Molecular structure, spectroscopy, quantum chemical and antibacterial activity investigations of 2-methylbenzylammonium perchlorate

Chaima Daghar^a, Noureddine Issaoui^b, Houda Marouani^{a,*}, Thierry Roisnel^c and Omar Al-Dossary^d

^aUniversité de Carthage, Faculté des Sciences de Bizerte, LR13ES08 Laboratoire de Chimie des Matériaux, 7021, Bizerte, Tunisie
 ^bUniversity of Monastir, Laboratory of Quantum and Statistical Physics LR18ES18, Faculty of Sciences, Monastir 5079, Tunisia
 ^cUniv Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
 ^dDepartment of Physics and Astronomy, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

*Correspondence e-mail: <u>houdamarouani2015@gmail.com</u>

Figure captions

Fig. S1. The experimental 13 C NMR spectrum of (C₈H₁₂N)ClO₄.

Fig. S2. Luminescence spectrum of $(C_8H_{12}N)ClO_4$.

Fig. S3. Frontier molecular orbitals of (C₈H₁₂N)ClO₄.

Fig. S4. Graphical representations of the AIM analysis of (C₈H₁₂N)ClO₄.

Fig. S5. Graphical representation of RDG versus the electron density multiplied by the sign of the second Hessian eigenvalue for $(C_8H_{12}N)ClO_4$.

Fig. S6. Molecular electrostatic potential for $(C_8H_{12}N)ClO_4$ calculated at the B3LYP/6-311++G(d,p) level of theory.

Fig. S7. Antibacterial and antifungal Activity data of $(C_8H_{12}N)ClO_4$ against the different selected bacteria and fungi tested.

Fig. S1. The experimental 13 C NMR spectrum of (C₈H₁₂N)ClO₄.

Fig. S2. Luminescence spectrum of $(C_8H_{12}N)ClO_4$.

Fig. S3. Frontier molecular orbitals of $(C_8H_{12}N)ClO_4$.

Fig. S4. Graphical representations of the AIM analysis of $(C_8H_{12}N)ClO_4$.

Fig. S5. Graphical representation of RDG versus the electron density multiplied by the sign of the second Hessian eigenvalue for $(C_8H_{12}N)ClO_4$.

Fig. S6. Molecular electrostatic potential for $(C_8H_{12}N)ClO_4$ calculated at the B3LYP/6-311++G(d,p) level of theory.

Staphylococus aureus ATCC 6538

Enterococcus feacium ATCC 19434

Candida albicans ATCC 10231

Fig. S7. Antibacterial and antifungal Activity data of $(C_8H_{12}N)ClO_4$ against the different selected bacteria and fungi tested.

Table Captions

Table S1. Enrichment ratio of different inter-contact and percentage of each atom on the surface Hirshfeld in $(C_8H_{12}N)ClO_4$.

Table S2. Theoretically computed and Experimental carbon NMR chemical shifts.

Table S3. Global reactivity descriptors the computed for the title compound.

Table S4. Topological parameters of (C₈H₁₂N)ClO₄.

Enrichment ratio	Н	С	0
Н	0.85	1.42	1.22
С		-	
0			-
% Surface	63.4	8.1	28.4

Table S1. Enrichment ratio of different inter-contact and percentage of each atom on the surface Hirshfeld in $(C_8H_{12}N)ClO_4$.

	Experimental chemical shift	Calculated chemical shift in ppm
Atoms	in ppm	TMS B3LYP/6-311+G(2d,p) GIAO (ppm)
C2	38.97	29.386
C3	136.63	147.51
C4	130.39	129.159
C5	128.59	129.159
C6	126.11	126.033
C7	128.91	129.159
C8	132.15	134.868
C9	18.69	29.386

Table S2. Theoretically computed and Experimental carbon NMR chemical shifts.

Parameters (eV)	Values
E _{HOMO}	-7.571
E _{LUMOMO}	-1.701
Energy band gap E _{HOMO} -E _{LUMO}	5.870
E _{HOMO-1}	-7.598
E _{LUMO+1}	-1.289
Energy band gap E _{HOMO-1} -E _{LUMO+1}	6.309
Ionization potential (I = $-E_{HOMO}$)	7.571
Electron affinity (A = $-E_{LUMO}$)	1.701
Chemical hardness ($\eta = (I-A)/2$)	2.935
Chemical softness (S = $1/2\eta$)	0.170
Electronegativity ($\chi = (I+A)/2$)	4.636
Chemical potential ($\mu = -(I+A)/2$)	-4.636
Electrophilicity index $\omega = \mu^2/2\eta$	3.661
Maximum charge transfer index ($\Delta N_{max.} = -\mu/\eta$)	1.579

Table S3. Global reactivity descriptors the computed for the title compound.

Table S4.	Topological	parameters of	$(C_8H_{12}N)ClO_4.$
	1 0	1	

	H4O ₂₄
Density of all electrons $\rho(\mathbf{r})$ (a.u.)	1.748532675.10 ⁻²
Lagrangian kinetic energy G(r) (a.u.)	2.494707156.10 ⁻²
Potential energy density V(r) (a.u.)	-2.090168563.10 ⁻²
Energy density E(r) or H(r) (a.u.)	4.045385929.10 ⁻³
Laplacian of electron density $\nabla^2 \rho(\mathbf{r})$ (a.u.)	1.159698300.10 ⁻¹
Reduced density gradient (RDG)	1.612136507.10 ⁻¹⁵
Eigen values of Hessian	1.597841151.10 ⁻¹
	-2.104380311.10 ⁻²
	$-2.277048204.10^{-2}$
Ellipticity of electron density(ϵ)	8.2052.10 ⁻²
Eta index(ζ)	1.42508.10 ⁻¹