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Improving EIT-Based Visualizations of Two-Phase
Flows Using an Eigenvalue Correlation Method

Chunhui Dang , Mathieu Darnajou , Cédric Bellis , Guillaume Ricciardi ,

Saba Mylvaganam , Life Senior Member, IEEE, and Salah Bourennane , Member, IEEE

Abstract— Gas–liquid two-phase flows are encountered in var-
ious industrial processes involving high temperatures and high
pressures, which necessitates nonintrusive sensing for real-time
imaging of phase distribution and flow parameters. In this
context, this article presents an electrical impedance tomography
(EIT)-based eigenvalue correlation method that allows extracting
two-phase flow features, namely, the void fraction and the flow
regime, which are used in turn to improve flow visualiza-
tions. Benefiting from the so-called full-scan excitation strategy,
the eigenvalue correlation method has been devised in to estimate
the phase fraction from EIT raw measurements. In this article,
this method is refined and integrated into an image-enhancing
procedure, which is illustrated and validated using dynamic
experimental data. A total of 80 experiments are considered with
water and air mass flow rates ranging from 1.58 to 79.43 kg/min
and from 0.1 to 5.0 kg/min, respectively, covering slug, plug,
stratified smooth, stratified wavy, and annular flows. Based
on a preliminary system calibration and a raw image guess,
the volume-averaged void fractions are then estimated using the
proposed method and integrated into EIT-based images to form
binarized tomograms relative to the acquisition time. The EIT
tomograms, thus, obtained show an excellent agreement with
some γ -ray reference measurements of the phase distribution.

Index Terms— Eigenvalues, electrical impedance tomogra-
phy (EIT), impedance matrix, tomogram, void fraction
estimation.

I. INTRODUCTION

GAS–LIQUID two-phase flows play a vital role in various
industrial processes, for example, in the electricity gen-

eration industry where the flow transfers heat from a power
core to a generating turbine. In such processes, it is crucial
to optimize performances by detecting flow regimes and gas
build-ups as potential escalations can compromise the safety
of operations. In the nuclear power industry, in particular,
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evaluations of heat transfer and multiphase flow instabilities
in reactors are critical to safety [1]. In this context, there is
a great need for nonintrusive instrumentation techniques for
online monitoring of the gas–liquid two-phase flows.

Up until now, a number of tomographic techniques have
been developed and assessed in terms of the accuracy of the
void fraction estimation and the complexity of their practical
implementation. For example, X-ray or γ -ray tomography
allow fast flow measurements at the high spatial resolution, but
they require high acceleration voltage (hundreds of kV) and
radiation protection [2]; wire-mesh sensors can provide infor-
mation about local, cross-sectional or in situ volume profiles,
and phase distributions, but they have disruptive effects on
the flow [3]; and electrical impedance/capacitance tomography
(EIT/ECT) determines the conductivity/permittivity distribu-
tion inside a domain from measurements at its boundary,
leading to reconstruction profiles with relatively low spa-
tial resolution, which can, however, be counterbalanced by
high-speed implementations. Moreover, EIT attracts special
attention due to its low excitation amplitudes (of the order
of mA or few V), making it safe and low cost. With these
advantages, the EIT technique has been successfully applied
to multiphase flow instrumentation [4], [5] and medical imag-
ing [6].

A number of EIT systems dedicated to multiphase flow
measurements have been developed. A comprehensive review
of EIT applications to various configurations in the field of
chemical engineering can be found in [7]. More specifically,
for two-phase flow measurements, George et al. [8] presented
an EIT system applied to solid–liquid and gas–liquid flows
and the phase fractions within a circular cross section being
determined and compared with nominal values. Jia et al. [9]
developed an EIT-based measurement system for highly con-
ductive water–oil two-phase flows, leading to cross-sectional
tomographic images and tomograms, with computation of
the total phase fractions and comparison to reference values.
Dupré [10] developed an efficient EIT system for void fraction
estimation of two-phase flows, in which the so-called full-scan
excitation strategy is implemented, but only static tests were
carried out to validate it.

Given the diversity of the EIT systems used in two-phase
flow measurement, the full-scan excitation strategy has some
distinctive capabilities. It is more advantageous compared to
the adjacent strategy, which is applied in most of the practical
EIT systems, in terms of robustness to measurement noise
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and quality of the reconstructed images [11]. Moreover, in the
full-scan strategy, all the possible independent pairs of elec-
trodes are used for the excitation, yielding a lower acquisition
frame rate but more redundant information compared to the
adjacent strategy. Taking advantage of this redundancy in the
measurements, some eigenvalue-based approaches have been
developed (see [12] and [13]) to estimate the phase fraction
directly from a principal component analysis of raw EIT data,
i.e., circumventing the image reconstruction step. This article
builds from the novel eigenvalue correlation method intro-
duced in [13], portraying new methods of sensor data fusion
and image-enhancement techniques not found in the existing
literature. Specifically, it describes the eigenvalue-based flow
regime identification method and provides a soundproof con-
cept related to its applicability using a pilot-scale multiphase
flow rig enabling data acquisition from extensive experiments
with different flow regimes. The advantages of the full-scan
strategy are exploited to extract flow-related features, namely,
the void fraction and the flow regime, which are used, in turn,
to improve the visualizations of air–water two-phase flows.

To the best of our knowledge, there is no report of an EIT
system employing the full-scan excitation strategy for dynamic
two-phase flow measurements. Recently, an EIT system imple-
menting this strategy has been developed in the Laboratory of
analytical Thermo-hydraulics and Hydro-mechanics of Core
and Circuits (LTHC), CEA, France, and mounted in the
horizontal air–water two-phase flow loop of the University
of South-Eastern Norway (USN) to perform dynamic exper-
iments at various flow regimes. In this context, the objective
of this article is to apply the proposed novel eigenvalue corre-
lation method for dynamic two-phase flow feature extraction
and to demonstrate its integration into a flow visualization
improvement procedure.

The flow rig at USN, the test matrix, and the experiment
are described in Section II. The image reconstruction algorithm
and the proposed eigenvalue correlation method are introduced
in Section III. Then, Section IV focuses on the flow visualiza-
tion enhancing procedure: the eigenvalue correlation method is
applied: 1) to obtain a calibration diagram relating the leading
eigenvalue of the mean normalized impedance matrix to the
reference volume averaged void fraction (AVF) and 2) identify
the flow regime based on a raw image guess. EIT tomograms
are finally obtained by axially stacking the cross-sectional
image reconstructions, in which an estimated AVF is used as a
threshold to improve the visualization of the phase distribution.

II. EXPERIMENTAL STUDY CASE

A. Multiphase Flow Rig

Air–water two-phase flow experiments were carried out in
the multiphase flow rig of USN. The flow rig, as shown Fig. 1,
enables the injection of oil, water, and air in a horizontal
or inclined pipe at room temperature. The injection of each
phase is controlled and monitored independently. The pipe
has an inner diameter of 51 mm, a thickness of 2.5 mm, and
a length of 15 m. The mediums are mixed at the inlet of
the pipe so that the flow is well developed at the observation
and measurement sections. A transparent polymethylmethacry-

Fig. 1. Horizontal multiphase flow rig at USN.

late (PMMA) section permits visual or (high-speed) video
observations to appreciate the flow regime. In addition, the rig
is equipped with EIT and gamma-ray meter (GRM) devices
downstream of the PMMA section.

The schematic of the EIT full-scan excitation strategy is
shown in Fig. 2(a): all electrodes are sequentially selected to
be the source and drain until all possible pairs of electrodes
have been considered. Typically, a multiplexer is used to route
the excitation signals to each independent pair of electrodes,
and measurements are taken simultaneously at all electrodes.
This strategy includes the excitation patterns of the adjacent
and opposite strategies, among others, thus leading to compar-
atively longer acquisition time but access to more redundant
information [11]. For a system with NE = 16 electrodes,
this yields 120 excitation patterns and 1920 measurements.
The EIT system used for the dynamic experiments, as shown
in Fig. 2(b), employs fast Fourier transform (FFT)-based
frequency-division multiplexing instead of the time-consuming
time-division multiplexing, and the superimposed signals of
the 120 excitation patterns are discriminated by FFT, giv-
ing the boundary measurements simultaneously. This system
applies constant voltage injection, the currents are obtained
from voltages measured across resistors located in series in
the voltage excitation circuit, and a detailed representation of
the system can be found in [14] and [15]. The voltages are
measured against the same ground as the voltage injection
electrodes. The ground value is defined by the requirement
that the sum of all voltages on the boundary is always zero.

The GRM allows determining the density of the investigated
medium by measuring the attenuation of a radiation beam.
The GRM installed at the USN rig (see Fig. 1) operates
with a single beam projection, which gives access to an
effective density along the beam path. Calibration has to be
performed with measurements on both full and empty pipes
to determine bounds on the measured density. In this study,
the GRM provides a cross-sectional effective phase fraction β,
which is used as a reference to assess the performance of the
proposed EIT-based method. Given a measured GRM density
ρm , the cross-sectional water phase fraction β is calculated as
β = (ρm − ρg)/(ρw − ρg), with ρw and ρg being the density
of water and air, respectively.
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Fig. 2. EIT system employed on the USN multiphase flow rig. (a) Schematic
of an EIT architecture using the full-scan excitation strategy for NE = 16
electrodes. Voltage excitation at electrode pair (i, j) and voltage measurement
Ve across the constant resistor R0 at electrode e. (b) High-speed EIT system
developed at the LTHC and implementing the full-scan strategy, adapted
from [15].

B. Test Matrix

The USN rig is operated in the horizontal configuration, and
only water and air are injected during the experiments. The
mass flow rate of water ranges from 1.58 to 79.43 kg/min and
of air from 0.1 to 5.0 kg/min. The electrical conductivity of
air is negligible compared to that of water.

For horizontal air–water two-phase flows, the typical
regimes include bubble, stratified smooth, stratified wavy,
plug, slug, annular, intermittent, and mist flows (see [16]
and [17]). Yet, in this study, only the stratified smooth,
stratified wavy, plug, slug, and annular flows [see Fig. 3(a)]
are considered because of the chosen input mass flow rates.

The flow regime map of Mandhane et al. [18] for a
horizontal pipe with a 50-mm diameter is used to select the
experimental water and air mass flow rates. A total of 80 exper-
imental sets are considered, consisting of approximately 2/5 of
intermittent flows (plug and slug), 2/5 of stratified flows, and
1/5 of annular flow. The flow conditions are assessed by visual
inspections during the experiments and reported on the flow
regime map (test matrix) of Fig. 3(b).

Our EIT system can perform measurements at a frame
rate up to 3906 frames/s [15], but, during each experiment,
we selected a rate of 100 frames/s over 30 s as we found
it is sufficient to capture the characters of the flow for the
various phase injection conditions considered. A higher frame
rate would not bring additional information while requiring
more computational power. The GRM operates during 60 s at

Fig. 3. Flow regimes investigated at the USN rig. (a) Horizontal two-phase
flow regimes considered (blue indicates air). Image adapted from [16].
(b) Test matrix with the 80 experimental sets (colored symbols). The indicated
flow regimes are assessed here from visual inspections. Stars indicate the
experiments selected in Fig. 6. Thick gray lines indicate transition zones.

an acquisition rate of 20 Hz, i.e., at a rate of five times slower
than the EIT measurements.

III. METHODOLOGY

A. Image Reconstruction Method

The EIT inverse problem consists of determining the con-
ductivity distribution σ(x) that characterizes the medium con-
sidered. This is a nonlinear ill-posed inverse problem, which
can be solved in a discrete setting using, e.g., a finite-element
implementation and a cost functional minimization procedure.
As is well-known, the resulting EIT-based images are usually
oversmoothed using L2-norm-based reconstruction methods.
In addition, for the horizontal two-phase flows investigated
here, the nonconductive air phase tends to gather on the top
of the pipe, which distorts the electric field severely and, thus,
impacts reconstructions.

In this study, the Newton’s One-Step Error Reconstruc-
tor (NOSER) method [19] is used to form the EIT-based
images. Although there are alternative and more advanced
imaging techniques available, the NOSER method is adopted
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here as it is both simple and robust, and easily amenable to
real-time reconstructions, making it suitable for the complex
phase distribution patterns encountered in the dynamic exper-
iments considered. In addition, the use of this simple method
aims at highlighting the interest of the eigenvalue correla-
tion method for improving flow visualizations. In NOSER,
considering a linearized L2-norm cost functional with the
Tikhonov regularization, a discrete conductivity distribution
σ is computed through a single Gauss–Newton iteration as

σ = σ ref + 1σ with 1σ = −(J
T

J +α diag(J
T

J))−1
J

T 1V

(1)

where σ ref is a reference conductivity field, J is the Jacobian
matrix of the discrete forward operator, and 1V is the dif-
ference between the measurements and the boundary voltages
associated with the reference conductivity σ ref. Moreover, α ∈

R is a penalty coefficient chosen based on the so-called “L-
curve” method [20]. The matrix (J T J + α · diag(J T J))−1 J T

can be precalculated offline and then used for online real-time
imaging.

In this study, σ ref is taken as the conductivity of water filling
the pipeline, and the reconstructed conductivity σ is computed
on a spatial grid of 39 × 39 points. The cross-sectional
EIT-based images are displayed and updated every 0.1 s,
as permitted by the computational capabilities of our acquisi-
tion system.

B. Normalized Impedance Matrix

Fig. 2(a) shows a schematic of the EIT system, with voltage
excitation at an electrode pair (i, j) and voltage measurement
Ve across a constant resistor R0 at electrode e, and the current
measurement Ie being Ie = Ve/R0. The equivalent circuit
model of the system is depicted in Fig. 4: the combination
of the charge transfer resistance Re and the double layer
capacitance Ce contributes to the contact impedance, Z i, j

being the bulk impedance, connected in a cascade way with
R0. In this study, only the resistive part of the medium
bulk impedance is considered. Darnajou et al. [14] showed
that the contact impedance effects can be neglected since
a continuous excitation signal is used. Considering that the
current measurements at all of the NE electrodes sum up
to zero, the current Ii, j flowing through the closed circuit
is Ii, j = −

∑NE

e=1 Ve/R0, with the exciting electrodes being
excluded in the summation over the index e. Finally, the bulk
impedance is calculated directly as Z i, j = V0/Ii, j −2R0, where
V0 is the excitation voltage.

For each pair of excitation electrodes (i, j), there is a cor-
responding bulk impedance Z i, j , which constitutes an entry of
a symmetric impedance matrix Z = (Z i, j)1≤i, j≤NE

∈ R
NE ×NE .

However, to reduce the dependencies on the geometric para-
meters of the sensor and on the background conductivity,
a version Ẑ i, j = (Z i, j − Z ref

i, j )/Z ref
i, j normalized relatively to

the bulk impedance Z ref
i, j of the reference conductivity σ ref

is preferred to Z i, j . This leads to a normalized impedance
matrix (NIM) of the form: Ẑ = (Ẑ i, j)1≤i, j≤NE

.
Using numerical and experimental benchmarking,

Dang et al. [13] evidenced that the phase fraction can

Fig. 4. Equivalent closed circuit of the EIT system, with V0 being the
excitation voltage, Re and Ce contributing to the contact impedance, and
Zi, j being the measured medium bulk impedance.

be estimated from the eigenvalues of Ẑ. In particular,
the maximum eigenvalue λmax, referred to as the so-called
leading eigenvalue, exhibits strong correlations with the void
fraction, provided that the current state of the flow regime
is known beforehand. In this context, our objective is to use
such correlations in a procedure that aims at improving EIT
images through the determination of the interface between
phases based on the void fraction estimated from the principal
component analysis of the NIM.

IV. IMPROVING EIT-BASED FLOW VISUALIZATIONS

In this section, we expose our approach combining
EIT-based image reconstructions and the eigenvalue correla-
tion method. The proposed flow visualization procedure is as
follows.

1) For the configuration considered and the EIT system
employed, the correlation between the NIM leading
eigenvalue and the AVF is investigated for different flow
regimes, from which a calibration diagram is constituted.

2) For a given experiment, the temporal evolution of the
NIM leading eigenvalue λmax is analyzed and associated
with a raw image guess, from which the flow regime is
identified.

3) Cross-sectional EIT-based raw image reconstructions are
stacked axially to form a time-dependent tomogram.

4) Knowing the flow regime from B, the calibration dia-
gram of A is used to estimate the AVF, thus leading
to a threshold value that is used to binarize the EIT
tomogram of C.

Remark 1: In this study, the raw image reconstructions
are computed using the NOSER method (see Section III-A).
It should be noted that the flow visualization improvement
procedure above does not rely on that method specifically,
and alternative image reconstruction algorithms can be used
as well.

Remark 2: The threshold value determined in step D is here
applied to all the images along the time sequence, i.e., the AVF
is estimated only once for a given experimental sequence. Yet,
the proposed approach can be applied to each cross-sectional
image, i.e., at each time step, if necessary, with the knowledge
of the current state of the flow regime.

Each of the steps of the procedure above is now detailed
and illustrated on the experimental data set obtained on the
USN loop.
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Fig. 5. System calibration diagram: eigenvalue λmax
mean versus reference AVF

from GRM, with indication of the flow regimes. Stars indicate the experiments
selected in Fig. 6.

A. System Calibration From NIM Leading Eigenvalue and

AVF Correlation

The Maxwell–Hewitt relation can be used to approximate
the phase fraction from EIT data (see [8]). However, this
relation is only applicable when the background medium
is continuous and the nonconductive phase is monodis-
persed, which is not the case for the horizontal two-phase
flows considered here. To the best of our knowledge, there
are only a few methods reported on void fraction estima-
tion in such configurations based on EIT data only. Note,
however, that a dual-modality ECT/EIT measurement-based
approach has been used in [21] for image segmentation. Here,
the correlation between the NIM leading eigenvalue and the
AVF is investigated from EIT raw data, with the reference
AVF being calculated by averaging the GRM void fraction
for each experimental set. This leads to a system calibra-
tion diagram applicable to subsequent (i.e., unknown) flow
conditions.

Given a flow regime calibration condition, a number NF of
EIT measurement frames are acquired, each being associated
with a normalized impedance matrix Ẑ f . A mean NIM Ẑmean

is then computed as

Ẑmean =
1

NF

NF∑

f =1

Ẑ f (2)

whose leading eigenvalue is denoted as λmax
mean. The matrix

Ẑmean then contains information on the measured flow, which
is extracted by a principal component analysis (see [13]).

This is applied to the system investigated at USN, and Fig. 5
represents the calibration diagram thus obtained. The eigen-
value λmax

mean is plotted against the reference GRM void fraction
for 80 of calibration experiments represented in Fig. 3(b),
along with the determined flow regimes.

Remark 3: Here, each calibration experiment is monitored
with the same number NF = 3000 of EIT frames. Yet,
different numbers of frames can be considered in practice from
one experiment to another.

For each flow regime, a linear correlation is found between
λmax

mean and the AVF with a high confidence, which agrees with
the conclusions of Dang et al. [13], which were based on
numerical and experimental benchmarking. It should be noted
that estimating this correlation for stratified wavy flows is
more involved as the transitions between smooth, wavy, and
annular flows are continuous, which makes them difficult to
discriminate from one another, even through visual inspection.
Therefore, the experiments associated with such transition
zones [see Fig. 3(b)] are excluded from the assessment of the
leading eigenvalue correlation.

For a given EIT system configuration, due to the nor-
malization of the impedance matrix, the correlation between
the eigenvalue λmax

mean and the AVF is a robust characteristic
clearly related to the property of the conductive (liquid)
phase. Finally, while we only make use of the behavior of
the leading eigenvalue as a simple and robust criterion in
this study, it has been underlined in [13] that alternative
NIM-based metrics can be employed to investigate the phase
fraction.

B. Temporal Evolution of the Leading Eigenvalue

With the calibration diagram at hand, we now investigate a
given experiment. In this second step, the leading eigenvalue
λmax of the normalized impedance matrix Ẑ f is computed
for each frame f = 1, . . . , NF of the experiment considered.
Fig. 6 then shows the temporal evolution of λmax along time
(or, equivalently, frame f ) for the five selected experiments
identified in Figs. 3(b) and 5, which corresponds to different
flow regimes. The eigenvalue λmax for the stratified and
annular flows is plotted together to emphasize the differences
in their behaviors. In Fig. 6(a) and (b), the intermittent
flows present characteristic features: λmax varies significantly
between 0 and 4, while the slug and plug flows are distin-
guished from one another by the value of λmax in between
the plateaus. Moreover, the plug flow is associated with
more abrupt variations of λmax. This can be related to the
different behaviors of the plug and slug flows, with the
small plugs encountered between long plugs compared to
the intensive bubbles entrained in the water bulk between
the slugs [see Fig. 3(a)]. As to the stratified and annular
flows, Fig. 6(c) shows large and chaotic variations of λmax

for wavy flow and, similarly, for the annular flow but at
higher values, the smooth flow being associated with a steady
level.

In addition, Fig. 7 shows the plots of the raw cross-sectional
image reconstructions 1σ = (σ − σ ref) obtained with the
NOSER method (or “image guesses”) for the experiments
considered, and computed at the time t = 5.3 s (indicated by
black dashed line in Fig. 6). We recall that σ ref is chosen as
the conductivity of water. The range of 1σ is renormalized to
[−1 1] to show clearly the interface leading to a differ-
ent colormap. Comparison of Fig. 7(a) and (b) illustrates
how a high value of λmax correlates with a high void
fraction. Note that, for the stratified and annular flows,
the voltage measurements over the top electrodes are noisy,
as these are only partially covered by the conductive water,
thus leading to inaccurate reconstructions in this region
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Fig. 6. Temporal evolution of the leading eigenvalue λmax of Ẑ f along time (or frame f ) for the five selected experiments identified in Figs. 3(b) and 5.
The cross-sectional images at time t = 5.3 s (vertical dashed line) are shown in Fig. 7. (a) Slug flow. (b) Plug flow. (c) Stratified and annular flows.

Fig. 7. Renormalized cross-sectional image reconstructions 1σ = (σ − σ ref) for the selected cases and at the time t = 5.3 s, indicated by the black dashed
lines in Fig. 6. (a) Slug. (b) Plug. (c) Stratified wavy. (d) Stratified smooth. (e) Annular.

[see Fig. 7(e)]. Finally, the time being fixed, the reconstruc-
tions of Fig. 7(c)–(e) are very similar, while the associated
flows can be clearly discriminated from the temporal evolution
of λmax, as discussed previously.

These results highlight that it is the combination of both

the temporal evolution of λmax, as shown in Fig. 6, and raw
image guesses-based observations, as shown in Fig. 7, which
allows determining the flow pattern with certainty for a given
experiment.

C. Stacked EIT Tomogram

Considering a time sequence of EIT measurements,
the instantaneous reconstructed cross-sectional images are
fragmented and not representative of the whole flow, as seen
previously in Fig. 7. Instead, the axially stacked tomogram is
more suitable to flow visualization. Therefore, the pixels on the
central vertical line of the cross-sectional images are extracted

and stacked along time (or frame f ), forming a tomogram for
the experiment considered.

Here, the comparison is made with the reference GRM
information and its measurement β of the water phase fraction
(see Section II-A). As, for horizontal flows, it is reasonable
to assume that, in most cases, the air gathers at the top of
the pipe, except that the front of the slug contains intensive
bubbles entrained in the water bulk, then the water phase forms
a segment at the bottom with area A. With this assumption,
we get β = A/πr 2

0 , where r0 is the radius of the pipeline,
from which the time-dependent height h of the water phase is
obtained. This results in a reference GRM tomogram for each
experimental set.

Both the raw EIT tomogram and the reference GRM one
are shown in Fig. 8 (top and bottom, respectively) for three
distinctive flow regimes (slug, stratified wavy, and annular)
among these considered previously. The time resolutions of
the EIT and GRM tomograms are 10 and 50 ms, respectively.
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Fig. 8. Flow distributions along the longitudinal section: (top) raw EIT distributions, i.e., renormalized 1σ , (middle) binarized EIT distributions, and (bottom)
reference GRM distributions, for the experimental sets considered of slug, stratified wavy, and annular flows. The abscissae represents the measurement time
in second (or frame f ). The vertical dashed lines corresponds to t = 5.3 s with the corresponding cross-sectional images shown in the right. (a) Slug flow.
(b) Stratified wavy flow. (c) Annular flow.

In Section IV-D, we finally show how these EIT tomograms
can be binarized using the AVF estimated by the eigenvalue
correlation method.

D. Tomogram Binarization and Flow Visualization

Classically, in EIT, the reconstructed images do not give a
precise indication of the phase distribution because of their
oversmoothness. Yet, a threshold value σth can be computed
using the eigenvalue correlation method: the mean leading
eigenvalue λmax

mean is computed for the experiment considered,
and having determined the flow regime at step B, the cal-
ibration diagram of step A (see Fig. 5) is then used to
estimate the AVF. The threshold σth is then defined so that the

phase fraction in the binarized EIT distribution matches the
estimated phase distribution (see Remark 2). This procedure
is exemplified in the experiment considered with the binarized
EIT distributions shown in Fig. 8 (middle).

Overall, there is an excellent agreement between the
air–water interface in the binarized EIT distributions and
in the reference GRM ones. In Fig. 8(a), the characteristic
intermittent behavior of the slug flow can be clearly identified
from both the EIT and GRM distributions. Note also the strong
correlation between the temporal evolution of λmax in Fig. 6(a)
and the phase distribution variations in Fig. 8(a). Similarly,
the fluctuations at the air–water interface in the stratified wavy
flow are well captured in the binarized EIT distribution of
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Fig. 8(b). For the annular flow, the assumption that the air
phase gathers at the top of the pipe does not hold anymore.
Paras and Karabelas [22] made some observation-based pre-
dictions of the film circumferential thickness distribution for a
horizontal pipe. The predicted ratio of the top and bottom
film thicknesses is used here to form the reference GRM
distribution of Fig. 8(c). However, the thin top water film is
not well reconstructed using EIT.

To achieve a quantitative comparison, the time evolution
of the phase fraction is computed from the binarized EIT
distribution and compared to the GRM measurement. The
mean relative errors for the three cases considered are 4.75%,
4.23%, and 3.67%, respectively. Generally speaking, to explain
the small observed discrepancies between the EIT and GRM
distributions, certain phenomena should be taken into account.
First, EIT measurements have a 3-D nature that tends to induce
a local (volume) averaging in images. Second, the temporal
resolution of EIT is five times higher than that of GRM,
which may introduce extra error. Finally, the noisy voltage
measurements at the top electrodes induce high conduc-
tivity artifacts in the vicinity of the latter in EIT images
and tomograms, as previously discussed. We have observed
that discarding the top measurements tends to reduce this
effect.

V. CONCLUSION

This article provides a proof of concept of the eigenvalue
correlation method described in [13] and demonstrates its
applicability in classifying and detecting flow regimes using
the pilot scale with data from multiphase flow rig under
different flow conditions. The data acquired during extensive
experiments involving various combinations of air and water
with varying fractions and velocities were used to identify the
flow regime and estimating the volume AVF using sensor data
fusion. Redundant EIT measurements are acquired using the
full-scan excitation strategy, which enables to directly estimate
the void fraction without performing image reconstruction.
Yet, the extracted flow features are further integrated into EIT
tomograms to improve flow visualizations.

The proposed eigenvalue correlation method yields excellent
results, with the correlation between the leading eigenvalue
of the normalized impedance matrix and the void fraction
being consistent given the EIT system configuration. It can
be precalibrated as a chart then usable for void fraction
estimation by direct lookup. The estimation error is low, with
linear correlation fits for the different flow regimes. Moreover,
the temporal evolution of the leading eigenvalue coupled with
a raw image guess gives a clear indication of the flow regime,
which can be used as prior information for the eigenvalue
correlation method to estimate the volume AVF. The estimated
AVF can then be applied to adjust the phase interface in the
EIT tomogram, leading to a more reliable indication of the
phase distribution.

For future studies, applying the proposed method to vertical
air–water two-phase flows would be interesting, as most of the
peripheral electrodes will be in contact with the conductive
phase, thus preventing the issues related to the uncovered
electrode. Furthermore, considering the substantially large

amount of data generated by EIT, i.e., the NIM for each
frame, it is appealing to apply a statistical learning approach
to estimate the void fraction using the proposed method.
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