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Abstract 

Anxiety disorders represent one of the most common classes of psychiatric disorders. 

In the aging population and for patients with age-related pathology, the percentage of people 

suffering of anxiety is significantly elevated.  Further, anxiety carries with it an increased risk 

for a variety of age-related medical conditions, including cardiovascular disease, stroke, 

cognitive decline, and increased severity of motor symptoms in Parkinson’s disease. A variety 

of anxiolytic compounds are available but often carry with them disturbing side effects that 

impact quality of life. Among non-medicinal approaches to reducing anxiety, odor diffusion 

and aromatherapy are the most popular. In this review, we highlight the emerging perspective 

that the use of odorants may reduce anxiety symptoms or at least potentiate the effect of other 

anxiolytic approaches, and may serve as an alternative form of therapy to deal with anxiety 

symptoms. Such approaches may be particularly beneficial in aging populations with elevated 

risk for these disorders. We also discuss potential neural mechanisms underlying the 

anxiolytic effects of odorants based on work in animal models. 
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1. Introduction  

Anxiety disorders, (including generalized anxiety, panic disorder, social anxiety 

disorder, post-traumatic stress disorder, and specific phobias) represent one of the most 

common classes of psychiatric disorders, impacting nearly 4% of the global population 

(World Health Organization), and disproportionately affecting females (~2x greater risk 

relative to males). In the U.S. alone, nearly 18% of adults will be affected by an anxiety 

disorder, costing nearly $42 billion dollars, nearly a third of the money spent on mental health 

(ADAA Journal of Clinical Psychiatry). This likely underestimates the true cost of this 

disorder, as nearly 2/3 of those afflicted by anxiety disorders do not seek treatment, and are 

likely not counted in epidemiological studies. Furthermore, while a variety of treatment 

options exist, including cognitive behavioral therapy and panoply of pharmacological 

interventions, a significant percentage of individuals seeking treatment will not respond 

effectively to a given intervention. Thus, development and application of novel therapeutic 

approaches have the potential to fill a large unmet need for individuals suffering from these 

disorders.      

Targeted development of new therapeutics has been difficult, as the 

neurobiological underpinnings of anxiety-related disorders remain poorly understood. This is 

in part due to heterogeneity of the disorder, their high co-morbidity with other 

neuropsychiatric and neurological disorders, and the likely evolutionary origins of anxiety.  

Anxiety, including vigilance, has likely evolved to protect the individual from potential harm, 

and is normal part of everyday life. It is only when this signal become engaged in 

inappropriate contexts or exaggerated in its degree or persistence that it becomes pathological. 

Thus, imaging and post-mortem approaches to identify the neural basis of feelings of anxiety 

will likely need to be focused on identifying magnitude and contextual/situational regulation 

of the complex circuit underlying this state. Further, given the diversity of triggers and 
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subjective differences in feelings of anxiety, the neural underpinnings of these feelings are 

likely to differ markedly across individuals.  

To understand the neurobiological basis of anxiety-like behaviors some have looked to 

animal models. Some of the earliest studies include lesioning of brain regions such as 

amygdala as well as parts of the medial temporal lobe. The result was what was later termed 

Kluver-Bucy syndrome (Afifi and Bergman, 1998), where, along with other symptoms, there 

is a near complete loss of aggression, docility, lack of social anxiety, and inability to identify 

the emotional importance of events (Bourtchouladze, 2004). While many early studies clearly 

link the amygdala with emotional regulation, this may be in part due to its role as a principle 

modulator of engagement of the hypothalamic-pituitary-adrenal (HPA)-axis for the fight or 

flight response. However, anxiety is likely far more than mere engagement of sympathetic 

arousal (LeDoux and Pine, 2016).  In an attempt to map out circuits underlying defined 

aspects of threat assessment such as learning and responding to specific threat associations, 

several labs have used “fear” conditioning paradigms (Pare et al., 2004). Through this work, 

multiple nodes including the amygdala, medial prefrontal cortex, thalamus, hippocampus and 

associated regions have been identified as regulator of the detection, generation, and 

maintenance of freezing behavior in response to threat conditioning (Pare et al., 2004; Quirk 

et al., 1996). Still others have begun mapping out the roles of regions of basal ganglia, frontal 

cortex, and medial extended amygdala, which may serve to guide social approach and social 

avoidance following repeated social defeat (Bath et al., 2017; Takahashi et al., 2018). These 

studies have helped to inform work in humans, including neuroimaging, post-mortem, and 

PET studies, and to reify that anxiety disorders are not likely to be able to be reduced to 

disturbance in single region, receptor, or even sub-circuit within the brain. More work will be 

needed, including work to understand the underlying basis of sex differences in risk, the 
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reason for high comorbidity between anxiety disorders and other neurological and 

neuropsychiatric conditions, and the effects of aging on emergence of pathology.  

 

2. Anxiety with aging and aged-related disorders  

Approximately 15% of elderly individuals go on to develop anxiety disorders. With an 

increasing percentage of the population being elderly individual (>65 years), anxiety disorders 

are becoming a growing public health concern, impacting the overall quality of life and 

increasing mortality. However, they are often under-recognized in older adults and 

erroneously attributed to a normal consequence of the aging process.  

Anxiety is a risk factor for many age-related medical conditions, including 

cardiovascular disease, stroke, and cognitive decline. In both animals and humans, an 

association has been documented between anxiety symptoms and reduced cognitive functions 

(mainly memory and executive functions) in older individuals without dementia (Potvin et al., 

2011; Yochim et al., 2013). In mice, anxiety is correlated with impaired spatial learning and 

memory (Wang et al., 2014). In a sample of older individuals without dementia, anxiety 

symptoms were associated with memory loss and predicted both cognitive decline and 

impairment in daily-life functioning after 3 years (Sinoff and Werner, 2003).   

Longitudinal studies have shown that risk factors for anxiety include sex and 

comorbidity with physical disease. Moreover, personal circumstances including coping style 

and prior stressful life events, also play a role in moderating risk for pathology. Further, 

anxiety symptoms occurred more frequently in individuals with mild cognitive impairment 

(MCI) than in cognitively intact elderly individuals and were associated with a significant 

increase in risk of progression from MCI to Alzheimer’s disease at 3-year follow-up (Palmer 

et al., 2007). Finally, anxiety symptoms often accompany co-morbid psychiatric as well as 

neurodegenerative diseases in the aging population. For instance, the likelihood of developing 
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Parkinson’s disease (PD) was greater in patients with anxiety than patients without anxiety, 

and the severity of anxiety correlated with the risk of PD (Lin et al., 2015). In parallel, anxiety 

disorders are common in PD (with an estimated prevalence ~40%) and are an important 

determinant for quality of life (Pontone et al., 2009; Broen et al., 2016). Indeed, anxiety 

disorders contribute to the severity of motor symptoms (Leentjens et al., 2012) and have 

recently been associated with more severe cognitive (specifically memory) impairment 

(Dissanayaka et al., 2017). In parkinsonian patients, anxiety symptoms can manifest as 

generalized anxiety, panic attacks, and social phobia, similar to what is observed in the 

general population. Strengthening the relationship between dopaminergic dysfunction and 

anxiety, a recent cross-sectional analysis showed that lower caudate dopaminergic transporter 

uptake is associated with higher level of anxiety (Picillo et al., 2017), and are in agreement 

with work in non-PD individuals with anxiety disorders (Mathew et al., 2001). Nevertheless, 

the role of other neurotransmitters (i.e. GABA (Cryan and Kaupmann, 2005), serotonin 

(Lucki, 1998; Ramboz et al., 1998; Munafo et al., 2006; Stein et al., 2006) or noradrenaline) 

cannot be overlooked. For instance, anxiety symptoms have also been associated with a loss 

of noradrenergic innervation in the limbic system (Remy et al., 2005), as well as functional 

polymorphisms in the serotonin transporter gene (Menza et al., 1999). 

A first line of treatment for anxiety disorders in older adults, are anxiolytic 

medications. Currently, anxiolytic drugs such as benzodiazepines (one of most frequently 

prescribed anxiolytic drugs) are often used in treatment of anxiety despite loss of efficacy 

with repeated use and side-effects such as withdrawal symptoms and drug dependence (Lenze 

et al., 2009). Due to the side effects of traditional anxiolytic treatment, there has been 

increasing interest in the use of alternative therapies. To date, nonpharmacological treatments 

have included the use of physical activity to attempt to stem symptoms (Ruscheweyh et al., 

2011). Recently, lifetime exercise has been associated with increased neurogenesis and 
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reduced anxiety, an effect that was most efficacious in young-adult female mice (Morgan et 

al., 2018). Additionally, nutritional intervention, such as caloric restriction, has been shown to 

reduce anxiety in aging mice (Parikh et al., 2016) as well as in aged rhesus monkey (Willette 

et al., 2012). Further, cognitive behavioral therapy (CBT) has been shown to be efficacious as 

an evidence-based treatment for older adults with generalized anxiety disorders (Stanley et al., 

2003; Stanley et al., 2009) with greatest benefit when done in combination with SSRI 

treatments (Rosnick et al., 2013). Finally, among non-pharmacological approaches, 

aromatherapy or odor diffusion has also been investigated.  In this review, we highlight the 

emerging perspective suggesting that use of odorants may reduce anxiety symptoms or at least 

potentiate the effect of other anxiolytic approaches, and may serve as an alternative form of 

therapy to deal with anxiety symptoms, including in the aging population. 

 

3. Anxiolytic effect of odorants  

While the effect of anxiety on olfactory perception (threshold, memory, 

discrimination) has been well documented (Pollatos et al., 2007; Chen and Dalton, 2005; 

Havlicek et al., 2012; La Buissonniere-Ariza et al., 2013), we will focus here on the effect of 

odor exposure on stress and anxiety, and when possible, age. 

3.1. Behavioral effects of odor exposure in humans 

Odorants or essential oils have been used as alternative treatments for medical 

purposes since ancient times (Kuriyama et al., 2005). Aromatherapy proposes that essential 

oils have the ability to influence mood, perceived well-being, emotional states and behavior 

(Carvalho-Freitas and Costa, 2002; Cooke and Ernst, 2000; Diego et al., 1998; Herz, 2009; 

Komori et al., 1995; Lehrner et al., 2000; Perry et al., 2012; Tsang and Ho, 2010; Woronuk et 

al., 2011). Beyond essential oils, more generally, odorants are universally recognized as 

effecting behavior and physiology. In many cultures, as well as animals, odorants have been 
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considered a powerful elicitor of emotions, possibly due in part to direct connections between 

olfactory relay neurons and the amygdala, a key node in regulation of arousal. In the last few 

decades, a growing scientific literature has documented a wide array of emotional effects to 

odors, including fear, anxiety, aversion, pleasure, or relaxation (for reviews, see e.g., 

(Ehrlichman and Bastone, 1992; Herz and Schooler, 2002). The positive and negative affects 

induced by odorants can be assessed in humans using self-rating, autonomic parameters, 

cerebral activity analysis on electrophysiological recording or neuroimaging (Bensafi et al., 

2001). 

To assess the emotional effect of odor diffusion, some authors have tested subjects in a 

stressful context such as a dental office. They have shown that patients who were exposed to 

ambient odor of orange or lavender showed a lower level of anxiety compared to the patients 

in control condition. They further found that exposure to music in a dentist's waiting room has 

an intermediate effect. This finding is consistent with a growing body of evidence showing 

that odorants have a strong capacity to change emotional states (Lehrner et al., 2000; Lehrner 

et al., 2005) and decrease anxiety related feelings and behavior in humans (Diego et al., 1998; 

Lehrner et al., 2000; Perry et al., 2012; Tsang and Ho, 2010; Lehrner et al., 2005; Umezu et 

al., 2006; Kritsidima et al., 2010; Linck et al., 2010). To further determine the characteristics 

of odorants that modulate mood, the authors considered hedonic tone. Indeed, they assumed 

that odor hedonics are important in the determination of the effects on emotion and, thus, it is 

likely that odorants perceived as pleasant, tend to induce positive moods, whereas unpleasant 

odorants tend to induce negative moods (Schiffman et al., 1995a; Schiffman et al., 1995b). In 

this context, Knasko (1995) found that exposure to an ambient smell of chocolate or baby 

powder caused people to report being in a better mood as compared with a no odor condition 

(Knasko, 1995). Ludvigson and Rottman (1989) demonstrated that presentation of lavender, 

an odorant rated as pleasant, affected mood in a positive direction (Ludvigson and Rottman, 
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1989). This is in line with prior studies showing that pleasant odorants significantly decreased 

tension, improved mood, and reduced report of depressive feelings in middle aged and elderly 

women (Schiffman et al., 1995b; Abriat et al., 2007). Thus, it seems that pleasant odors make 

people feel good, with positive effects being observed in aged populations. The behavioral 

effects provoked by pleasant and unpleasant odorants have been linked with changes in 

autonomic tone: such as altered heart rate or skin conductance, which are used as 

physiological indices of an emotional response (Robin et al., 1999; Heuberger et al., 2001; 

Sano et al., 2002; Bensafi et al., 2002a; b; c). 

3.2. Behavioral effects of odor exposure in animal models 

To better understand potential neural mechanism underlying modulation of mood, 

animal models may provide unique and important insights. While animal models do not 

provide direct access to subjective mood state, behavioral assays have been developed to 

index approach and avoidance behaviors that index anxiety-like behavior as well as hedonic 

valuation of stimuli.  

Some well-characterized behavioral paradigms used to assess anxiety-like behavior in 

rodents include the open field, elevated plus maze or the light/dark chamber. These tests place 

animals in a conflict setting where they have the opportunity to explore a novel, often mildly 

aversive environment. The pattern of exploration is often used to index levels of anxiety, with 

high levels of exploration often being characterized as low anxiety state, and restricted 

patterns of exploration being characterized as a more anxious phenotype. These tasks were 

developed to have both face validity and construct validity, meaning that novel mildly 

aversive environments should induce higher levels of anxiety, and the use of drugs that 

diminish anxiety alter the pattern of behavior in these settings in a way that is consistent with 

an anxiolytic response.   
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Several studies using mice and rats have successfully demonstrated anxiolytic effects 

of certain essential oils lending support to the use these oils as aromatherapies to treat anxiety 

symptoms (Faturi et al., 2010). For instance, the effects of Citrus sinensis essential oil (sweet 

orange) have been evaluated on rodents using the elevated plus-maze and light/dark paradigm. 

An increase of exploration time in the open arms of both the elevated plus maze and the lit 

chamber of the light/dark paradigm after exposure to orange is strongly suggestive of an 

anxiolytic effect of this essential oil. Similar behavioral results have been found for linalool, 

lavender, lemon or rose (Linck et al., 2010; Umezu, 2000; 1999; Cryan and Sweeney, 2011; 

de Almeida et al., 2004; Ceccarelli et al., 2004; Buchbauer et al., 1993) and also with green 

leaf volatiles Z-3-hexen-1-ol (leaf alcohol) and E-2-hexenal (leaf aldehyde) termed “green 

odor” (Tokumo et al., 2006; Nakatomi et al., 2008; Watanabe et al., 2011). This last odor has 

received greater attention and in multiple studies has been found to have powerful anxiolytic 

and antidepressant-like effects in rodents when compared with conventional anxiolytic and 

antidepressant pharmaceutical drugs (Tokumo et al., 2006; Nakatomi et al., 2008; Watanabe 

et al., 2011). 

3.3. Neural mechanisms underlying the anxiolytic effect of odorants 

Odorants activate olfactory receptor neurons in the nasal epithelium, which synapse 

with relay neurons in the olfactory bulb, and send this signal directly to cortical regions, 

where the odor is perceived, as well as to subcortical brain regions that modulate sympathetic 

arousal and in turn affective state (regions such as the amygdala) (Herz, 2009; Faturi et al., 

2010; de Almeida et al., 2004; Souto-Maior et al., 2011). Unlike all other sensory systems, 

olfactory information bypasses the thalamus, with direct connections to both cortical and 

limbic brain centers. This architecture may be a remnant of the evolutionary age of this 

sensory modality, or be a function the high reliance of many species of animals on olfaction 

for navigation, communication, and threat detection. Thus, olfactory information may have a 
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more privileged connection to cortical and emotional centers promote more rapid detection 

and processing of these signals. Anatomically, the olfactory system also shares a great deal in 

common with the vomeronasal system, which is critical for sensing pheromones, and driving 

robust changes in physiology and behavior, including reproductive and escape behaviors.  

Given the architecture of the olfactory system, odorant that alter anxiety would be 

expected to do so by acting on brain regions that have been implicated in the expression of 

anxiety-like behavior, threat learning, or on systems that are the target of anxiolytic drugs. It 

is well known that exposure to “stressful” stimuli engage the HPA axis and drive sympathetic 

arousal leading to a stereotyped fight or flight response. This response includes increased 

blood pressure, increased respiration, and elevations in plasma concentrations of 

adrenocorticotropic hormone (ACTH) and corticosterone (CORT) (DiMicco et al., 2006; 

Smith and Vale, 2006). It is hypothesized that anxiolytic odorants should dampen the 

response of the HPA-axis to otherwise stressful stimuli.  

To test this hypothesis, some authors have mapped brain activity in response to 

stressful stimuli using c-fos expression, an immediate early gene that is elevated in cells 

following increased activity. Exposure to a stressor induces an increase in c-fos-positive 

neurons in the hypothalamic paraventricular nucleus (PVN), the amygdala, the hippocampus, 

and the paraventricular thalamic nucleus (PVT) (Chowdhury et al., 2000; Dumont et al., 2000; 

Viau and Sawchenko, 2002; Kurumaji et al., 2003; Linden et al., 2004; Spencer et al., 2004). 

Modulation of c-fos expression in these particular regions of the brain has been shown with 

anxiolytic drugs, including the benzodiazepines that are used as a pharmacological validation 

tool (Cryan and Sweeney, 2011; Lister, 1987; Nicolas and Prinssen, 2006). The use of 

odorants, such as the lavender or green odor, which decrease anxiety, reduced stress-

associated increases in c-fos expression, in the PVN, PVT and the amygdala (Kim et al., 

2005; Ito et al., 2009). Green odor has also been shown to attenuate the response of the HPA-
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axis to a variety of types and intensities of stressors without affecting basal hormone 

concentrations (Nikaido et al., 2011). It has also been found to attenuate stress-induced 

elevations in plasma ACTH and reduce the stress-associated elevations in plasma CORT and 

stress-induced activation of PVN neurons (Ito et al., 2009). In addition, green odor was also 

able to block the hypertrophy of the adrenal glands following repeated stress (Fukada et al., 

2007).  These results suggest that odorants that reduce anxiety and may decrease the activity 

of brain regions involved in moderating the stress responses (including the HPA-axis, limbic 

centers, and activation of the sympathetic nervous system (Ito et al., 2009; Nikaido et al., 

2011; Fukada et al., 2007). 

The main molecular target of benzodiazepine is the GABA/benzodiazepine complex 

(Rudolph and Knoflach, 2011). This drug increases inhibitory GABAergic neurotransmission 

by binding to the benzodiazepine site on GABA-A receptors, (Rudolph and Knoflach, 2011). 

In animal models of anxiety, antagonists of GABA (picrotoxin and bicuculline) and 

benzodiazepine (flumazenil) are used to assess whether the anxiolytic effects of drugs or 

agents involves GABA/benzodiazepine complex (Baretta et al., 2012; Dombrowski et al., 

2006). It is in this context that one of the mechanism underlying the anxiolytic effect of 

lavender has been revealed with a potentiation of the effect of GABA at GABA-A receptors 

(Aoshima and Hamamoto, 1999) suggesting that the anxiolytic effect of lavender implies 

GABAergic modulation (Tsang and Ho, 2010). Using similar approaches, other studies 

suggested that serotonin with its 5-HT1A receptors is another neurotransmission frequently 

associated with anxiety and anxiolytic drugs. Indeed, 5-HT1A partial agonist (buspirone) is 

clinically effective in reducing anxiety symptoms in patients with anxiety disorder (Koen and 

Stein, 2011). Moreover, preclinical studies have shown that 5-HT1A agonists exhibit 

anxiolytic effects in animal models, and 5-HT1A antagonists block the anxiolytic-like effects 

of some drugs, such as cannabidiol (Campos and Guimaraes, 2008). Chioca et al (2013) 
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demonstrated that odorants such as lavender present similar action to reduce anxiety that 

involves the serotonergic system (Chioca et al., 2013). 

Odorants have thus demonstrated their efficiency on stress and anxiety thanks to their 

action on the central nervous system in the same way that anxiolytic drugs do, by acting at 

GABAA receptors and serotoninergic transmission, and thus may represent a powerful non-

pharmacological anxiolytic tool to reduce anxiety, including in aging population.  

 

4. Proposed neural anxiolytic mechanism of odorants’ action in aging  

Taken the above results together, we propose that the use of odorants might be 

beneficial in counteracting the deleterious effects of the anxiety observed with aging or with 

certain neurodegenerative diseases as well as the cognitive impairment associated to these 

diseases. In particular, the hippocampus participates in the regulation of stress response by 

inhibiting most aspects of HPA activity preventing the occurrence of elevated levels of 

glucorticoids associated with anxiety (Sapolsky et al., 1985)(Figure 1). However, this 

structure is vulnerable to the aging process as demonstrated by smaller hippocampal volumes 

in the elderly due to a decrease in the number of hippocampal neurons and a concomitant 

reduction in neurogenesis within the hippocampal dentate gyrus (Geinisman et al., 1995; 

Persson et al., 2012). Moreover, alterations in hippocampal structures have been associated 

with abnormalities in the functioning of the HPA axis (i.e. persistent activation and 

exacerbated stress response (Frodl and O'Keane, 2013)) evidenced by increased cortisol 

response in older compared to younger adults (Otte et al., 2005). In parallel, excessive levels 

of glucocorticoids have been linked to hippocampal atrophy and dysfunction in elderly 

humans (Lupien et al., 1998; Anacker et al., 2013), which may accelerate the aging process. 

Due to tight connections between the olfactory cortex and the hippocampus, one possibility is 

that odorant exposure could lead to changes in hippocampal activity, leading to a decreased 
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response of the HPA-axis and explaining its anxiolytic-like effect. This effect could be driven 

more specifically by the activation of 5HT1A receptors that have been involved in anxiety 

disorders (Fuss et al., 2013). Of interest, this effect may also have an impact on delaying 

cognitive decline associated with both normal and pathological aging. Indeed, deterioration of 

cognitive functions is a well-established feature of normal aging, with particularly marked 

negative effects of age in the hippocampal-dependent memory domain (Salthouse, 2011), 

which is exacerbated to a greater degree in neurodegenerative disease such as AD 

(Apostolova et al., 2012). We propose that the use of odorants might reduce the impact of 

aging by promoting a neuroprotective response, as this has been already reported for physical 

exercise and/or cognitive stimulation (Kempermann et al., 1997; van Praag et al., 2000; 

Rosenzweig and Bennett, 1996). 

In the same vein, the effect of odorants exposure on amygdala activity has to be 

elucidated given its connectivity with both the hippocampus and the olfactory bulb, along 

with its well-known hyperactivity associated with anxiety disorders (Drevets, 2000). Like the 

hippocampus, the amygdala modulates the activity of the HPA-axis. Interestingly, it has been 

recently reported a serotonergic modulation of the amygdala with a decrease of its activity 

through activation of the 5HT1A receptors (Sengupta et al., 2017). Furthermore, projection 

neurons of this region form reciprocal synapses with GABA inhibitory interneurons, which 

dampens neural activity of the amygdala. With age, the number of inhibitory interneurons 

declines leading to increased drives of the HPA-axis (for reviews see Prager et al., 2016; 

Nuss, 2015). Olfactory stimulation could counteract these effects and restore the activity 

(Figure 1).  

 

5. Conclusions 
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Anxiety disorder leads to the loss of friends and relatives, decreased mobility, greater 

isolation, increase stressful situation or changes in food intake that are further exacerbated 

with aging. These contribute to a decrease in the quality of life and possibly more rapid 

decline in cognitive and emotional function associated with aging, and possibly accelerated 

aging. Indeed, people with anxiety disorder have shorter telomeres than those without a 

mental health disorder, which has been used as an index of cellular aging (Verhoeven et al., 

2015). Treatment against anxiety in late-life is a challenge given concerns about medication 

side effects, frail patients and medically ill patients due to other treatments (for Alzheimer or 

Parkinson for instance). The use of odor therapy to accompany or potentiate the 

pharmacological treatment against anxiety in normal and pathological aging can be step 

forward to a better health care of patients.  
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Figure Legend 

Figure 1. Hippocampus and amygdala participate in the regulation of the stress response by 

acting on the paraventricular nucleus which releases corticotropin-releasing factor (CRF), 

initiating a cascade of events that culminate in the release of glucocorticoids from the adrenal 

cortex. Aging alters the activity of the hippocampus and amygdala as well as the functioning 

of the HPA axis, altering basal glucocorticoid levels and release during stress response. Odor 
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exposure could be an efficient mean to decrease the hyper-activity of the HPA axis and 

glucocorticoid release given the intimate connections between the olfactory system and the 

hippocampus and amygdala.  
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