Hiba Dakdouk Orange 
  
Raphaël Féraud 
  
Romain Laroche 
  
Nadège Varsier 
  
Patrick Maillé 
  
  
  
  
  
Collaborative Exploration and Exploitation in massively Multi-Player Bandits

In this paper, we propose an approach to optimize the performance of Internet of Things (IoT) networks. We formulate the optimization problem as a massive multi-player multi-armed bandit problem, where the devices are the players and the radio channels are the arms, with collisions possibly preventing message reception. For handling a realistic IoT network, we do not assume that sensing information is available (i.e. that the collision are observed) or that the number of players is smaller than the number of arms. As the optimization problem is intractable, we propose two greedy policies: the first one focusing on the number of successful communications, while the second one also takes into account fairness between players. In order to implement an approximation of the targeted policies, we propose an explore-then-exploit approach, and establish a regret lower bound in Ω T 2/3 log T N + K 3/2 . For estimating the mean reward of arms, we propose a decentralized exploration algorithm with controlled information exchanges between players. Then we state that the regret of the estimated target policy is optimal with respect to the time horizon T . Finally, we provide some experimental evidences that the proposed algorithms outperform several baselines.

Introduction

Optimization of IoT wireless network performance In Internet of Things (IoT) networks, a large number of devices is connected to the Internet through wireless gateways. The communication protocols used in IoT, such as LoRa, allow to evaluate a binary reward for each transmission (success or not) since each uplink transmission is followed by a downlink time windows where the node listens to the gateway to receive the acknowledgement of the uplink transmission. The frequency of sending messages through the gateway depends on the application (healthcare, security, smart cities, marketing, gaming, home automation...). Moreover, for several real-time applications, the device has to send a packet when an unknown and uncontrolled event occurs. For instance, the device can interact with its environment in real-time, to get a green light when there is no car at a crossroad, an ad when the user is in front of a shop, a ticket when getting on the bus... Which is why in the following we assume that each player has a probability of sending a message at each time step.

We consider a large number N of devices communicating with a unique gateway on a limited number K of orthogonal channels (N ≥ K), using an acknowledgement protocol slotted in time. At each time slot, each device n has a probability p n to send a message to the gateway. When two or more devices send a message to the gateway at the same time slot through the same channel, an internal collision occurs. Hence, due to local interference the gateway does not receive any of the messages from the colliding devices and does not send the acknowledgements to the devices. Moreover, collisions with other types of networks may occur, so that even if only one player sends a message in one channel at a given time slot, the message may not be received by the gateway. These external collisions make the probabilities of successful transmission (and hence the channels' qualities) different for each channel. When an internal or external collision occurs, we consider that the message is simply lost. We do not consider collisions when the gateway sends acknowledgements, since these downlink collisions necessitate that at least two acknowledgements are sent from the gateway at the same time to devices which are located at the same place. This is impossible if there is a unique gateway using a protocol slotted in time (as we assume), and unlikely if there are more gateways. Another important feature of the studied problem is that only the devices can estimate the quality of channels, since the gateway cannot know that messages have been sent by some devices if a collision occurs. As a consequence, the estimation of the channel quality has to be done in a decentralized way.

To set this scenario into the framework of multi-player multi-armed bandits, each device is considered as a player, a communication channel is considered as an arm, and the reward corresponds to the reception or not of the acknowledge from the gateway.

Related Work

The decentralized multi-player multi-armed bandits have been studied for opportunistic spectrum access in [START_REF] Liu | Distributed learning in multi-armed bandit with multiple players[END_REF], Anandkumar et al., 2010, Avner and Mannor, 2014, Nayyar et al., 2015]. In opportunistic spectrum access, primary users have a strict priority over secondary users, which are allowed sensing a channel before sending a packet in order to check that it is free. The objective of those works is to avoid collisions between concurrent secondary users, that share the same channels, while choosing the best channels, i.e., with the highest probabilities to be free of primary users. This line of work makes the assumption that there are less players than channels, that the collisions with other players are observed, and uses orthogonalization techniques to avoid collisions. In [START_REF] Rosenski | Multi-player bandits -a musical chairs approach[END_REF], the authors propose to use collisions to estimate in a first phase the number of players and the value of arms and then a Musical Chair approach to allocate each player on a different N -best arm. In [START_REF] Hanawal | Multi-player bandits: A trekking approach[END_REF], the authors improve this approach by reducing the first phase to the estimation of the value of arms and then use a trekking approach to allocate each player on a different N -best arm without the knowledge of the number of players. In [START_REF] Boursier | Sic-mmab: Synchronisation involves communication in multiplayer multi-armed bandits[END_REF], the authors propose a communication protocol based on controlled collisions that achieves almost the same performance as a centralized algorithm. In [START_REF] Wang | Optimal algorithms for multiplayer multi-armed bandits[END_REF], the authors improve this result by electing a leader that explores the arms and allocates other players on different estimated N -best arms. The leader communicates to other players the list of estimated N -best arms when it changes using the same communication protocol as in [START_REF] Boursier | Sic-mmab: Synchronisation involves communication in multiplayer multi-armed bandits[END_REF]. This algorithm is asymptotically optimal. An interesting extension of the problem setting was proposed in [START_REF] Boursier | A practical algorithm for multiplayer bandits when arm means vary among players[END_REF] for handling the case where the mean rewards of arms are not the same for each player. However, this line of works makes the assumption that sensing information is available and the number of players is small (N ≤ K), which are both unrealistic assumptions for IoT networks.

In [START_REF] Boursier | Sic-mmab: Synchronisation involves communication in multiplayer multi-armed bandits[END_REF], the authors propose an adaptation of their algorithm to the case where sensing is not allowed, that preserves the logarithmic behavior with respect to the time horizon. This approach has been improved in [START_REF] Shi | Decentralized multi-player multiarmed bandits with no collision information[END_REF] for the case where sensing is not allowed thanks to the use of Z-channel coding, quantization of transmitted statistics and a tree structured communication, where a leader gathers the statistics and then decides for all players which is the best set of arms. In [START_REF] Lugosi | Multiplayer bandits without observing collision information[END_REF], the authors define the multi-player stochastic multi-armed bandit as an anti-coordination game, where the goal is to quickly reach an approximate Nash equilibrium. Finally, in [START_REF] Bubeck | Non-stochastic multi-player multi-armed bandits: Optimal rate with collision information, sublinear without[END_REF] the difficult case of non-stochastic multi-player multi-armed bandits is addressed. In all those works, the number of players is assumed to be below the number of channels, which is not realistic for IoT networks.

Motivated by IoT networks, in [START_REF] Bonnefoi | Multiarmed bandit learning in iot networks: Learning helps even in non-stationary settings[END_REF][START_REF] Besson | [END_REF] the authors propose a new problem setting where sensing is not allowed, the number of players is larger than the number of channels, and the players asynchronously play: each player has the same probability to send a packet at each time slot. The authors show experimentally that selfish UCB, which consists in each player independently playing UCB [Auer et al., 2002a], works surprisingly well. This experimental result has been confirmed in the case of LoRa networks using stochastic and non-stochastic multiarmed bandits [START_REF] Kerkouche | Node-based optimization of lora transmissions with multi-armed bandit algorithms[END_REF] or in the case of IEEE 802.15.4 time-slotted channel hopping protocol [START_REF] Dakdouk | Reinforcement learning techniques for optimized channel hopping in ieee 802.15.4tsch networks[END_REF]. Despite its good experimental performance, this algorithm has no theoretical guarantees, and it has been shown that selfish UCB can fail badly on some cases [START_REF] Besson | Multi-player bandits revisited[END_REF]. With a similar problem setting but with different probabilities to send packets the authors in [START_REF] Dakdouk | Collaborative exploration in stochastic multi-player bandits[END_REF] propose a cooperative algorithm that aims to find a set of optimal arms while minimizing the number of plays. However that work does not optimize the number of optimal arms to find, and the exploitation policy followed by the players is uniform, which is clearly sub-optimal. Those lacks are overcome with our proposed policies.

Finally, the optimization problem we propose to solve is related to Aloha protocol [START_REF] Bertsekas | Data networks[END_REF], where each player n transmits a packet with a probability p n in a slot. For instance in [START_REF] Wang | Distributed algorithms for max-min fair rate allocation in aloha networks[END_REF], the authors formulate the decentralized throughput maximization problem in an Aloha network with a single channel in a way that is close to our optimization problem. However that work considers a single channel, and the decision variable is the sending probability p n rather than the choice of the channel. If the probabilities of sending a message are optimized, then the application constraints of IoT (frequency of sending messages or real-time messages) cannot be respected. In [START_REF] Cohen | Game theoretic aspects of the multi-channel aloha protocol in cognitive radio networks[END_REF], the authors propose a best-response algorithm which solves the throughput maximization problem for multi-channels Aloha protocol. They notably show that the best-response algorithm converges to a Nash Equilibrium in a finite time. However they consider that the channel capacities and the strategies of other players are known, and that each player has the same probability to send a message at each slot, which is unrealistic and restrictive for IoT networks.

Contributions and paper organization

In this paper, with the aim of optimizing transmissions in IoT networks, we study the extension of the problem proposed in [START_REF] Bonnefoi | Multiarmed bandit learning in iot networks: Learning helps even in non-stationary settings[END_REF], where each player has a different probability to send a packet at a each time slot [START_REF] Dakdouk | Collaborative exploration in stochastic multi-player bandits[END_REF].

We propose an explore-then-exploit approach, where a decentralized exploration algorithm outputs an estimation of the parameters, and then a target policy, which can be computed by the gateway, is used during the exploitation phase. The remainder of this paper is organized as follows. In section 2, we formalize the objective of optimizing the successful transmissions. We show in Theorem 1, that there exists a deterministic policy (an assignment of devices over channels) that is optimal. Then we propose two deterministic target greedy policies: DORG (decreasing-order-reward-greedy) optimizes the number of successful transmissions, while DOFG (decreasing-order-fair-greedy) guarantees some fairness between players, which is defined as the ratio between the lowest successful transmission rate and the highest successful transmission rate obtained over the players. In Theorem 2, we show that DORG is an optimal policy in the setting proposed in [START_REF] Bonnefoi | Multiarmed bandit learning in iot networks: Learning helps even in non-stationary settings[END_REF] (when ∀n, p n = p), while in Theorem 3 we show that DOFG is fair.

In section 3, we state a first regret lower bound in Ω T 2/3 log T /N + K 3/2 , which holds for any explore-then-exploit policy. This notably shows that the problem is much more difficult than standard multi-armed bandits for which the regret lower bound is in Ω( √ KT ) [START_REF] Bubeck | Regret analysis of stochastic and nonstochastic multi-armed bandit problems[END_REF]]. Since the collisions can only be observed by devices, in section 4 we propose a decentralized exploration algorithm that outputs with high probability an approximation of the mean rewards of arms, i.e., the channel qualities. We allows players to collaborate by exchanging messages using the IoT protocol. We provide a deep analysis of the proposed algorithms. Theorem 6 states an upper bound of the number of time steps needed to output a controlled approximation of the arms that is near optimal in comparison to the lower bound of K biased coin estimations in Ω K/ 2 log 1/δ [START_REF] Anthony | Neural Network Learning: Theoretical Foundations[END_REF]. Theorem 5 states an upper bound of the communication cost in O(N ), which is order optimal. Then, in the setting proposed in [START_REF] Bonnefoi | Multiarmed bandit learning in iot networks: Learning helps even in non-stationary settings[END_REF], Theorem 7 states that when using DORG, the proposed algorithm benefits from a regret upper bound that is optimal with respect to T , and near optimal with respect to K. Finally, Theorem 8 shows that when using approximation of mean rewards, DOFG is still fair.

In section 5, we compare our approach with state-of-the-art methods on a large set of synthetic problems. We show that when using DORG the proposed algorithm outperforms the baselines in terms of successful communication rate, and when using DOFG it outperforms them in terms of fairness between players. The reader will find additional experiments in appendix B and the proofs in appendix C.

Optimizing transmissions in IoT networks

Problem Formulation

Let [N ] be a set of N players, such that at each time slot t each player n ∈ [N ] has a constant probability p n to send a message, such that 1 > p > p n > 0, where p is the duty cycle that is imposed to the IoT network in order to share the free bandwidth with other users. Without loss of generality, in the following we assume that: p 1 ≥ ... ≥ p N . At each time slot t, the set N t of players sending messages is selected by N independent Bernoulli samples:

N t := {n ∈ [N ] such that a n = 1, with a n ∼ B(p n )}.
Let [K] be the set of K arms. The transmission of a message is successful if it does not collide with other messages. The random variable representing an external collision on arm k is denoted by

E k ∼ B(θ k ) (equals 0 if collision, 1 otherwise).
Similarly, internal collisions between the controlled players are represented by the random variables (I k ) k∈[K] (equals 0 if collision, 1 otherwise) and depend on the implemented policy. After playing arm k, player n observes the binary outcome Y kn = E kn I kn , i.e., knows whether a collision occurred or not (through an acknowledgement message) but cannot distinguish external and internal collisions.

We assume that the number of players is known by the gateway, which is realistic in IoT protocols, and that the gateway sends this information to each player at the beginning of the game. Considering that the probability of sending a message depends mainly on the type of devices, we assume that each player knows its own probability of sending a message p n . We recall that no assumption is made on the number N of players, which means that the number of players may be higher that the number K of arms.

We will call a policy a (possibly randomized) way for players to select the channel to use for their next transmission. Formally, a policy π will be a vector of probability distributions over the set of arms:

π = (π 1 , ..., π N ), with π n = (π 1 n , ..., π K n )
, where π k n denotes the probability that player n chooses arm k for sending a message. We denote by µ k n,θ (π) the expected reward in model θ = {θ 1 , ..., θ K } of playing arm k while the other players follow policy π. It is the probability that no external collision occurs times the probability that no internal collision occurs, or mathematically

µ k n,θ (π) = θ k N n =1,n =n (1 -p n π k n ). (1) 
Equation ( 1) shows the difficulty of the studied problem: the mean reward of an arm for a given player depends on the probabilities of the other players to send a message and on the policies they follow. The aggregated average reward in model θ = {θ 1 , ..., θ K } per time slot over all players µ θ (π) is:

µ θ (π) = K k=1 θ k N n=1 p n .π k n n ∈[N ]\{n} (1 -p n π k n ). (2) 
This performance metric corresponds to the expected number of successful uplink transmissions per time slot in the IoT network. This optimization problem with respect to π has a solution, since the objective function is continuous and the set of decision variables is compact. But the problem itself is not convex, hence classical convex optimization methods cannot be applied. While suspected, proving the NP-hardness of the problem remains an open question. Still, Theorem 1 states that at least one solution is a deterministic policy.

Theorem 1. There exists a policy maximizing the overall network utility (equation (2)) that is deterministic.

Based on Theorem 1, from now on, we only consider deterministic policies (each player sticks to an arm that it will play for sending messages) and write k n the arm assigned to player n. The expected reward per time slot in model θ = {θ 1 , ..., θ K } of a deterministic policy π can then be written as:

µ(π) = N n=1 p n θ kn n =n, s.t. k n =kn (1 -p n ) (3) = K k=1 θ k n∈[N ], s.t. kn=k (1 -p n ) z k n∈[N ], s.t. kn=k p n 1 -p n k
where z k is the probability that all players assigned to arm k do not send messages, and k is the sum of the activation odds for all players assigned to arm k.

Reward greedy algorithm

In this section, we propose a greedy algorithm that aims to maximize the network utility (equation ( 2)).

Lemma 1. For a deterministic policy π, let µ(π[n]) denote the expected reward when only players 1, ..., n are playing (all players n > n are deactivated). Then we have the recursive expression:

Algorithm 1 Reward Greedy (DORG if players are sorted in p n decreasing order)

Inputs: [K], [N ], {θ k } k∈[K] , {p n } n∈[N ]
Output: π Init: per-arm inactivity probabilities: z k = 1. Init: per-arm activation odds sums: k = 0.

1: for n = 1 to N do 2: Set k n ∈ argmax k∈[K] θ k z k (1 -k ). 3: Update z kn ← z kn (1 -p n ).

4:

Update kn ← kn + pn 1-pn .

5:

Set π kn n = 1, and ∀k = k n , π k n = 0. 6: end for Algorithm 2 Fairness Greedy (DOFG if players are sorted in p n decreasing order)

Inputs: [K], [N ], {θ k } k∈[K] , {p n } n∈[N ] Output: π Init: per-arm inactivity probabilities: z k = 1. 1: for n = 1 to N do 2: Let k n ∈ argmax k∈[K] θ k z k 3: Update z kn ← z kn (1 -p n ) 4: Set π kn n = 1, and ∀k = k n , π k n = 0. 5: end for µ θ (π[n]) = µ θ (π[n -1]) + p n θ kn 1 -kn [n-1] z kn [n-1] ,
where z k

[n] is the probability that arm k is not used by any of the first n players, and k

[n] is the sum of activation odds of the n first players for arm k.

Lemma 1 reveals a recurrence relation over n of the expected total reward. Under the assumption that the problem parameters are known, Lemma 1 paves the way to the definition of DORG, decreasingorder-reward-greedy (Algorithm 1), a recursive algorithm that assigns player n to arm k n such that the right-hand term of the recursive equation in Lemma 1 is maximized. The result is highly dependent on the order in which the players are added to the pool, but the following theorem suggests the algorithm can lead to an actual optimum.

Theorem 2. If n∈[N ]

pn 1-pn ≤ K + 1, then there exists an ordering over players σ * : [N ] → [N ] such that Algorithm 1 returns an optimal policy. Remark 1. When ∀n, p n = p [START_REF] Bonnefoi | Multiarmed bandit learning in iot networks: Learning helps even in non-stationary settings[END_REF] Theorem 2 states that DORG returns the optimal policy. The precondition of Theorem 2 clearly holds in IoT networks, where the duty cycle p is commonly set to less than 0.01.

Fairness greedy algorithm

Theorem 1 states that the resource assignment of an optimal deterministic policy is a Pareto optimum: as the network utility is maximum, if a user increases its own utility (equation ( 1)) another user has necessarily to decrease its utility (due to equation ( 2)). Notice that a Pareto optimum does not provide any guarantee about the fairness of the resource allocation among players. In this section, we design a policy to ensure fairness among players, for which we will use the definition below.

Definition 1 (α-fairness). A policy π is said to be α-fair if

min n∈[N ] K k=1 µ k n,θ (π) max n∈[N ] K k=1 µ k n,θ (π) ≥ α.
Building a fair policy can be done by balancing the load with respect to the mean rewards of arms. The fair greedy algorithm (see Algorithm 2) assigns sequentially each player to the arm that maximizes the reward of the arm times the probability of no internal collision. The player scheduling also plays an important role and we prove a lower bound on the fairness of Algorithm 2, when players are sorted in decreasing order of p n . In that case we coin this algorithm DOFG, which stands for decreasing-order-fair-greedy.

Theorem 3. DOFG generates α-fair policies, with α ≥ 1 -max n∈[N ] p n .

Theorem 3 implies that when the probability of sending messages of the most frequent player is not high, which is the case in IoT networks, DOFG is a fair policy.

3 An Explore-Then-Exploit approach

The choice of the policy depends on the metric to be maximized: for maximizing network utility, DORG policy (Algorithm 1) should be used, while to guarantee some fairness among players, DOFG policy (Algorithm 2) is to be used. However both policies necessitate the model θ, which is unknown: hence exploration is necessary. To maximize the objective metric, we propose an explore-then-exploit approach: an exploration algorithm shares the probabilities of sending messages of players and outputs an -approximation of the model θ with high probability for a sufficiently small , and then a target policy is used during the exploitation phase.

In IoT networks, due to the use of batteries by devices, the energy consumption and hence the number of sent messages should be minimal. That is why in comparison to an explore-and-exploit approach, which can adapt the sampling of arms according to their estimated mean rewards, the advantage of explore-then-exploit approach is that in the case of decentralized algorithms, the number of communications between players can be reduced to its minimum: N for sharing the probabilities of sending messages and N for sharing the estimation of arms.

Definition 2 (Regret). Let π t be a policy generated at time t by an algorithm, and µ θ (π t ) be its value in model θ = {θ 1 , ..., θ K }, we define the expected regret with respect to the optimal policy π * θ as

E[R(T )] = T t=1 (µ θ (π * θ ) -µ θ (π t )).
Definition 3 ( -approximation). θk is said to be an -approximation of arm k, if the difference between it and θ k is less than : |θ kθk | ≤ .

Theorem 4. When = K/ 3 √ T , there exists a model θ = {θ 1 , ..., θ k } and a distribution of players p 1 , ..., p N such that the expected regret with respect to the deterministic optimal policy π * θ of any exploration algorithm that outputs an -approximation of each arm θ k with probability at least 1-1/T and which is followed by the optimal policy using the estimated model is at least: Ω T 2/3 log T N + K 3/2 .

Theorem 4 reveals that the studied problem is much more difficult than the multi-armed bandit problem, for which the regret lower bound of Explore-Then-Exploit algorithms is in Ω( √ KT ) [START_REF] Bubeck | Regret analysis of stochastic and nonstochastic multi-armed bandit problems[END_REF].

Collaborative Exploration in Multi-Players Bandits

Principle

The gateway could not perform the exploration since when an internal or external collision occurs, the gateway cannot know that messages have been sent. That is why, we propose a decentralized algorithm for exploring the mean rewards of arms, which is performed with the messages that the devices have to send. For computing the exploration policy on each player, the probabilities of sending a messages have to be shared at the beginning of the exploration phase. In order to reduce the exploration time needed to find an -approximation of each arm, each player is responsible of a predefined number of samples t * n for each arm according to its probability of sending a message, so that all players would finish their estimations almost at the same time. At end of the exploration phase, each player sends its -approximation of each arm to other players through the gateway. Then, the target policy can be computed in a centralized way (by the gateway) or separately within each node.

Algorithm 3 Collaborative Exploration in Multi-Player Multi-Armed Bandits 

Inputs: [K], [N ], ∈ [0, 1], δ ∈ (0, 1) Output: θ = { θk , ∀k ∈ [K]} Init: t = 0, ∀n ∈ [N ], ∀k ∈ [K], t * n = ∞, ack2 n = 0, ∀(n 1 , n 2 ) ∈ [N ] 2 ack1 n1,n2 = 0 1: repeat 2: N t := {n ∈ [N ], a n ∼ B(p n ), a n = 1} 3: for n ∈ N t do 4: k n ∼ U(1, K) 5: Y kn n (
t = t + 1 20: until ∃N ⊂ N ,    ∀k n∈N t k n ≥ T = n∈N t * n n∈N ack2 n = |N | 21: all players calculate θk := n∈N θk n t k n n∈N t k n

Description of the algorithm

The sampling strategy used in collaborative exploration is the Uniform Policy π u : ∀n, ∀k, π k n = 1 K . Then, player n can estimate the mean reward of arms using:

θk n = μk n (π u ) ρ k n (π u )
, where (4)

ρ k n (π u ) = N n =1,n =n (1 -p n π k n ) = N n =1,n =n (1 -p n /K)
The function send(s), used in Algorithm 3, means that message s is broadcast to other players through the gateway on a channel chosen uniformly over K. The function send(s) returns 1 if an acknowledgement is received from the gateway or 0 else. When player n receives the probabilities of sending messages of all other players (Algorithm 3 line 11), it computes the required number of samples of each arm t * n according to Lemma 2. When player n has sampled t * n times each arm k, it sends their estimations θk n and t k n to other players (Algorithm 3 line 15). θk n is computed according to equation (4). The exploration phase ends when the arms have been sampled enough by a subset of players (Algorithm 3 line 20). Finally, the players compute the global estimations of arms by combining the received local ones (Algorithm 3 line 21).

Lemma 2. By using Algorithm 3, in order to obtain with a probability 1 -δ an -approximation of the mean rewards of arms, player n needs to sample each arm at least

t * n = p n log (2K/δ) 2 2 ( n =N (1 -p n /K)) 2 N i=1 p i times.

Analysis of the algorithm

As in IoT network the payload of each transmission can contain 255 bytes [START_REF] Augustin | A study of lora: Long range & low power networks for the internet of things[END_REF], we control the number of sent messages rather than the size of messages.

Theorem 5. Communication Cost The communication cost of Algorithm 3 is with probability 1 -δ less than: C(2N ) messages, where

C(m) = m log δ/m log   1-K k=1 ρ n (π u ) K θ k   + 1 .
Theorem 5 states an upper bound of the number of messages sent by the N players for sharing the probabilities of sending messages, and for sharing their estimations at the end of the exploration phase. The communication cost is in the order of 2N messages, which is order optimal since for computing an optimal policy, any algorithm needs to share at least the player probabilities. Notice that an exploration algorithm, which elects a leader for performing a forced exploration, has a communication cost at least in the order of N + Ω(K/ 2 log 1/δ), which is sub-optimal in the general case.

Theorem 6. With a probability at least 1 -δ, Algorithm 3 stops while finding the -approximations of model θ = {θ 1 , ..., θ K } at:

t * ≤ K log 2K/δ 2 2 (1 -p 1 /K) 2N -2 N i=1 p i + K p N 1 2 log N K δ + C(2) ,
where andC(2) is the needed number of sent messages to successfully send 2 messages.

p N = min n∈[N ] p n , p 1 = max n∈[N ] p n ,
Theorem 6 states an upper bound on the number of time slots needed by all players to finish their estimations of the mean rewards of the arms and to share them. The left term in O K/ 2 log K/δ is the dominating term of the upper bound of the sample complexity. It is near optimal in comparison to the lower bound of K biased coin estimations in Ω K/ 2 log 1/δ [START_REF] Anthony | Neural Network Learning: Theoretical Foundations[END_REF]. The right term of the upper bound in O K/p N log N K/δ mainly depends of the least frequent player. This is due to the fact that, in worst case, before stopping Algorithm 3 has to wait that the least frequent player has sent its estimation of the arms.

Theorem 7. when δ = 1/T, = K/ 3 √ T , ∀n ∈ [N ], p n = p, the expected cumulative regret with respect to the optimal policy π * θ of Algorithm 3 followed by the policy π * θ is upper bounded by:

E[R(T )] ≤ T 2/3 2K 2 + log 2KT 2(1 -p/K) 2N -2 N p + K 2 p 1 2 log N KT + C(2) + K
Theorem 7 shows that in the setting proposed by [START_REF] Bonnefoi | Multiarmed bandit learning in iot networks: Learning helps even in non-stationary settings[END_REF], the regret of Algorithm 3 followed by DORG is in O T 2/3 (log KT )/(1 -p/K) N N + K 2 , which is optimal with respect to T , and near optimal with respect to K (see Theorem 4). However concerning N , there is a gap with the lower bound. This gap is due to the lower bound that is built on a particular class of problems, where the optimal policy can be evaluated and produces no collision between players.

Theorem 8. Applying Algorithm 3 followed by DOFG ( Algorithm 2) on θ returns an α-fair policy in the true model θ, with

α ≥ 1 -p 1 - 2K max n∈[N ] θkn z kn 1-pn .
Theorem 8 implies that, using -approximations of arms, DOFG still has the same fairness guarantee minus a term mainly depending on . 

Simulation and Results

In order to illustrate and complete the analysis of the aforementioned algorithms, we first compare the performance of collaborative exploration (Algorithm 3) with selfish exploration, where each player explores selfishly, and with follow-the-leader exploration (FtL), where only the most frequent player explores. Then we compare collaborative exploration followed by DORG( θ) and DOFG( θ), with selfish UCB [START_REF] Bonnefoi | Multiarmed bandit learning in iot networks: Learning helps even in non-stationary settings[END_REF] and selfish EXP3 [START_REF] Auer | The nonstochastic multiarmed bandit problem[END_REF], which respectively consist in independently playing UCB and EXP3 on each player, and with CBAIMPB [START_REF] Dakdouk | Collaborative exploration in stochastic multi-player bandits[END_REF], where the players find ( , m)-optimal arms and exploit them uniformly with m = 5, = 0.2. We run both algorithms with various values of N , and K = 10, such that ∀k, θ k ∼ U(0, 1). The distribution of players is uniform and the upper bound of the distribution is chosen such that the internal collision rate does not exceed 0.15 when the number of players reaches 1300 and play the arms uniformly, so ∀n, p n ∼ U(3.10 -4 , 2.2.10 -3 ). δ = 0.05, = 0.1. The curves are averaged over 10 trials and run on 10 6 time steps.

In figure 1a, we observe that the exploration time of collaborative exploration is two orders of magnitude less than follow-the-leader exploration and three orders of magnitude less than selfish exploration but one order of magnitude more than CBAIMPB, which stops exploration when it finds the best arms. Concerning the communication cost, we observe that the communication cost of the four exploration policies are close. In particular, the communication cost of collaborative exploration is two time less than the upper bound stated in Theorem 5, which is in the order of 2N . This is due to the fact that the stopping condition of Algorithm 3 does not imply that all players have been sampled enough, but that the arms have been sampled enough. As a consequence, all the estimations of all players do not need to be shared, but only those of players that have finished their estimations.

The performance differences of the exploration policies affect the whole performance of DORG( θ) and DOFG( θ), which consist of the exploration algorithm followed by the corresponding exploitation phase. That is why in figures 1b and 1f, the successful communication rate when using selfish exploration and follow-the-leader exploration are dramatically lesser than the one of collaborative exploration. In figures 1b and 1f, DOFG(θ) is slightly outperformed in terms of successful communication rate by DORG(θ). DORG( θ) and DOFG( θ) exhibit the same behavior, and we can notice that DORG( θ) and DOFG( θ) clearly outperform selfish UCB1, selfish Exp3 and CBAIMPB , and tend to perform as well as DORG(θ) and DOFG(θ) as N increases (figure 2b). This improvement is due to their low external collision rate (figure 2d) thanks to playing more the best arms, while because of playing more the best arms their internal collision rate is higher (figure 2c). Finally, while Selfish Exp3 is theoretically better suited for our problem setting, it is clearly outperformed by Selfish UCB.

Concerning fairness, DOFG( θ) clearly outperforms selfish UCB1, selfish Exp3 and DORG( θ), while DORG( θ) is outperformed by them when N is high (Figure 1e). CBAIMPB offers a high fairness between players due to the uniform selection of the arms by all players during both exploration and exploitation phases. The use of selfish exploration leads to high fairness level due to its very long uniform exploration phase, in contrast to follow-the-leader exploration that suffers of very low fairness level due to the fact that during the exploration time, only the leader can send messages. The observed fairness of DOFG(θ) in figure 1e differs from the theoretical one (Theorem 3). This is due to the fact that the mean rewards of players are observed on a finite number of time slots (10 6 ). As time passes the observed fairness tends to the theoretical fairness (Appendix B.2).

Conclusion

With the aim of optimizing transmission in IoT networks we have proposed an explore-then-exploit approach. Despite the fact that the optimal policy cannot be evaluated in the general case, we have stated a first regret lower bound for this problem. We have proposed two target policies DORG and DOFG that are efficient with any number of players, and can handle internal and external collision without sensing. We have shown that our algorithm when using DORG is optimal with respect to T and near optimal with respect to K in the setting proposed in [START_REF] Bonnefoi | Multiarmed bandit learning in iot networks: Learning helps even in non-stationary settings[END_REF] (when ∀n, p n = p), and that when using DOFG it is fair. Our experiments confirm the good behavior of selfish UCB and CBAIMPB, but show that both are outperformed in terms of network successful communication rate by DORG( θ) and DOFG( θ), and in terms of fairness by DOFG( θ). This work can be extended in many directions: studying explore-and-exploit approach for the proposed problem, handling an evolving number of active players, handling more general non-stationary environments handling players with different mean rewards of arms... Finally, showing the NP-Hardness of the optimization problem stated in equation ( 2) is an open problem.

Collaborative Exploration and Exploitation in massively Multi-Player Bandits Supplementary Materials In this section, we perform the following experiment: the problem parameters are sampled as follows: ∀n ∈ [N ], p n ∼ U(0, 0.3)1 and ∀k ∈ [K], θ k ∼ U(0, 1). Figure 2 compares the performance of DORG, DOFG, and Reward Greedy (Algorithm 1) with random ordering, where each point is the average of 10,000 runs. Figure 2 (left) reveals that sorting the players in decreasing order is a good policy. However, it has to be noted that the difference between DORG and a random ordering is much thinner when p n are smaller, as expected in a real setting. We also notice that DOFG expected reward loss, as compared to DORG, is below 20% until N ≈ 75. Further, on figure 2 (right), we notice that the expected number of channels with collisions stops increasing as N grows around N = 100. It is the moment when the channels get completely saturated. N = 100 coincides with the point where the fairness gets to 0 on figure 2 (center). We explain this phenomenon as follows: each channel k fills up, up to the point when k > 1. When all the channels reached this point, adding new players to the network actually decreases the expected reward, and DORG's strategy condemns the arms with the lowest θ k and use them as a garbage bin for new players. These channels get so crowded that there is a collision on it with a very high probability, in order to keep the other channels functionally unspoiled. In comparison, to guarantee fairness DOFG does not throw away players on a bin channel.

A Additional experiments B Additional experiments

Similar figures with N = 200 and 100 K values ranging from 4 to 256 on a log scale are available below. 

B.2 Fairness

Figure 5 shows the progress of the fairness level achieved by DOFG(θ) policy as time passes. The experimental settings are the same as those in section 5. The black plot corresponds to the theoretical fairness level proved in Theorem 3. In order to reach the theoretical fairness level, the observed mean rewards of all players have to reach their expected values. Due to the low probabilities of sending messages of the players, this would take a long time. As shown by figure 5, the observed fairness tends to the theoretical fairness in 10 8 times steps for 10 players. 

C Proofs

C.1 Notations

For the sake of ease the reading of proofs, we provide below the notations. decreasing order fair greedy policy generated by Algorithm 2. π * θ optimal policy in model θ, which is deterministic, when it is clear in the context, we use π * . µ θ (π) mean reward in model θ of the policy π, when it is clear in the context, we use µ(π).

For a stochastic policy:

µ θ (π) = K k=1 θ k N n=1 p n π k n n =n (1 -p n π k n ). For a deterministic policy µ θ (π) = K k=1 θ k z k l k . z k
probability that arm k is not used by any other players, policy π when players n > n do not play.

z k = n ∈[N ],kn=k (1 -p n ).
z k [n]
probability that arm k is not used by any of the first n players.

l k [n]
sum of activation odds of the n first players for arm k. ρ k n (π) probability that no other players have chosen arm k using policy π.

C.2 Proof of Theorem 1

There exists an optimal policy which is deterministic.

Proof. The proof makes use of Lemma 3 which states that, as long as k n-1 ≤ 2, the reward-greedy criterion for Algorithm 1 decreases as we add a new player n.

We prove below that this Lemma applies for all picked arms if n∈[N ] pn 1-pn ≤ K + 1. By reductio ad absurdum, we assume that n∈[N ] pn 1-pn ≤ K + 1 and that there exists some arm k and some player ordering σ (not necessarily σ * ) such that π * (σ(N )) = k and k σ([N -1]) > 2, where π * is an optimal policy and σ([N -1]) denotes the N -1 first indexes in the σ reordering. Then, there must exist an arm k for which k σ([N -1]) < 1, otherwise we would have n∈

[N ] pn 1-pn > n∈[N -1] p σ(n) 1-p σ(n) > K + 1. It means that, for k , the reward-greedy criterion z k σ([N -1]) 1 -k σ([N -1]
) is positive, and therefore larger than that of k:

z k σ([N -1]) 1 -k σ([N -1])
, which is negative. As Lemma 1 states that the reward-greedy criterion is incrementally optimal, it means that k would have been a strictly better arm for player σ(N ), which contradicts the assumption that π * is optimal.

Let an optimal policy π * be given, and let us construct the player ordering σ * such that Algorithm 1 applied on the σ * ordering returns π * .

Algorithm 4 Reconstruction of a player ordering that allows Algorithm 1 to return π * Inputs:

[K], [N ], {θ k } k∈[K] , {p n } n∈[N ]
, π * Output: σ * such that Algorithm 1 returns π * Init: per-arm inactivity probabilities: z k = 1. Init: per-arm activation odds sums: k = 0. Init: Set of players remaining to be assigned:

N = [N ]. 1: for n = 1 to N do 2: Let σ * (n) be an element of N such that π * (σ * (n)) ∈ argmax k∈[K] θ k z k (1 -k ). 3: Update N ← N -{σ * (n)}. 4: Update z kn ← z kn 1 -p σ * (n) . 5: Update kn ← kn + p σ * (n) 1-p σ * (n) . 6: end for
It is direct to understand that Algorithm 1 applied on a σ * player ordering would retrieve π * . Indeed, Algorithm 4 makes it so the players are ordered to be incrementally optimal. The last piece of the proof is to check the existence of a player σ * (n) assigned to a reward-greedy arm on line 2.

Again by reductio ad absurdum, we assume that there is no remaining player that π * assigned to a reward-greedy arm k * . Then, it means that until the last selection, this arm will not be picked and another arm k will be picked instead. We showed at the beginning of the proof that the reward-greedy criterion is only decreasing as the arms are being selected, and that the reward-greedy criterion of an arm not being selected, such as k * , is constant. So it means that π * (σ * (N )) should be k * , hence, the contradiction.

We may therefore conclude the proof by stating that Algorithm 4 will never fail to construct σ * and that Algorithm 1 applied to the σ * player ordering will return π * .

C.5 Proof of Theorem 3

DOFG generates α-fair policies, with

α ≥ 1 -max n∈[N ] p n . (13) 
Proof. For every arm, we have the following equality:

µ n (π † ) = θ kn n =n, s.t. k n =kn (1 -p n ) = θ kn z kn 1 -p n . (14) 
We prove now that min n∈

[N ] µ n (π † ) = µ N (π † ).
We proceed by induction. The base case is direct for N = 1. Now, we prove the induction step by assuming that it is true for N and prove it for N + 1. We have to distinguish two cases whether k N equals k N +1 or not.

Case k N = k N +1 , then from Equation 14, we have µ

N +1 (π † ) = 1-p N 1-p N +1 µ N (π † ). Since we know by construction that p N +1 ≤ p N , we may conclude that µ N +1 (π † ) ≤ µ N (π † ). Case k N ≤ k N +1 , then stating that µ N +1 (π † ) > µ N (π †
) would imply that k N was not optimally selecting the arm at the previous step, which brings a contradiction.

Let us assume without loss of generality that player N has been assigned to arm K. Since π † N has been chosen so that to maximize θ k z k at iteration N , it means that:

min n∈[N ] µ n (π † ) = µ N (π † ) ≥ max k∈[K] θ k z k . (15) 
We also know that:

max n∈[N ] µ n (π † ) = max n∈[N ] θ kn z kn 1 -p n (16) ≤ max k∈[K] θ k z k 1 -max n∈[N ] p n (17) ≤ 1 1 -p 1 min n∈[N ] µ n (π † ), (18) 
which concludes the demonstration.

C.6 Proof of Lemma 2

By using Algorithm 3, in order to obtain with a probability 1 -δ an -approximation of the mean rewards of arms, player n needs to sample each arm at least

t * n = p n log (2K/δ) 2 2 ( n =N (1 -p n /K)) 2 N i=1 p i times.
Proof. Due to equations 1 and 4, for a given probability of failure δ ∈ [0, 1], and a given approximation factor , ∀n ∈ [N ], ∀k ∈ [K] we have:

P (|µ k -μk n | ≥ ) ≤ δ K ⇐⇒ P (|θ k -θk n | ≥ n ) ≤ δ K , (19) 
where n = . n =n (1 -p n /K). Applying Hoeffding's inequality:

P (|θ k n -θk n | ≥ n ) ≤ 2e -2t k n n 2 . ( 20 
)
Therefore for obtaining an -approximation of arm k on player n with a probability 1 -δ K :

t k n ≥ log(2K/δ) 2 2 n ⇐⇒ t k n ≥ log(2K/δ) 2 2 ( n =n (1 -p n /K)) 2 ≥ t † = log(2K/δ) 2 2 ( n =N (1 -p n /K)) 2
Now, as Algorithm 3 shares the estimations of the N players for finding -approximation of arm k with high probability, we need

N n=1 t * n = t † samples. Hence, if each player samples arm k at least t * n ≥ p n log(2K/δ) 2 2 ( n =N (1 -p n /K)) 2 N i=1 p i
times, an -approximation of arm θ k is obtained with a probability 1 -δ K .

C.7 Proof of Theorem 4

When = K/ 3 √ T , there exists a model θ = {θ 1 , ..., θ k } and a distribution of players p 1 , ..., p N such that the expected regret with respect to the deterministic optimal policy π * θ of any exploration algorithm that outputs an -approximation of each arm θ k with probability at least 1 -1/T and which is followed by the optimal policy using the estimated model is at least:

E[R(T )] ≥ Ω T 2/3 log T N + K 3/2 .
In the following we show that a lower bound holds for a class of models θ and distribution of players p 1 , ..., p N . For the sake of simplifying notations, we assume in the following that:

• θ 1 > θ 2 , ..., θ K-1 > θ K ,

• p 1 > p 2 , ..., p N -1 > p N .

Choice of a class of problems. The most difficult point for evaluating a regret lower bound is that in the general case the optimal policy, which maximizes the mean reward (see equation (3)), is unknown. For handling this point we choose a particular class of problems, where N = K. Then, we assume that the distribution of arms is such that ∀k ∈ [K -1],

θ k = θ k+1 + , (21) 
2p k ≤ θ k ≤ 2p k+1 . (22) 
The optimal policy. When 2p k ≤ θ k (equation ( 22)), then superposing players on any arm provides less reward than spreading players on the arms. Indeed, let ∆ s be the gap between the mean reward of two players k 1 , k 2 , k 1 < k 2 assigned on different arms, and the mean reward of two players assigned on the same arm:

∆ s = p k1 θ k1 + p k2 θ k2 -p k1 θ k1 (1 -p k2 ) -p k2 θ k1 (1 -p k1 ), (23) 
= p k2 (θ k2 -θ k1 ) + 2p k1 p k2 θ k1 ,

= -p k2 + 2p k1 p k2 θ k1 ≥ 0.

Hence, when equation ( 22) holds, the optimal assignment of players over arms is:

(p 1 , θ 1 ), (p 2 , θ 2 ), ..., (p K , θ K ). Applying Hoeffding inequality to both terms (see figure 6), we obtain:

P ( θk > θk+1 ) ≤ 1-θ k -θ k exp -2t * u 2 + exp -2t * u 2 exp -2t * u + ) 2 + exp -2t * u + ) 2 du, (43) 
≤ 1-θ k -θ k exp -2t * u 2 + exp -4t * u 2 + exp -2t * u 2 du, (44) 
≤ +∞ -∞ 2 exp -2t * 2 1 + exp -4t * 2 1 du, (45) 
≤ 2 π 2t * + π 4t * = π 2t * 2 + 1 2 . ( 46 
)
Then, injecting equation (46) in equation ( 38), we have:

E k ∈ [K], k = k * ≥ (K -1) 1 - π 2t * 2 + 1 2 . ( 47 
)
Finally, the right term of equation 27 is lower bounded by:

µ θ (π * θ ) -µ θ (π * θ ) ≥ ∆ p (K -1) 1 - π 2t * 2 + 1 2 = c 1 K 1 - π t * . ( 48 
)
and probability of failure q = 1 -p. Let F be the number of failures before the success. We have:

P(C(1) ≤ F + 1) = 1 -q F = 1 -δ, =⇒ F = log δ log q
Consequently, for sending m messages, with a probability 1 -δ player n needs at most :

C(m) ≤ m      log δ/m log(1 - K k=1 ρ n (π u ) K θ k ) + 1     
Theorem 5 The total number of sent messages during Algorithm 3 is with probability 1 -δ less than:

2N      log δ/2N log(1 - K k=1 ρ n (π u ) K θ k ) + 1      messages.
Proof. Using Lemma 4, the total number of messages sent by all players to send successfully their probabilities of sending messages and their estimations is with probability 1 -δ:

C(2N ) ≤ 2N      log δ/2N log(1 - K k=1 ρ n (π u ) K θ k ) + 1      (56) 
C.9 Proof of Theorem 6

With a probability at least 1 -δ, Algorithm 3 stops while finding the -approximations of θ at:

t * ≤ K log 2K/δ 2 2 (1 -p 1 /K) 2N -2 N i=1 p i + K p N 1 2 log N K δ + C(2) ,
where p N is the lowest probability of sending a message among the players, and C(2) is the needed number of sent messages to successfully send 2 messages.

Proof. A player n stops while finding its estimations when it plays each arm k at least t * n times (Lemma 2). Let t k n be the number of plays of arm k by player n before the algorithm stops at time t * . t k n is a binomial random variable with parameters t * and p n /K. Then we have:

E[t k n ] = p n K .t * (57) 
The estimation does not terminate if this event occurs: E = {∃n ∈ [N ], ∃k ∈ [K], t k n < t * n + C(2)}. Applying Hoeffding's inequality we get:

P(t k n - p n K .t * ≤ -) ≤ exp -2 2 = δ N K (58)
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 1 Figure 1: (a) exploration phase, (b) successful communication rate, (c) internal collision rate, (d) external collision rate, (e) fairness, (f) successful communication rate versus time. The successful communication and collision rates are cumulative over time. θC when collaborative exploration is used, θS when selfish exploration is used, and θL when follow-the-leader exploration is used.

Figure 2 :

 2 Figure2: With number of arm K = 10 fixed, and for N values (ranging from 16 to 512 on a log scale), the algorithms have been compared in terms of expected reward ratio with DORG (left), π denotes the policy to be compared with DORG, α-fairness (center), and number of channels with internal collision (right).

  Figure 2 (center) illustrates the result of Theorem 3, and indicates that the fairness lower bound is tight. It also shows that, while DOFG only loses 20% rewards when N ≈ 75 as compared to DORG, its fairness is approximately 30 times larger.

Figure 3 :

 3 Figure 3: DORG and DOFG: experiments with N fixed and K varying. With number of players N = 200 fixed, and for K values (ranging from 4 to 256 on a log scale), the algorithms have been compared in terms of expected reward ratio with DORG (above), α-fairness (middle), and number of collided channels (below). Each point has been obtained from 10,000 problems where the parameters are sampled as follows: ∀n ∈ [N ], p n ∼ U(0, 0.3) and ∀k ∈ [K], θ k ∼ U(0, 1).

Figure 4 :

 4 Figure4: DORG and DOFG: experiments with K fixed and N varying, and smaller p n . With number of players K = 10 fixed, and for N values (ranging from 128 to 16384 on a log scale), the algorithms have been compared in terms of expected reward ratio with DORG (above), α-fairness (middle), and number of collided channels (below). Each point has been obtained from 10,000 problems where the parameters are sampled as follows: ∀n ∈ [N ], p n ∼ U(0, 0.01) and ∀k ∈ [K], θ k ∼ U(0, 1).
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  Observed fairness level of DOFG(θ). Theoretical fairness level of DOFG(θ).
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 5 Figure 5: Fairness level achieved by DOFG(θ) as a function of time with 10 players.

  l k sum of activation odds on arm k of other players, l k = n ∈[N ],kn=k pn 1-pn . k n arm assigned to player n. π[n]

PPPFigure 6 :

 6 Figure 6: Satisfying equation (42) necessitates to cut the tail of the distribution of θk in red dotted line, and/or the tail of the distribution of θk+1 in blue line.

Such high values for pn are used to graphically observe the expected properties. Experiments with realistic pn values (pn < 0.01) may be found in Appendix A.

Proof. We may write the global objective as: probability that no collision occurs

(5)

Let us assume that π * = {π n } n∈[N ] is optimal. Let us fix all player policies but player n's. Then, we notice that µ(π) is linear (see ( 5)) in each π k n , k = 1, ..., K, meaning that the maximum is achieved for any k * n ∈ argmax k∈ [K] ∂µ(π) ∂π k n , and therefore the optimal policy may have been chosen so that π n is deterministic: π k * n = 1 and ∀k = k * , π k n = 0. The same reasoning can be repeated for the other players, so that there exists an optimal policy that is deterministic.

C.3 Proof of Lemma 1

For a deterministic policy π, let µ(π[n]) denote the aggregated expected reward when only the players 1, ..., n are playing (all players n > n are deactivated). Then we have the recursive expression

where z k

[n] is the probability that arm k is not used by any of the first n players, and k

[n] is the sum of activation odds of the n first players for arm k.

Proof. We have:

where the line (6) comes from the fact that z k

C.4 Proof of Theorem 2

Lemma 3. As long as k n-1 ≤ 2, the reward-greedy criterion for Algorithm 1 decreases as we add a new player n:

Proof. We look at the difference:

Since p n and z kn [n-1] are always positive, we may conclude.

Theorem 2:

pn 1-pn ≤ K + 1, then, there exists an ordering over players σ

A mistake in the ranking of two arms k 1 , k 2 , k 1 < k 2 can lead to two different mistakes in assignment of players over arms: superposition of players or inversion of players Let ∆ s,i be the gap between the mean reward of the optimal policy (see equation ( 26)) with a superposition of two players and the mean reward of the optimal policy with an inversion of the two players

where equation ( 32) is due to equation ( 21) and the last inequality is due to equation ( 22). Hence, the minimum gap of any policy with the optimal policy is obtained by inverting the assignments of two players:

= min k1,k2,k1<k2

= min k1,k2,k1<k2

where k and k * respectively denote the arm assigned to player k by the optimal policy runs on estimated mean reward π * θ , and the optimal arm to be assigned to player k. Then, the expected number of mistakes in assignment is:

Now considering the opposite event, we have:

Lower bound of the left term. The left term of equation ( 27) is the instantaneous regret of the optimal exploration policy π * E . The optimal (in term of sample complexity) exploration policy cannot be an optimal target policy since estimating -approximations of arms necessitates to play exactly the same number of times the arms:

where c 2 > 0 is a constant depending on the problem parameters θ and p 1 , ..., p N .

Lower bound of the regret. Now, injecting the lower bound of µ θ (π * θ ) -µ θ (π * E ) (equation ( 49)) and the lower bound of µ θ (π * θ ) -µ θ (π * θ ) (equation ( 48)) in the regret decomposition (equation ( 27)), we obtain:

The lower bound of number of samples for finding a bias of a coin is Ω 1/ 2 log 1/δ [START_REF] Anthony | Neural Network Learning: Theoretical Foundations[END_REF]. At each time step, a maximum of N = K players are sampled. Hence, the time t * where π * E finds exactly an -approximation of each arm θ k is at least:

We have:

Finally setting δ = 1/T and = √ K/ 3 √ T , obtain:

Hence, we have:

C.8 Proof of Theorem 5

Lemma 4. In Algorithm 3, so that player n sends successfully m messages, with a probability 1 -δ player n needs to send a number of messages C(m), which is at most:

Proof. Let C(1) be the random variable corresponding to the number of trials of player n to send a message. C(1) follows a geometric distribution with a probability of success p = µ n (π u ) =

Hence, when E does not occur =⇒ ∀n we have with probability at most δ:

Then, when E does not occur and hence the estimation terminates, we have ∀n with probability at least 1 -δ:

where p N and p 1 are respectively the lowest and the greatest probability of sending a message among the players.

Then, we have:

Theorem 7: For δ = 1/T, = K/ 3 √ T , when ∀n ∈ [N ], p n = p, the expected cumulative regret with respect to the target policy π * of Algorithm 3 followed by a policy π * θ is upper bounded by:

Proof. Let T be the time horizon, π u be the uniform policy used in Algorithm 3, which outputs an -approximation with high probability of θ, and π * θ be the optimal policy. Let t * be stopping time of the exploration phase. Then, the expected cumulative regret with respect to a target policy π * θ of Algorithm 3 is expressed as:

where µ θ (π * θ ) denotes the mean reward in the model θ of the optimal policy using the estimated model θ. The left term of equation 61 is the instantaneous regret of the exploration policy π U , and the right term is the instantaneous regret of the estimated optimal policy π * θ . Theorem 6 allows us to upper-bound the stopping time of Algorithm 3 with t * on an event of high probability 1 -δ:

When ∀n ∈ [N ], p n = p, we have:

The regret of uniform policy with respect to the optimal policy π * θ is upper bounded by:

and on the other hand we know by Lemma 5 that:

Then the expected cumulative regret is controlled by the trivial upper bound KT on the complementary event of probability less than δ:

Then, by setting δ = 1/T , the expected regret of Algorithm 3 followed by a policy π * θ is:

Finally, by setting = K/ 3 √ T , we conclude the proof:

C.11 Proof of Theorem 8

Applying Algorithm 2 on a model estimate θ returns an α-fair policy in the true model θ:

Proof. Theorem 3 states that the policy returned by Algorithm 2, denoted as π † has the following fairness guarantees:

with µ n, θ (π † ) denoting the expectation of rewards received by player n in estimated model θ when following policy π † . We may write it as follows: