosyphilis. In this 7 study, more than a third of patients presented with clinical signs of secondary syphilis. 8 Therefore, given the challenging nature of neurosyphilis diagnosis, careful screening for 9 extraneurological signs is warranted.

10

11 The strengths of this study are its sample size, with the inclusion of patients from eight 12 referral centers in France, and the use of a propensity score. However, this study is also 13 subject to several limitations, particularly its retrospective design and the indication bias of 14 treatment allocation. The sample size, although relatively large for this rare condition, may 15 not be enough to draw any definitive conclusions. The use of a weighted propensity score 16 partially corrects this bias, but cannot replace randomization. Our results suggest that the use 17 of ceftriaxone is associated with shorter hospital stay, but we cannot exclude the possibility 18 that the patients in the benzylpenicillin group suffered from more severe disease, necessitating 19 a longer stay in hospital regardless of treatment. Moreover, almost all the patients in our study were men, and 49% were PLWHA, consistent with findings for the current European 20 endemic,²⁹ but very different from Asian of African reports,^{30,31} limiting the generalizability 21 22 of our results to other countries. Finally, the retrospective design of this study precluded an 23 analysis of the adverse effects associated with the use of ceftriaxone.

1	In the context of the current rapid reemergence of syphilis, this study suggests that
2	ceftriaxone may be considered as a reliable alternative to benzylpenicillin for the treatment of
3	neurosyphilis. In selected patients, OPAT with ceftriaxone may make it possible to decrease
4	the length of hospital stay, reducing costs while improving quality of life for patients.
5	Randomised controlled trials are however warranted to determine the best treatment options
6 7	for neurosyphilis.
8	
9	
10	
 11 12 13 14 15 16 17 	Acknowledgements: We thank Prof. Emilie Sbidian and Prof. Agnès Sommet for assistance with the analysis and the interpretation of statistics for this study. We thank Veronique Baclet, Thomas Huleux, Alexa Debard, Lucie Lelièvre, Muriel Alvarez, Lydie Porte, Pauline Lansalot-Matras, Camille Garnier, Caroline Protin, Morgane Mourguet, Gaspard Grouteau, Sarah Pellerin, and Pierre Delobel for their contributions to patient care.
18	Author contributions:
19 20 21 22 23 24 25 26 27 28	ND and GMB designed the study TB, AJ, MM and SM collected the data TB analyzed the data and designed the figures ND and GMB interpreted the data TB and AJ wrote the first version of the manuscript CCW, IA, OR, JG, VM, JMM, CC, PT, BT, AR, JG helped to write the manuscript ND and GMD wrote the final version of the manuscript ND and GMB contributed equally TB and AJ contributed equally
29	Declaration of interests
 30 31 32 33 34 35 36 37 38 	 Prof Jean Michel Molina reports grants from Gilead, Merck and Viiv Healthcare, outside the submitted work Prof. Jade Ghosn reports grants and personal fees from Gilead, grants and personal fees from ViiV Healthcare, personal fees from Janssen, personal fees from MSD, outside the submitted work Dr. Robineau reports personal fees and non-financial support from ViiV, grants, personal fees and non-financial support from Gilead, outside the submitted work

1 Data sharing

- 2 De-identified participant data and data dictionary are available upon reasonable request at
- 3 Prof Nicolas Dupin (Contact: nicolas.dupin@aphp.fr) and Prof Guillaume Martin-Blondel
- 4 (Contact: martin-blondel.g@chu-toulouse.fr)

1 **References**

- Sexually transmitted disease surveillance 2017: syphilis. Atlanta: Centers for Disease
 Control and Prevention. https://www.cdc.gov/std/stats17/Syphilis.htm
- Tucker JD, Chen X-S, Peeling RW. Syphilis and social upheaval in China. N Engl J
 Med. 2010;362(18):1658-1661.
- 6 3. Ropper AH. Neurosyphilis. Longo DL, ed. *N Engl J Med.* 2019;**381**(14):1358-1363.
- Gordon SM, Eaton ME, George R, et al. The response of symptomatic neurosyphilis to
 high-dose intravenous penicillin G in patients with human immunodeficiency virus
 infection. *N Engl J Med.* **1994**;331(22):1469-1473.
- 5. Ghanem KG, Ram S, Rice PA. The modern epidemic of syphilis. Campion EW, ed. N
 Engl J Med. 2020;**382**(9):845-854.
- 12 6. Janier M, Hegyi V, Dupin N, et al. 2014 European guideline on the management of
 13 syphilis. *J Eur Acad Dermatol Venereol*. 2014;28(12):1581-1593.
- 14 7. Workowski KA, Bolan GA, Centers for Disease Control and Prevention. Sexually
 15 transmitted diseases treatment guidelines, 2015. *MMWR Recomm Rep Morb Mortal*16 *Wkly Rep Recomm Rep.* 2015;64(RR-03):1-137.
- 17 8. Kingston M, French P, Higgins S, et al. UK national guidelines on the management of
 18 syphilis 2015. *Int J STD AIDS*. 2016;27(6):421-446.
- Johnson RC, Bey RF, Wolgamot SJ. Comparison of the activities of ceftriaxone and penicillin G against experimentally induced syphilis in rabbits. *Antimicrob Agents Chemother*. 1982;21(6):984-989.
- Nau R, Sorgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal
 fluid/blood-brain barrier for treatment of central nervous system infections. *Clin Microbiol Rev.* 2010;23(4):858-883.
- 11. Shann S. Treatment of neurosyphilis with ceftriaxone. Sex Transm Infect.
 2003;79(5):415-416.
- Hoogewoud F, Frumholtz L, Loubet P, et al. Prognostic factors in syphilitic uveitis.
 Ophthalmology. 2017;**124**(12):1808-1816.
- 13. Dowell ME, Ross PG, Musher DM, Cate TR, Baughn RE. Response of latent syphilis or
 neurosyphilis to ceftriaxone therapy in persons infected with human immunodeficiency
 virus. *Am J Med.* 1992;93(5):481-488.
- 32 14. Drago F, Ciccarese G, Broccolo F, *et al.* A new enhanced antibiotic treatment for early
 33 and late syphilis. *J Glob Antimicrob Resist.* 2016; **5**,64-66.
- Marra CM, Boutin P, McArthur JC, et al. A pilot study evaluating ceftriaxone and
 penicillin G as treatment agents for neurosyphilis in human immunodeficiency virus infected individuals. *Clin Infect Dis.* 2000;**30**(3):540-544.

- Austin PC, Stuart EA. Moving towards best practice when using inverse probability of
 treatment weighting (IPTW) using the propensity score to estimate causal treatment
 effects in observational studies. *Stat Med.* 2015;**34**(28):3661-3679.
- 4 17. Cao Y, Su X, Wang Q, et al. A multicenter study evaluating ceftriaxone and benzathine
 5 penicillin G as treatment agents for early syphilis in Jiangsu, China. *Clin Infect Dis.*6 2017;65(10):1683-1688.
- 18. Liang Z, Chen Y-P, Yang C-S, et al. Meta-analysis of ceftriaxone compared with
 penicillin for the treatment of syphilis. *Int J Antimicrob Agents*. 2016;47(1):6-11.
- 9 19. Lukehart SA, Hook EW, Baker-Zander SA, et al. Invasion of the central nervous system
 10 by *Treponema pallidum*: implications for diagnosis and treatment. *Ann Intern Med.*11 1988;109(11):855.
- Walter T, Lebouche B, Miaihes P et al. Symptomatic relapse of neurologic syphilis after
 benzathine penicillin G therapy for primary or secondary syphilis in HIV-infected
 patients. *Clin Infect Dis.* 2006;43(11):1498-1498.
- 15 21. Tuddenham S, Ghanem KG. Neurosyphilis: knowledge gaps and controversies. Sex
 16 Transm Dis. 2018;45(3):147-151.
- 17 22. Duncan CJA, Barr DA, Seaton RA. Outpatient parenteral antimicrobial therapy with
 18 ceftriaxone, a review. *Int J Clin Pharm.* 2012;**34**(3):410-417.
- 19 23. Durojaiye OC, Bell H, Andrews D, Ntziora F, Cartwright K. Clinical efficacy, cost
 20 analysis and patient acceptability of outpatient parenteral antibiotic therapy (OPAT): a
 21 decade of Sheffield (UK) OPAT service. *Int J Antimicrob Agents*. 2018;**51**(1):26-32.
- 22 24. Meletiadis J, Turlej-Rogacka A, Lerner A, Adler A, Tacconelli E, Mouton JW.
 23 Amplification of antimicrobial resistance in gut flora of patients treated with ceftriaxone.
 24 Antimicrob Agents Chemother. 2017;61(11):e00473-17.
- 25 25. Davis LE, Schmitt JW. Clinical significance of cerebrospinal fluid tests for neurosyphilis: CSF tests for neurosyphilis. *Ann Neurol.* 1989;25(1):50-55.
- 26. Vanhaecke C, Grange P, Benhaddou N, et al. Clinical and biological characteristics of
 40 patients with neurosyphilis and evaluation of *Treponema pallidum* nested polymerase
 chain reaction in cerebrospinal fluid samples. *Clin Infect Dis.* 2016; **63**(9):1180-1186.
- 27. Lapere S, Mustak H, Steffen J. Clinical manifestations and cerebrospinal fluid status in
 ocular syphilis. *Ocul Immunol Inflamm*. 2019;27(1):126-130.
- 32 28. Yimtae K, Srirompotong S, Lertsukprasert K. Otosyphilis: A review of 85 cases.
 33 Otolaryngol Neck Surg. 2007;136(1):67-71.
- Abara WE, Hess KL, Neblett Fanfair R, Bernstein KT, Paz-Bailey G. Syphilis trends
 among men who have sex with men in the United States and Western Europe: a
 systematic review of trend studies published between 2004 and 2015. Lima VD, ed. *PLoS ONE*. 2016;11(7):e0159309.

- 30. Zou X, Ling L, Zhang L. Trends and risk factors for HIV, HCV and syphilis
 seroconversion among drug users in a methadone maintenance treatment programme in
 China: a 7-year retrospective cohort study. *BMJ Open.* 2015;5(8):e008162.
- 4 31. Kojima N, Klausner JD. An update on the global epidemiology of syphilis. *Curr* 5 *Epidemiol Rep.* 2018;5(1):24-38.
- 6

Table 1 Characteristics of patient	Ceftriaxone	Benzylpenicillin	<i>P</i> -value*
		v 1	<i>P</i> -value*
	(n=42)	(<i>n</i> =166)	0.22
Age (mean \pm SD)	44.4 ± 13.4	47.1 ± 12.2	0.23
Male	40 (95)	153 (92)	0.74
PLWHA	23 (55)	79 (48)	0.49
History of syphilis	1 (2)	18 (11)	0.13
Neurosyphilis subtype (%)			0.006
Uveitis	14 (33)	90 (55)	
Anterior uveitis	9 (21)	50 (30)	
Intermediate uveitis	8 (19)	45 (27)	
Posterior uveitis	11 (26)	77 (47)	
with retinitis	7 (17)	53 (32)	
with papillitis	8 (19)	42 (25)	
Optic neuritis	6 (14)	3 (2)	
Meningitis	8 (20)	33 (20)	
Facial palsy	1 (3)	9 (5)	
Neurovascular	4 (10)	7 (4)	
Otic syphilis	8 (19)	41 (25)	
Other neurological signs (%)			0.46
Confusion	2 (5)	9 (5)	
Peripheral neuropathy	3 (7)	6 (4)	
Ataxia	1 (2)	3 (2)	
Myelitis	1 (2)	0 (0)	
Epilepsy	0 (0)	3 (2)	
Other clinical signs (%)			0.36
Eruption	11 (26)	49 (30)	
Lymphadenopathy	2 (5)	5 (3)	
Eruption and lymphadenopathy	1 (2)	13 (8)	
Alopecia	1 (2)	2 (1)	
Serum VDRL	32 (16-128)	64 (32-128)	0.49
CSF leucocytosis	42 ± 101	53 ± 115 (n=128)	0.57
(elements/mm ³)	(n=38)	、 <i>、 、 、 、 、 、 、 、 、 、</i>	
CSF proteins (mg/L)	0.68 ± 0.40	0.82 ± 0.68	0.25
1	(n=34)	(n=120)	
Positive CSF VDRL	8 (28) (n=29)	55 (42) (n=114)	0.05
Treatment with systemic	5 (12)	48 (29)	0.03
corticoids		× - /	

Table 1 Characteristics of natients according to treatment regimen

Quantitative variables are presented as the mean ± standard deviation and qualitative variables are presented as the absolute value (%). Serum VDRL is presented as the median (IQR)

56 7 *All tests were two-tailed and considered significant if P-value<0.05. Fisher's exact tests or Student's t tests were performed, as appropriate.

CSF: cerebrospinal fluid, PLWHA: People living with HIV/AIDS

Table 2 Endpoints according to treatment regimen

	Ceftriaxone	Benzylpenicillin	P-value
Complete response	1.08 [0.94-1.24]	Ref	0.269
Propensity score-			
weighted OR*			
Overall response,	1.22 [1.12-1.33]	Ref	< 0.0001
Propensity score-			
weighted OR*			
Length of hospital	8.9 [5.7-12.0]	13.8 [12.8-14.8]	< 0.0001
stay (days) [95% CI]			
Serological response	1.56 [0.42-5.86]	Ref	0.50
Crude OR $(n=117)$			
Per protocol analysis			
Complete response	1.22 [1.06-1.42]	Ref	0.008
Propensity score-			
weighted OR*			
Overall response	1.22 [1.11-1.34]	Ref	< 0.0001
Propensity score-			
weighted OR			
Including CSF-VDRL (<i>n</i> =144)			
Complete response	1.18 [1.01-1.38]	Ref	0.04
Propensity score-			
weighted OR*			
Overall response	1.27 [1.13-1.42]	Ref	<0.0001
Propensity score-			
weighted OR			

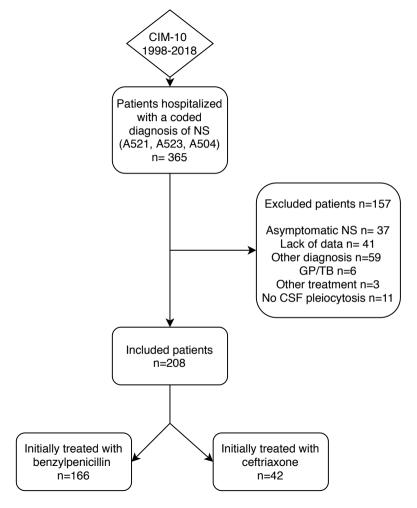
1	Figure 1 Diagram of included patients
2 3	GP/TB: General paresis/ Tabes dorsalis
4 5	NS: Neurosyphilis CSF: cerebrospinal fluid
6	
7 8	Figure 2 Complete response rates in patients treated with ceftriaxone or benzylpenicillin, by HIV status, subtype of neurosyphilis and CSF cellularity.
9	
10 11	HIV +: presence of human immunodeficiency virus infection
12 13	HIV -: absence of human immunodeficiency virus infection CSF cells > $5/mm^3$: presence of more than 5 cells per mm ³ in the cerebrospinal fluid.
14	CSF cells < 5/mm ³ : Presence of fewer than 5 cells per mm ³ in the cerebrospinal fluid
15 16	OR: odds ratio Odd Ratios and their confidence intervals are presented with a log-linear scale.
17 18	Vasculitis and facial palsy were grouped with meningitis because there were too few events.
19	
20 21	
22	Research in context
23	
24	Evidence before this study
25	Neurosyphilis is a disease which, although rare, can have very serious consequences.
26	According to the European, US and UK guidelines, the gold-standard treatment is intravenous
27	benzylpenicillin for 10 to 14 days. Nonetheless, the same guidelines are not in line concerning
28	the use of ceftriaxone which could allow outpatient parenteral antimicrobial therapy and thus
29	reduce the duration of hospitalization.
30	In order to assess the evidence about ceftriaxone efficacy in treating neurosyphilis, we
31	searched Pubmed until June 1st 2020 entering the terms "neurosyphilis" AND "treatment"
32	with language restriction in English and French. Evidence-based-medecine remains scarce
33	about the effectiveness of ceftriaxone since only case reports and small studies were
34	published. Some studies were restricted to patients living with HIV, and to patients with
35	syphilitic uveitis, reporting a 80% and 67% response rate respectively.
36	To better assess the effectiveness of ceftriaxone among overall neurosyphilis, we performed
37	this multicentre, retrospective, observational study.
38	
39	Added value
40	The aim of our study was to ascertain whether ceftriaxone could achieve the same clinical
41	outcomes than benzylpenicillin. Two groups of patients were defined on the basis of initial

42 treatment used to treat neurosyphilis: intravenous ceftriaxone (2 g once daily) or intravenous

benzylpenicillin (3-4 million units every four hours). We used an inverse probability treatment weighting to address the indication bias. We found that, compared to benzylpenicillin, ceftriaxone exhibited a weighted Odd Ratio of 1.22 [1.12-1.34] for clinical overall response and 1.08 [0.94-1.24] for clinical complete response. Both groups did not differ according to serological response, but hospital stay was shorter for the ceftriaxone group.To our knowledge, this is the first large-scale multicentre study assessing the effectiveness of ceftriaxone in neurosyphilis.

8

9 Implications of all the available evidence


Our results suggest that ceftriaxone could represent a reliable alternative to benzylpenicillin to treat neurosyphilis. Ceftriaxone may represent the first line treatment of neurosyphilis in patients allergic to penicillin. Second, for selected patients ready for home discharges, ceftriaxone used as outpatient parenteral antimicrobial therapy would reduce the duration of hospitalization with costs savings and potential improvement of patients' quality of life.

21

- 15
- 16
- 17 18
- 19
- 20
- 21
- 22
- 23
- 24

25 26

28

Subgroup	Ceftriaxone	Benzylpenicillin	OR	
Overall	22/42	54/165	2.26 (1.14–4.49)	
HIV +	14/23	32/79	2.28 (0.89-6.09)	
HIV –	8/19	23/87	2.02 (0.71–5.64)	
Uveitis	8/14	28/90	2.95 (0.94–9.74)	
Otic syphilis	5/8	9/41	5.92 (1.18–29.67)	
Neurosyphilis*	8/13	21/46	1.90 (0.54–6.70)	
CSF cells > 5/mm3	14/23	38/102	2.14 (0.89–5.20)	
CSF cells < 5/mm3	6/13	2/27	10.71 (1.75–65.23)	
			← Benzyl	0.50 1.0 2.0 4.0 8.0 16.0 32.0 64.0 penicillin Ceftriaxone →