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Abstract

In this paper, we propose an approach to optimize the performance of Internet of Things (IoT)
networks. We formulate the optimization problem as a massive multi-player multi-armed bandit
problem, where the devices are the players and the radio channels are the arms, with collisions
possibly preventing message reception. For handling a realistic IoT network, we do not assume that
sensing information is available (i.e. that the collision are observed) or that the number of players
is smaller than the number of arms. As the optimization problem is intractable, we propose two
greedy policies: the first one focusing on the number of successful communications, while the second
one also takes into account fairness between players. In order to implement an approximation of the
targeted policies, we propose an explore-then-exploit approach, and establish a regret lower bound
in Ω

(
T 2/3

(
log T
N

+ K3/2
))

. For estimating the mean reward of arms, we propose a decentralized
exploration algorithm with controlled information exchanges between players. Then we state that
the regret of the estimated target policy is optimal with respect to the time horizon T . Finally, we
provide some experimental evidences that the proposed algorithms outperform several baselines.

1 Introduction
Optimization of IoT wireless network performance In Internet of Things (IoT) networks, a
large number of devices is connected to the Internet through wireless gateways. The communication
protocols used in IoT, such as LoRa, allow to evaluate a binary reward for each transmission (success
or not) since each uplink transmission is followed by a downlink time windows where the node listens
to the gateway to receive the acknowledgement of the uplink transmission. The frequency of sending
messages through the gateway depends on the application (healthcare, security, smart cities, marketing,
gaming, home automation...). Moreover, for several real-time applications, the device has to send a
packet when an unknown and uncontrolled event occurs. For instance, the device can interact with its
environment in real-time, to get a green light when there is no car at a crossroad, an ad when the user
is in front of a shop, a ticket when getting on the bus... Which is why in the following we assume that
each player has a probability of sending a message at each time step.

We consider a large number N of devices communicating with a unique gateway on a limited number
K of orthogonal channels (N ≥ K), using an acknowledgement protocol slotted in time. At each time
slot, each device n has a probability pn to send a message to the gateway. When two or more devices
send a message to the gateway at the same time slot through the same channel, an internal collision
occurs. Hence, due to local interference the gateway does not receive any of the messages from the
colliding devices and does not send the acknowledgements to the devices. Moreover, collisions with
other types of networks may occur, so that even if only one player sends a message in one channel at a
given time slot, the message may not be received by the gateway. These external collisions make the
probabilities of successful transmission (and hence the channels’ qualities) different for each channel.
When an internal or external collision occurs, we consider that the message is simply lost. We do not
consider collisions when the gateway sends acknowledgements, since these downlink collisions necessitate
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that at least two acknowledgements are sent from the gateway at the same time to devices which are
located at the same place. This is impossible if there is a unique gateway using a protocol slotted in
time (as we assume), and unlikely if there are more gateways. Another important feature of the studied
problem is that only the devices can estimate the quality of channels, since the gateway cannot know
that messages have been sent by some devices if a collision occurs. As a consequence, the estimation of
the channel quality has to be done in a decentralized way.

To set this scenario into the framework of multi-player multi-armed bandits, each device is considered
as a player, a communication channel is considered as an arm, and the reward corresponds to the
reception or not of the acknowledge from the gateway.

Related Work The decentralized multi-player multi-armed bandits have been studied for opportunistic
spectrum access in [Liu and Zhao, 2010,Anandkumar et al., 2010,Avner and Mannor, 2014,Nayyar
et al., 2015]. In opportunistic spectrum access, primary users have a strict priority over secondary
users, which are allowed sensing a channel before sending a packet in order to check that it is free. The
objective of those works is to avoid collisions between concurrent secondary users, that share the same
channels, while choosing the best channels, i.e., with the highest probabilities to be free of primary users.
This line of work makes the assumption that there are less players than channels, that the collisions
with other players are observed, and uses orthogonalization techniques to avoid collisions. In [Rosenski
et al., 2016], the authors propose to use collisions to estimate in a first phase the number of players
and the value of arms and then a Musical Chair approach to allocate each player on a different N -best
arm. In [Hanawal and Darak, 2018], the authors improve this approach by reducing the first phase
to the estimation of the value of arms and then use a trekking approach to allocate each player on a
different N -best arm without the knowledge of the number of players. In [Boursier and Perchet, 2019],
the authors propose a communication protocol based on controlled collisions that achieves almost the
same performance as a centralized algorithm. In [Wang et al., 2020], the authors improve this result by
electing a leader that explores the arms and allocates other players on different estimated N -best arms.
The leader communicates to other players the list of estimated N -best arms when it changes using the
same communication protocol as in [Boursier and Perchet, 2019]. This algorithm is asymptotically
optimal. An interesting extension of the problem setting was proposed in [Boursier et al., 2020] for
handling the case where the mean rewards of arms are not the same for each player. However, this line
of works makes the assumption that sensing information is available and the number of players is small
(N ≤ K), which are both unrealistic assumptions for IoT networks.

In [Boursier and Perchet, 2019], the authors propose an adaptation of their algorithm to the case
where sensing is not allowed, that preserves the logarithmic behavior with respect to the time horizon.
This approach has been improved in [Shi et al., 2020] for the case where sensing is not allowed thanks to
the use of Z-channel coding, quantization of transmitted statistics and a tree structured communication,
where a leader gathers the statistics and then decides for all players which is the best set of arms.
In [Lugosi and Mehrabian, 2018], the authors define the multi-player stochastic multi-armed bandit
as an anti-coordination game, where the goal is to quickly reach an approximate Nash equilibrium.
Finally, in [Bubeck et al., 2019] the difficult case of non-stochastic multi-player multi-armed bandits is
addressed. In all those works, the number of players is assumed to be below the number of channels,
which is not realistic for IoT networks.

Motivated by IoT networks, in [Bonnefoi et al., 2018,Besson and Kaufmann, 2018] the authors
propose a new problem setting where sensing is not allowed, the number of players is larger than the
number of channels, and the players asynchronously play: each player has the same probability to send
a packet at each time slot. The authors show experimentally that selfish UCB, which consists in each
player independently playing UCB [Auer et al., 2002a], works surprisingly well. This experimental
result has been confirmed in the case of LoRa networks using stochastic and non-stochastic multi-
armed bandits [Kerkouche et al., 2018] or in the case of IEEE 802.15.4 time-slotted channel hopping
protocol [Dakdouk et al., 2018]. Despite its good experimental performance, this algorithm has no
theoretical guarantees, and it has been shown that selfish UCB can fail badly on some cases [Besson
and Kaufmann, 2018]. With a similar problem setting but with different probabilities to send packets
the authors in [Dakdouk et al., 2020] propose a cooperative algorithm that aims to find a set of optimal
arms while minimizing the number of plays. However that work does not optimize the number of
optimal arms to find, and the exploitation policy followed by the players is uniform, which is clearly
sub-optimal. Those lacks are overcome with our proposed policies.

Finally, the optimization problem we propose to solve is related to Aloha protocol [Bertsekas et al.,
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1992], where each player n transmits a packet with a probability pn in a slot. For instance in [Wang
and Kar, 2004], the authors formulate the decentralized throughput maximization problem in an Aloha
network with a single channel in a way that is close to our optimization problem. However that work
considers a single channel, and the decision variable is the sending probability pn rather than the choice
of the channel. If the probabilities of sending a message are optimized, then the application constraints
of IoT (frequency of sending messages or real-time messages) cannot be respected. In [Cohen et al.,
2013], the authors propose a best-response algorithm which solves the throughput maximization problem
for multi-channels Aloha protocol. They notably show that the best-response algorithm converges to a
Nash Equilibrium in a finite time. However they consider that the channel capacities and the strategies
of other players are known, and that each player has the same probability to send a message at each
slot, which is unrealistic and restrictive for IoT networks.

Contributions and paper organization In this paper, with the aim of optimizing transmissions
in IoT networks, we study the extension of the problem proposed in [Bonnefoi et al., 2018], where
each player has a different probability to send a packet at a each time slot [Dakdouk et al., 2020].
We propose an explore-then-exploit approach, where a decentralized exploration algorithm outputs an
estimation of the parameters, and then a target policy, which can be computed by the gateway, is used
during the exploitation phase.

The remainder of this paper is organized as follows. In section 2, we formalize the objective of
optimizing the successful transmissions. We show in Theorem 1, that there exists a deterministic policy
(an assignment of devices over channels) that is optimal. Then we propose two deterministic target
greedy policies: DORG (decreasing-order-reward-greedy) optimizes the number of successful transmissions,
while DOFG (decreasing-order-fair-greedy) guarantees some fairness between players, which is defined
as the ratio between the lowest successful transmission rate and the highest successful transmission
rate obtained over the players. In Theorem 2, we show that DORG is an optimal policy in the setting
proposed in [Bonnefoi et al., 2018] (when ∀n, pn = p), while in Theorem 3 we show that DOFG is fair.

In section 3, we state a first regret lower bound in Ω
(
T 2/3

(
log T/N +K3/2

))
, which holds for any

explore-then-exploit policy. This notably shows that the problem is much more difficult than standard
multi-armed bandits for which the regret lower bound is in Ω(

√
KT ) [Bubeck and Cesa-Bianchi, 2012].

Since the collisions can only be observed by devices, in section 4 we propose a decentralized
exploration algorithm that outputs with high probability an approximation of the mean rewards of
arms, i.e., the channel qualities. We allows players to collaborate by exchanging messages using the IoT
protocol. We provide a deep analysis of the proposed algorithms. Theorem 6 states an upper bound
of the number of time steps needed to output a controlled approximation of the arms that is near
optimal in comparison to the lower bound of K biased coin estimations in Ω

(
K/ε2 log 1/δ

)
[Anthony

and Bartlett, 1999]. Theorem 5 states an upper bound of the communication cost in O(N), which is
order optimal. Then, in the setting proposed in [Bonnefoi et al., 2018], Theorem 7 states that when
using DORG, the proposed algorithm benefits from a regret upper bound that is optimal with respect to
T , and near optimal with respect to K. Finally, Theorem 8 shows that when using approximation of
mean rewards, DOFG is still fair.

In section 5, we compare our approach with state-of-the-art methods on a large set of synthetic
problems. We show that when using DORG the proposed algorithm outperforms the baselines in terms of
successful communication rate, and when using DOFG it outperforms them in terms of fairness between
players. The reader will find additional experiments in appendix B and the proofs in appendix C.

2 Optimizing transmissions in IoT networks

2.1 Problem Formulation
Let [N ] be a set of N players, such that at each time slot t each player n ∈ [N ] has a constant probability
pn to send a message, such that 1 > p > pn > 0, where p is the duty cycle that is imposed to the
IoT network in order to share the free bandwidth with other users. Without loss of generality, in the
following we assume that: p1 ≥ ... ≥ pN . At each time slot t, the set Nt of players sending messages
is selected by N independent Bernoulli samples: Nt := {n ∈ [N ] such that an = 1, with an ∼ B(pn)}.
Let [K] be the set of K arms. The transmission of a message is successful if it does not collide
with other messages. The random variable representing an external collision on arm k is denoted by
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Ek ∼ B(θk) (equals 0 if collision, 1 otherwise). Similarly, internal collisions between the controlled
players are represented by the random variables (Ik)k∈[K] (equals 0 if collision, 1 otherwise) and depend
on the implemented policy. After playing arm k, player n observes the binary outcome Y kn = EknIkn ,
i.e., knows whether a collision occurred or not (through an acknowledgement message) but cannot
distinguish external and internal collisions.

We assume that the number of players is known by the gateway, which is realistic in IoT protocols,
and that the gateway sends this information to each player at the beginning of the game. Considering
that the probability of sending a message depends mainly on the type of devices, we assume that each
player knows its own probability of sending a message pn. We recall that no assumption is made on the
number N of players, which means that the number of players may be higher that the number K of
arms.

We will call a policy a (possibly randomized) way for players to select the channel to use for their
next transmission. Formally, a policy π will be a vector of probability distributions over the set of arms:
π = (π1, ..., πN ), with πn = (π1

n, ..., π
K
n ), where πkn denotes the probability that player n chooses arm k

for sending a message. We denote by µkn,θ(π) the expected reward in model θ = {θ1, ..., θK} of playing
arm k while the other players follow policy π. It is the probability that no external collision occurs
times the probability that no internal collision occurs, or mathematically

µkn,θ(π) = θk
N∏

n′=1,n′ 6=n

(1− pn′πkn′). (1)

Equation (1) shows the difficulty of the studied problem: the mean reward of an arm for a given
player depends on the probabilities of the other players to send a message and on the policies they
follow. The aggregated average reward in model θ = {θ1, ..., θK} per time slot over all players µθ(π) is:

µθ(π) =

K∑
k=1

θk
N∑
n=1

pn.π
k
n

∏
n′∈[N ]\{n}

(1− pn′πkn′). (2)

This performance metric corresponds to the expected number of successful uplink transmissions per
time slot in the IoT network. This optimization problem with respect to π has a solution, since the
objective function is continuous and the set of decision variables is compact. But the problem itself is
not convex, hence classical convex optimization methods cannot be applied. While suspected, proving
the NP-hardness of the problem remains an open question. Still, Theorem 1 states that at least one
solution is a deterministic policy.

Theorem 1. There exists a policy maximizing the overall network utility (equation (2)) that is
deterministic.

Based on Theorem 1, from now on, we only consider deterministic policies (each player sticks to an
arm that it will play for sending messages) and write kn the arm assigned to player n. The expected
reward per time slot in model θ = {θ1, ..., θK} of a deterministic policy π can then be written as:

µ(π) =

N∑
n=1

pnθ
kn

∏
n′ 6=n, s.t. kn′=kn

(1− pn′) (3)

=

K∑
k=1

θk
∏

n∈[N ], s.t. kn=k

(1− pn)

︸ ︷︷ ︸
zk

∑
n∈[N ], s.t. kn=k

pn
1− pn︸ ︷︷ ︸

`k

where zk is the probability that all players assigned to arm k do not send messages, and `k is the
sum of the activation odds for all players assigned to arm k.

2.2 Reward greedy algorithm
In this section, we propose a greedy algorithm that aims to maximize the network utility (equation (2)).

Lemma 1. For a deterministic policy π, let µ(π[n]) denote the expected reward when only players
1, ..., n are playing (all players n′ > n are deactivated). Then we have the recursive expression:
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Algorithm 1 Reward Greedy
(DORG if players are sorted in pn decreasing order)
Inputs: [K], [N ], {θk}k∈[K], {pn}n∈[N ]

Output: π
Init: per-arm inactivity probabilities: zk = 1.
Init: per-arm activation odds sums: `k = 0.
1: for n = 1 to N do
2: Set kn ∈ argmaxk∈[K] θ

kzk(1− `k).
3: Update zkn ← zkn (1− pn).
4: Update `kn ← `kn + pn

1−pn .
5: Set πknn = 1, and ∀k 6= kn, π

k
n = 0.

6: end for

Algorithm 2 Fairness Greedy
(DOFG if players are sorted in pn decreasing order)
Inputs: [K], [N ], {θk}k∈[K], {pn}n∈[N ]

Output: π
Init: per-arm inactivity probabilities: zk = 1.
1: for n = 1 to N do
2: Let kn ∈ argmaxk∈[K] θ

kzk

3: Update zkn ← zkn(1− pn)
4: Set πknn = 1, and ∀k 6= kn, π

k
n = 0.

5: end for

µθ(π[n]) = µθ(π[n− 1]) + pnθ
kn
(

1− `kn[n−1]
)
zkn[n−1],

where zk[n] is the probability that arm k is not used by any of the first n players, and `k[n] is the sum of
activation odds of the n first players for arm k.

Lemma 1 reveals a recurrence relation over n of the expected total reward. Under the assumption
that the problem parameters are known, Lemma 1 paves the way to the definition of DORG, decreasing-
order-reward-greedy (Algorithm 1), a recursive algorithm that assigns player n to arm kn such that the
right-hand term of the recursive equation in Lemma 1 is maximized. The result is highly dependent on
the order in which the players are added to the pool, but the following theorem suggests the algorithm
can lead to an actual optimum.

Theorem 2. If
∑
n∈[N ]

pn
1−pn ≤ K + 1, then there exists an ordering over players σ∗ : [N ]→ [N ] such

that Algorithm 1 returns an optimal policy.

Remark 1. When ∀n, pn = p [Bonnefoi et al., 2018] Theorem 2 states that DORG returns the optimal
policy. The precondition of Theorem 2 clearly holds in IoT networks, where the duty cycle p is commonly
set to less than 0.01.

2.3 Fairness greedy algorithm
Theorem 1 states that the resource assignment of an optimal deterministic policy is a Pareto optimum:
as the network utility is maximum, if a user increases its own utility (equation (1)) another user has
necessarily to decrease its utility (due to equation (2)). Notice that a Pareto optimum does not provide
any guarantee about the fairness of the resource allocation among players. In this section, we design a
policy to ensure fairness among players, for which we will use the definition below.

Definition 1 (α-fairness). A policy π is said to be α-fair if minn∈[N]

∑K
k=1 µ

k
n,θ(π)

maxn∈[N]

∑K
k=1 µ

k
n,θ(π)

≥ α.

Building a fair policy can be done by balancing the load with respect to the mean rewards of
arms. The fair greedy algorithm (see Algorithm 2) assigns sequentially each player to the arm that
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maximizes the reward of the arm times the probability of no internal collision. The player scheduling
also plays an important role and we prove a lower bound on the fairness of Algorithm 2, when players
are sorted in decreasing order of pn. In that case we coin this algorithm DOFG, which stands for
decreasing-order-fair-greedy.

Theorem 3. DOFG generates α-fair policies, with α ≥ 1−maxn∈[N ] pn.

Theorem 3 implies that when the probability of sending messages of the most frequent player is not
high, which is the case in IoT networks, DOFG is a fair policy.

3 An Explore-Then-Exploit approach
The choice of the policy depends on the metric to be maximized: for maximizing network utility,
DORG policy (Algorithm 1) should be used, while to guarantee some fairness among players, DOFG
policy (Algorithm 2) is to be used. However both policies necessitate the model θ, which is unknown:
hence exploration is necessary. To maximize the objective metric, we propose an explore-then-exploit
approach: an exploration algorithm shares the probabilities of sending messages of players and outputs
an ε-approximation of the model θ with high probability for a sufficiently small ε, and then a target
policy is used during the exploitation phase.

In IoT networks, due to the use of batteries by devices, the energy consumption and hence the
number of sent messages should be minimal. That is why in comparison to an explore-and-exploit
approach, which can adapt the sampling of arms according to their estimated mean rewards, the
advantage of explore-then-exploit approach is that in the case of decentralized algorithms, the number
of communications between players can be reduced to its minimum: N for sharing the probabilities of
sending messages and N for sharing the estimation of arms.

Definition 2 (Regret). Let πt be a policy generated at time t by an algorithm, and µθ(πt) be its
value in model θ = {θ1, ..., θK}, we define the expected regret with respect to the optimal policy π∗θ as
E[R(T )] =

∑T
t=1(µθ(π∗θ)− µθ(πt)).

Definition 3 (ε-approximation). θ̂k is said to be an ε-approximation of arm k, if the difference between
it and θk is less than ε : |θk − θ̂k| ≤ ε.

Theorem 4. When ε = K/ 3
√
T , there exists a model θ = {θ1, ..., θk} and a distribution of players

p1, ..., pN such that the expected regret with respect to the deterministic optimal policy π∗θ of any
exploration algorithm that outputs an ε-approximation of each arm θk with probability at least 1−1/T and
which is followed by the optimal policy using the estimated model is at least: Ω

(
T 2/3

(
log T
N +K3/2

))
.

Theorem 4 reveals that the studied problem is much more difficult than the multi-armed bandit
problem, for which the regret lower bound of Explore-Then-Exploit algorithms is in Ω(

√
KT ) [Bubeck

and Cesa-Bianchi, 2012].

4 Collaborative Exploration in Multi-Players Bandits

4.1 Principle
The gateway could not perform the exploration since when an internal or external collision occurs, the
gateway cannot know that messages have been sent. That is why, we propose a decentralized algorithm
for exploring the mean rewards of arms, which is performed with the messages that the devices have to
send. For computing the exploration policy on each player, the probabilities of sending a messages
have to be shared at the beginning of the exploration phase. In order to reduce the exploration time
needed to find an ε-approximation of each arm, each player is responsible of a predefined number of
samples t∗n for each arm according to its probability of sending a message, so that all players would
finish their estimations almost at the same time. At end of the exploration phase, each player sends
its ε-approximation of each arm to other players through the gateway. Then, the target policy can be
computed in a centralized way (by the gateway) or separately within each node.
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Algorithm 3 Collaborative Exploration in Multi-Player Multi-Armed Bandits

Inputs: [K], [N ], ε ∈ [0, 1], δ ∈ (0, 1) Output: θ̂ = {θ̂k,∀k ∈ [K]}
Init: t = 0, ∀n ∈ [N ],∀k ∈ [K], t∗n =∞, ack2n = 0, ∀(n1, n2) ∈ [N ]2 ack1n1,n2 = 0

1: repeat
2: Nt := {n ∈ [N ], an ∼ B(pn), an = 1}
3: for n ∈ Nt do
4: kn ∼ U(1,K)
5: Y knn (tknn ) := Iknn Ekn

6: µ̂knn (πu) :=
∑t=tknn
t=1 Y knn (t)/tknn

7: tknn := tknn + 1
8: if ack1n,n = 0 then
9: ack1n,n = send(pn)

10: else
11: if

∑N
i ack1n,i = N then

12: ∀n, t∗n :=
pn log (2K/δ)

2(ερkn(πu))2
∑N
i=1 pi

13: end if
14: if ∀k, tkn ≥ t∗n and ack2n = 0 then
15: ack2n = send(θ̂1n, t

1
n, ..., θ̂

K
n , t

K
n )

16: end if
17: end if
18: end for
19: t = t+ 1

20: until ∃N ′ ⊂ N ,


∀k

∑
n∈N ′

tkn ≥ T =
∑
n∈N

t∗n∑
n∈N ′

ack2n = |N ′|

21: all players calculate θ̂k :=

∑
n∈N ′ θ̂

k
nt
k
n∑

n∈N ′ t
k
n

4.2 Description of the algorithm
The sampling strategy used in collaborative exploration is the Uniform Policy πu: ∀n, ∀k, πkn = 1

K .
Then, player n can estimate the mean reward of arms using:

θ̂kn =
µ̂kn(πu)

ρkn(πu)
, where (4)

ρkn(πu) =

N∏
n′=1,n′ 6=n

(1− pn′πkn′) =

N∏
n′=1,n′ 6=n

(1− pn′/K)

The function send(s), used in Algorithm 3, means that message s is broadcast to other players
through the gateway on a channel chosen uniformly over K. The function send(s) returns 1 if an
acknowledgement is received from the gateway or 0 else. When player n receives the probabilities of
sending messages of all other players (Algorithm 3 line 11), it computes the required number of samples
of each arm t∗n according to Lemma 2. When player n has sampled t∗n times each arm k, it sends their
estimations θ̂kn and tkn to other players (Algorithm 3 line 15). θ̂kn is computed according to equation (4).
The exploration phase ends when the arms have been sampled enough by a subset of players (Algorithm
3 line 20). Finally, the players compute the global estimations of arms by combining the received local
ones (Algorithm 3 line 21).

Lemma 2. By using Algorithm 3, in order to obtain with a probability 1− δ an ε-approximation of the
mean rewards of arms, player n needs to sample each arm at least

t∗n =

⌈
pn log (2K/δ)

2ε2(
∏
n′ 6=N (1− pn′/K))2

∑N
i=1 pi

⌉
times.
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4.3 Analysis of the algorithm
As in IoT network the payload of each transmission can contain 255 bytes [Augustin et al., 2016], we
control the number of sent messages rather than the size of messages.

Theorem 5. Communication Cost The communication cost of Algorithm 3 is with probability 1− δ

less than: C(2N) messages, where C(m) = m

⌈
log δ/m

log

1−
∑K
k=1

ρn(πu)

K
θk

 + 1

⌉
.

Theorem 5 states an upper bound of the number of messages sent by the N players for sharing the
probabilities of sending messages, and for sharing their estimations at the end of the exploration phase.
The communication cost is in the order of 2N messages, which is order optimal since for computing an
optimal policy, any algorithm needs to share at least the player probabilities. Notice that an exploration
algorithm, which elects a leader for performing a forced exploration, has a communication cost at least
in the order of N + Ω(K/ε2 log 1/δ), which is sub-optimal in the general case.

Theorem 6. With a probability at least 1− δ, Algorithm 3 stops while finding the ε-approximations of
model θ = {θ1, ..., θK} at:

t∗ ≤ K log 2K/δ

2ε2(1− p1/K)2N−2
∑N
i=1 pi

+
K

pN

(√
1

2
log

NK

δ
+ C(2)

)
,

where pN = minn∈[N ] pn, p1 = maxn∈[N ] pn, and C(2) is the needed number of sent messages to
successfully send 2 messages.

Theorem 6 states an upper bound on the number of time slots needed by all players to finish their
estimations of the mean rewards of the arms and to share them. The left term in O

(
K/ε2 logK/δ

)
is

the dominating term of the upper bound of the sample complexity. It is near optimal in comparison to
the lower bound of K biased coin estimations in Ω

(
K/ε2 log 1/δ

)
[Anthony and Bartlett, 1999]. The

right term of the upper bound in O
(
K/pN

√
logNK/δ

)
mainly depends of the least frequent player.

This is due to the fact that, in worst case, before stopping Algorithm 3 has to wait that the least
frequent player has sent its estimation of the arms.

Theorem 7. when δ = 1/T, ε = K/ 3
√
T , ∀n ∈ [N ], pn = p, the expected cumulative regret with respect

to the optimal policy π∗θ of Algorithm 3 followed by the policy π∗
θ̂
is upper bounded by:

E[R(T )] ≤ T 2/3

(
2K2 +

log 2KT

2(1− p/K)2N−2Np

)
+
K2

p

(√
1

2
logNKT + C(2)

)
+K

Theorem 7 shows that in the setting proposed by [Bonnefoi et al., 2018], the regret of Algorithm 3
followed by DORG is in O

(
T 2/3

(
(logKT )/(1− p/K)NN +K2

))
, which is optimal with respect to T ,

and near optimal with respect to K (see Theorem 4). However concerning N , there is a gap with the
lower bound. This gap is due to the lower bound that is built on a particular class of problems, where
the optimal policy can be evaluated and produces no collision between players.

Theorem 8. Applying Algorithm 3 followed by DOFG ( Algorithm 2) on θ̂ returns an α-fair policy in
the true model θ, with

α ≥ 1− p1 −
2Kε

maxn∈[N ]
θ̂knzkn
1−pn

.

Theorem 8 implies that, using ε-approximations of arms, DOFG still has the same fairness guarantee
minus a term mainly depending on ε.
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Figure 1: (a) exploration phase, (b) successful communication rate, (c) internal collision rate, (d)
external collision rate, (e) fairness, (f) successful communication rate versus time. The successful
communication and collision rates are cumulative over time. θ̂C when collaborative exploration is used,
θ̂S when selfish exploration is used, and θ̂L when follow-the-leader exploration is used.

5 Simulation and Results
In order to illustrate and complete the analysis of the aforementioned algorithms, we first compare
the performance of collaborative exploration (Algorithm 3) with selfish exploration, where each player
explores selfishly, and with follow-the-leader exploration (FtL), where only the most frequent player
explores. Then we compare collaborative exploration followed by DORG(θ̂) and DOFG(θ̂), with selfish
UCB [Bonnefoi et al., 2018] and selfish EXP3 [Auer et al., 2002b], which respectively consist in
independently playing UCB and EXP3 on each player, and with CBAIMPB [Dakdouk et al., 2020],
where the players find (ε′,m)− optimal arms and exploit them uniformly with m = 5, ε′ = 0.2. We run
both algorithms with various values of N , and K = 10, such that ∀k, θk ∼ U(0, 1). The distribution of
players is uniform and the upper bound of the distribution is chosen such that the internal collision
rate does not exceed 0.15 when the number of players reaches 1300 and play the arms uniformly, so
∀n, pn ∼ U(3.10−4, 2.2.10−3). δ = 0.05, ε = 0.1. The curves are averaged over 10 trials and run on 106

time steps.
In figure 1a, we observe that the exploration time of collaborative exploration is two orders of

magnitude less than follow-the-leader exploration and three orders of magnitude less than selfish
exploration but one order of magnitude more than CBAIMPB, which stops exploration when it finds
the best arms. Concerning the communication cost, we observe that the communication cost of the
four exploration policies are close. In particular, the communication cost of collaborative exploration is
two time less than the upper bound stated in Theorem 5, which is in the order of 2N . This is due to
the fact that the stopping condition of Algorithm 3 does not imply that all players have been sampled
enough, but that the arms have been sampled enough. As a consequence, all the estimations of all
players do not need to be shared, but only those of players that have finished their estimations.

The performance differences of the exploration policies affect the whole performance of DORG(θ̂) and
DOFG(θ̂), which consist of the exploration algorithm followed by the corresponding exploitation phase.
That is why in figures 1b and 1f, the successful communication rate when using selfish exploration and
follow-the-leader exploration are dramatically lesser than the one of collaborative exploration. In figures
1b and 1f, DOFG(θ) is slightly outperformed in terms of successful communication rate by DORG(θ).
DORG(θ̂) and DOFG(θ̂) exhibit the same behavior, and we can notice that DORG(θ̂) and DOFG(θ̂) clearly
outperform selfish UCB1, selfish Exp3 and CBAIMPB , and tend to perform as well as DORG(θ) and
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DOFG(θ) as N increases (figure 2b). This improvement is due to their low external collision rate (figure
2d) thanks to playing more the best arms, while because of playing more the best arms their internal
collision rate is higher (figure 2c). Finally, while Selfish Exp3 is theoretically better suited for our
problem setting, it is clearly outperformed by Selfish UCB.

Concerning fairness, DOFG(θ̂) clearly outperforms selfish UCB1, selfish Exp3 and DORG(θ̂), while
DORG(θ̂) is outperformed by them when N is high (Figure 1e). CBAIMPB offers a high fairness between
players due to the uniform selection of the arms by all players during both exploration and exploitation
phases. The use of selfish exploration leads to high fairness level due to its very long uniform exploration
phase, in contrast to follow-the-leader exploration that suffers of very low fairness level due to the fact
that during the exploration time, only the leader can send messages. The observed fairness of DOFG(θ)
in figure 1e differs from the theoretical one (Theorem 3). This is due to the fact that the mean rewards
of players are observed on a finite number of time slots (106). As time passes the observed fairness
tends to the theoretical fairness (Appendix B.2).

6 Conclusion
With the aim of optimizing transmission in IoT networks we have proposed an explore-then-exploit
approach. Despite the fact that the optimal policy cannot be evaluated in the general case, we have
stated a first regret lower bound for this problem. We have proposed two target policies DORG and DOFG
that are efficient with any number of players, and can handle internal and external collision without
sensing. We have shown that our algorithm when using DORG is optimal with respect to T and near
optimal with respect to K in the setting proposed in [Bonnefoi et al., 2018] (when ∀n, pn = p), and that
when using DOFG it is fair. Our experiments confirm the good behavior of selfish UCB and CBAIMPB,
but show that both are outperformed in terms of network successful communication rate by DORG(θ̂) and
DOFG(θ̂), and in terms of fairness by DOFG(θ̂). This work can be extended in many directions: studying
explore-and-exploit approach for the proposed problem, handling an evolving number of active players,
handling more general non-stationary environments handling players with different mean rewards of
arms... Finally, showing the NP-Hardness of the optimization problem stated in equation (2) is an open
problem.
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Figure 2: With number of arm K = 10 fixed, and for N values (ranging from 16 to 512 on a log scale),
the algorithms have been compared in terms of expected reward ratio with DORG (left), π̄ denotes the
policy to be compared with DORG, α-fairness (center), and number of channels with internal collision
(right).

In this section, we perform the following experiment: the problem parameters are sampled as
follows: ∀n ∈ [N ], pn ∼ U(0, 0.3)1 and ∀k ∈ [K], θk ∼ U(0, 1). Figure 2 compares the performance of
DORG, DOFG, and Reward Greedy (Algorithm 1) with random ordering, where each point is the average
of 10,000 runs. Figure 2 (left) reveals that sorting the players in decreasing order is a good policy.
However, it has to be noted that the difference between DORG and a random ordering is much thinner
when pn are smaller, as expected in a real setting. We also notice that DOFG expected reward loss, as
compared to DORG, is below 20% until N ≈ 75. Figure 2 (center) illustrates the result of Theorem 3,
and indicates that the fairness lower bound is tight. It also shows that, while DOFG only loses 20%
rewards when N ≈ 75 as compared to DORG, its fairness is approximately 30 times larger.

Figure 3: DORG and DOFG: experiments with N fixed and K varying. With number of players N = 200
fixed, and for K values (ranging from 4 to 256 on a log scale), the algorithms have been compared in
terms of expected reward ratio with DORG (above), α-fairness (middle), and number of collided channels
(below). Each point has been obtained from 10,000 problems where the parameters are sampled as
follows: ∀n ∈ [N ], pn ∼ U(0, 0.3) and ∀k ∈ [K], θk ∼ U(0, 1).

Further, on figure 2 (right), we notice that the expected number of channels with collisions stops
increasing as N grows around N = 100. It is the moment when the channels get completely saturated.

1Such high values for pn are used to graphically observe the expected properties. Experiments with realistic pn values
(pn < 0.01) may be found in Appendix A.
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N = 100 coincides with the point where the fairness gets to 0 on figure 2 (center). We explain this
phenomenon as follows: each channel k fills up, up to the point when `k > 1. When all the channels
reached this point, adding new players to the network actually decreases the expected reward, and
DORG’s strategy condemns the arms with the lowest θk and use them as a garbage bin for new players.
These channels get so crowded that there is a collision on it with a very high probability, in order to
keep the other channels functionally unspoiled. In comparison, to guarantee fairness DOFG does not
throw away players on a bin channel.

Similar figures with N = 200 and 100 K values ranging from 4 to 256 on a log scale are available
below.
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Figure 4: DORG and DOFG: experiments with K fixed and N varying, and smaller pn. With number of
players K = 10 fixed, and for N values (ranging from 128 to 16384 on a log scale), the algorithms have
been compared in terms of expected reward ratio with DORG (above), α-fairness (middle), and number
of collided channels (below). Each point has been obtained from 10,000 problems where the parameters
are sampled as follows: ∀n ∈ [N ], pn ∼ U(0, 0.01) and ∀k ∈ [K], θk ∼ U(0, 1).

B.2 Fairness
Figure 5 shows the progress of the fairness level achieved by DOFG(θ) policy as time passes. The
experimental settings are the same as those in section 5. The black plot corresponds to the theoretical
fairness level proved in Theorem 3. In order to reach the theoretical fairness level, the observed mean
rewards of all players have to reach their expected values. Due to the low probabilities of sending
messages of the players, this would take a long time. As shown by figure 5, the observed fairness tends
to the theoretical fairness in 108 times steps for 10 players.
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Figure 5: Fairness level achieved by DOFG(θ) as a function of time with 10 players.

C Proofs

C.1 Notations
For the sake of ease the reading of proofs, we provide below the notations.

notation meaning
N number of players.
[N ] set of players.
pn probability that player n sends a message.
K number of arms.
[K] set of arms.
θk mean reward of arms k.
θ model θ = (θ1, ..., θK).
θ̂k estimated mean reward of arms k.
θ̂ estimated model θ̂ = (θ̂1, ..., θ̂K).
ε approximation term.
δ probability of failure.
πkn probability that player n chooses arm k.
πn policy of player n, πn = (π1

n, ..., π
K
n ).

π policy of players, π = (π1, ..., πn).
πu uniform policy.
π† decreasing order fair greedy policy generated by Algorithm 2.
π∗θ optimal policy in model θ, which is deterministic, when it is clear in the context, we use π∗.
µθ(π) mean reward in model θ of the policy π, when it is clear in the context, we use µ(π).

For a stochastic policy: µθ(π) =
∑K
k=1 θ

k
∑N
n=1 pnπ

k
n

∏
n′ 6=n(1− pn′πkn′).

For a deterministic policy µθ(π) =
∑K
k=1 θ

kzklk.
zk probability that arm k is not used by any other players, zk =

∏
n′∈[N ],kn=k

(1− pn).
lk sum of activation odds on arm k of other players, lk =

∑
n′∈[N ],kn=k

pn
1−pn .

kn arm assigned to player n.
π[n] policy π when players n′ > n do not play.
zk[n] probability that arm k is not used by any of the first n players.
lk[n] sum of activation odds of the n first players for arm k.
ρkn(π) probability that no other players have chosen arm k using policy π.

C.2 Proof of Theorem 1
There exists an optimal policy which is deterministic.
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Proof. We may write the global objective as:

µ(π) =

K∑
k=1

θk︸︷︷︸
mean reward of arm k

N∑
n=1

pn.π
k
n︸ ︷︷ ︸

probability that player n chooses arm k

N∏
n′=1,n′ 6=n

(1− pn′ .πkn′)︸ ︷︷ ︸
probability that no collision occurs

(5)

Let us assume that π∗ = {πn}n∈[N ] is optimal. Let us fix all player policies but player n’s. Then,
we notice that µ(π) is linear (see (5)) in each πkn, k = 1, ...,K, meaning that the maximum is achieved
for any k∗n ∈ argmaxk∈[K]

∂µ(π)
∂πkn

, and therefore the optimal policy may have been chosen so that πn is
deterministic: πk

∗

n = 1 and ∀k 6= k∗, πkn = 0. The same reasoning can be repeated for the other players,
so that there exists an optimal policy that is deterministic.

C.3 Proof of Lemma 1
For a deterministic policy π, let µ(π[n]) denote the aggregated expected reward when only the players
1, ..., n are playing (all players n′ > n are deactivated). Then we have the recursive expression

µ(π[n]) = µ(π[n− 1]) + pnθ
kn
(

1− `kn[n−1]
)
zkn[n−1],

where zk[n] is the probability that arm k is not used by any of the first n players, and `k[n] is the sum of
activation odds of the n first players for arm k.

Proof. We have:

µ(π[n]) = µ(π[n− 1]) + µ(π[n])− µ(π[n− 1])

= µ(π[n− 1]) +
∑
k∈[K]

θkzk[n]`
k
[n] −

∑
k∈[K]

θkzk[n−1]`
k
[n−1]

= µ(π[n− 1]) + θknzkn[n]`
kn
[n] − θ

knzkn[n−1]`
kn
[n−1] (6)

= µ(π[n− 1]) + θkn
(
zkn[n]`

kn
[n] − z

kn
[n−1]`

kn
[n−1]

)
= µ(π[n− 1]) + θkn

(
(1− pn) zkn[n−1]

(
`kn[n−1] +

pn
1− pn

)
− zkn[n−1]`

kn
[n−1]

)
= µ(π[n− 1]) + θkn

(
−pnzkn[n−1]`

kn
[n−1] + pnz

kn
[n−1]

)
= µ(π[n− 1]) + pnθ

knzkn[n−1]

(
1− `kn[n−1]

)
,

where the line (6) comes from the fact that zk[n] = zk[n−1] and `
k
[n] = `k[n−1] for all k 6= kn.

C.4 Proof of Theorem 2
Lemma 3. As long as `kn−1 ≤ 2, the reward-greedy criterion for Algorithm 1 decreases as we add a
new player n:

zk[n]

(
1− `k[n]

)
≤ zk[n−1]

(
1− `k[n−1]

)
. (7)
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Proof. We look at the difference:

∀k 6= kn, zk[n]

(
1− `k[n]

)
− zk[n−1]

(
1− `k[n−1]

)
= 0 (8)

zkn[n]

(
1− `kn[n]

)
− zkn[n−1]

(
1− `kn[n−1]

)
= (1− pn)zkn[n−1]

(
1− `kn[n−1] −

pn
1− pn

)
− zkn[n−1]

(
1− `kn[n−1]

)
(9)

= (1− pn)zkn[n−1]

(
1− `kn[n−1]

)
− pnzkn[n−1]

− zkn[n−1]
(

1− `kn[n−1]
)

(10)

= −pnzkn[n−1]
(

1− `kn[n−1]
)
− pnzkn[n−1] (11)

= −pnzkn[n−1]
(

2− `kn[n−1]
)

(12)

Since pn and zkn[n−1] are always positive, we may conclude.

Theorem 2: If
∑
n∈[N ]

pn
1−pn ≤ K + 1, then, there exists an ordering over players σ∗ : [N ]→ [N ]

such that Algorithm 1 returns an optimal policy.

Proof. The proof makes use of Lemma 3 which states that, as long as `kn−1 ≤ 2, the reward-greedy
criterion for Algorithm 1 decreases as we add a new player n.

We prove below that this Lemma applies for all picked arms if
∑
n∈[N ]

pn
1−pn ≤ K + 1. By reductio

ad absurdum, we assume that
∑
n∈[N ]

pn
1−pn ≤ K + 1 and that there exists some arm k and some player

ordering σ (not necessarily σ∗) such that π∗(σ(N)) = k and `kσ([N−1]) > 2, where π∗ is an optimal
policy and σ([N − 1]) denotes the N − 1 first indexes in the σ reordering. Then, there must exist an
arm k′ for which `k

′

σ([N−1]) < 1, otherwise we would have
∑
n∈[N ]

pn
1−pn >

∑
n∈[N−1]

pσ(n)

1−pσ(n)
> K + 1. It

means that, for k′, the reward-greedy criterion zk
′

σ([N−1])

(
1− `k′σ([N−1])

)
is positive, and therefore larger

than that of k: zkσ([N−1])
(

1− `kσ([N−1])
)
, which is negative. As Lemma 1 states that the reward-greedy

criterion is incrementally optimal, it means that k′ would have been a strictly better arm for player
σ(N), which contradicts the assumption that π∗ is optimal.

Let an optimal policy π∗ be given, and let us construct the player ordering σ∗ such that Algorithm
1 applied on the σ∗ ordering returns π∗.

Algorithm 4 Reconstruction of a player ordering that allows Algorithm 1 to return π∗

Inputs: [K], [N ], {θk}k∈[K], {pn}n∈[N ], π∗
Output: σ∗ such that Algorithm 1 returns π∗
Init: per-arm inactivity probabilities: zk = 1.
Init: per-arm activation odds sums: `k = 0.
Init: Set of players remaining to be assigned: N = [N ].
1: for n = 1 to N do
2: Let σ∗(n) be an element of N such that π∗(σ∗(n)) ∈ argmaxk∈[K] θ

kzk(1− `k).
3: Update N ← N − {σ∗(n)}.
4: Update zkn ← zkn

(
1− pσ∗(n)

)
.

5: Update `kn ← `kn +
pσ∗(n)

1−pσ∗(n)
.

6: end for

It is direct to understand that Algorithm 1 applied on a σ∗ player ordering would retrieve π∗.
Indeed, Algorithm 4 makes it so the players are ordered to be incrementally optimal. The last piece of
the proof is to check the existence of a player σ∗(n) assigned to a reward-greedy arm on line 2.

Again by reductio ad absurdum, we assume that there is no remaining player that π∗ assigned to a
reward-greedy arm k∗. Then, it means that until the last selection, this arm will not be picked and
another arm k will be picked instead. We showed at the beginning of the proof that the reward-greedy
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criterion is only decreasing as the arms are being selected, and that the reward-greedy criterion of an
arm not being selected, such as k∗, is constant. So it means that π∗(σ∗(N)) should be k∗, hence, the
contradiction.

We may therefore conclude the proof by stating that Algorithm 4 will never fail to construct σ∗
and that Algorithm 1 applied to the σ∗ player ordering will return π∗.

C.5 Proof of Theorem 3
DOFG generates α-fair policies, with

α ≥ 1− max
n∈[N ]

pn. (13)

Proof. For every arm, we have the following equality:

µn(π†) = θkn
∏

n′ 6=n, s.t. kn′=kn

(1− pn′) =
θknzkn

1− pn
. (14)

We prove now that minn∈[N ] µn(π†) = µN (π†). We proceed by induction. The base case is direct
for N = 1. Now, we prove the induction step by assuming that it is true for N and prove it for N + 1.
We have to distinguish two cases whether kN equals kN+1 or not.

Case kN = kN+1, then from Equation 14, we have µN+1(π†) = 1−pN
1−pN+1

µN (π†). Since we know by
construction that pN+1 ≤ pN , we may conclude that µN+1(π†) ≤ µN (π†).

Case kN ≤ kN+1, then stating that µN+1(π†) > µN (π†) would imply that kN was not optimally
selecting the arm at the previous step, which brings a contradiction.

Let us assume without loss of generality that player N has been assigned to arm K. Since π†N has
been chosen so that to maximize θkzk at iteration N , it means that:

min
n∈[N ]

µn(π†) = µN (π†) ≥ max
k∈[K]

θkzk. (15)

We also know that:

max
n∈[N ]

µn(π†) = max
n∈[N ]

θknzkn

1− pn
(16)

≤
maxk∈[K] θ

kzk

1−maxn∈[N ] pn
(17)

≤ 1

1− p1
min
n∈[N ]

µn(π†), (18)

which concludes the demonstration.

C.6 Proof of Lemma 2
By using Algorithm 3, in order to obtain with a probability 1 − δ an ε-approximation of the mean
rewards of arms, player n needs to sample each arm at least

t∗n =

⌈
pn log (2K/δ)

2ε2(
∏
n′ 6=N (1− pn′/K))2

∑N
i=1 pi

⌉
times.

Proof. Due to equations 1 and 4, for a given probability of failure δ ∈ [0, 1], and a given approximation
factor ε, ∀n ∈ [N ], ∀k ∈ [K] we have:

P (|µk − µ̂kn| ≥ ε) ≤
δ

K
⇐⇒ P (|θk − θ̂kn| ≥ ε′n) ≤ δ

K
, (19)

where ε′n = ε.
∏
n′ 6=n(1− pn′/K).

Applying Hoeffding’s inequality:
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P (|θkn − θ̂kn| ≥ ε′n) ≤ 2e−2t
k
nε
′
n
2

. (20)

Therefore for obtaining an ε-approximation of arm k on player n with a probability 1− δ
K :

tkn ≥
log(2K/δ)

2ε′2n
⇐⇒ tkn ≥

log(2K/δ)

2ε2(
∏
n′ 6=n(1− pn′/K))2

≥ t† =
log(2K/δ)

2ε2(
∏
n′ 6=N (1− pn′/K))2

Now, as Algorithm 3 shares the estimations of the N players for finding ε-approximation of arm k
with high probability, we need

∑N
n=1 t

∗
n = t† samples.

Hence, if each player samples arm k at least t∗n ≥
⌈ pn log(2K/δ)

2ε2(
∏
n′ 6=N (1− pn′/K))2

∑N
i=1 pi

⌉
times, an

ε-approximation of arm θk is obtained with a probability 1− δ
K .

C.7 Proof of Theorem 4
When ε = K/ 3

√
T , there exists a model θ = {θ1, ..., θk} and a distribution of players p1, ..., pN such

that the expected regret with respect to the deterministic optimal policy π∗θ of any exploration algorithm
that outputs an ε-approximation of each arm θk with probability at least 1− 1/T and which is followed
by the optimal policy using the estimated model is at least:

E[R(T )] ≥ Ω

(
T 2/3

(
log T

N
+K3/2

))
.

In the following we show that a lower bound holds for a class of models θ and distribution of players
p1, ..., pN . For the sake of simplifying notations, we assume in the following that:

• θ1 > θ2, ..., θK−1 > θK ,

• p1 > p2, ..., pN−1 > pN .

Choice of a class of problems. The most difficult point for evaluating a regret lower bound is
that in the general case the optimal policy, which maximizes the mean reward (see equation (3)), is
unknown. For handling this point we choose a particular class of problems, where N = K. Then, we
assume that the distribution of arms is such that ∀k ∈ [K − 1],

θk = θk+1 + ε, (21)
ε

2pk
≤ θk ≤ ε

2pk+1
. (22)

The optimal policy. When ε
2pk
≤ θk (equation (22)), then superposing players on any arm provides

less reward than spreading players on the arms. Indeed, let ∆s be the gap between the mean reward of
two players k1, k2, k1 < k2 assigned on different arms, and the mean reward of two players assigned on
the same arm:

∆s = pk1θ
k1 + pk2θ

k2 − pk1θk1(1− pk2)− pk2θk1(1− pk1), (23)

= pk2(θk2 − θk1) + 2pk1pk2θ
k1 , (24)

= −pk2ε+ 2pk1pk2θ
k1 ≥ 0. (25)

Hence, when equation (22) holds, the optimal assignment of players over arms is:

(p1, θ
1), (p2, θ

2), ..., (pK , θ
K). (26)
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Regret decomposition. Let T be the time horizon. Let π∗E be the optimal (in term of sample
complexity) exploration policy that outputs an ε-approximation with high probability of θ, i.e. each
arm θk, and π∗θ be the optimal policy. We consider the time t∗, where the optimal exploration algorithm
π∗E outputs exactly an ε-approximation of model θ. Then, the expected cumulative regret with respect
to the deterministic policy π∗θ is expressed as:

E[R(T )] = t∗(µθ(π∗θ)− µθ(π∗E)) + (T − t∗)(µθ(π∗θ)− µθ(π∗
θ̂
)), (27)

where µθ(π∗
θ̂
) denotes the mean reward in the model θ of the optimal policy using the estimated

model θ̂.

Lower bound of the right term. The right term equation (27) is the instantaneous regret of the
estimated optimal policy π∗

θ̂
. For stating a lower bound on this term, we lower bound it by the expected

number of mistakes in assignment times the minimal gap between the optimal policy and the estimated
optimal policy when a mistake is done:

µθ(π∗θ)− µθ(π∗
θ̂
) ≥ E

[∣∣∣k ∈ [K], θ̂k+1 > θ̂k
∣∣∣] min
k∈[K],θ̂k+1>θ̂k

(
µθ(π∗θ)− µθ(π∗

θ̂
)
)
, (28)

A mistake in the ranking of two arms k1, k2, k1 < k2 can lead to two different mistakes in assignment
of players over arms: superposition of players or inversion of players Let ∆s,i be the gap between the
mean reward of the optimal policy (see equation (26)) with a superposition of two players and the
mean reward of the optimal policy with an inversion of the two players k1, k2, k1 < k2:

∆s,i = pk1θ
k1(1− pk2) + pk2θ

k1(1− pk1)− pk1θk2 − pk2θk1 , (29)

= pk1θ
k1 − pk2pk2θk1 − pk1pk2θk1 − pk1θk2 , (30)

= pk1(θk1 − 2pk2θ
k1 − θk2), (31)

= pk1(θk1(1− 2pk2)− θk1 + ε), (32)

= pk1(ε− 2pk2θ
k1) ≥ 0, (33)

where equation (32) is due to equation (21) and the last inequality is due to equation (22).
Hence, the minimum gap of any policy with the optimal policy is obtained by inverting the

assignments of two players:

min
k∈[K],θ̂k+1>θ̂k

(
µθ(π∗θ)− µθ(π∗

θ̂
)
)

= min
k̂1=k∗2 ,k̂2=k

∗
1

(
µθ(π∗θ)− µθ(π∗

θ̂
)
)
, (34)

= min
k1,k2,k1<k2

(
pk1θ

k1 + pk2θ
k2 − pk1θk2 − pk2θk1

)
, (35)

= ε min
k1,k2,k1<k2

(pk1 − pk2), (36)

= ε∆p, (37)

where k̂ and k∗ respectively denote the arm assigned to player k by the optimal policy runs on
estimated mean reward π∗

θ̂
, and the optimal arm to be assigned to player k.

Then, the expected number of mistakes in assignment is:

E
[∣∣∣k ∈ [K], θ̂k+1 > θ̂kb

∣∣∣] ≥ (K − 1)P (θ̂k+1 > θ̂k). (38)

Now considering the opposite event, we have:
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P (θ̂k ≥ θ̂k+1) =

∫ 1

0

P (u ≤ θ̂k ≤ θ̂k+1)du+

∫ 1

0

P (θ̂k ≤ u ≤ θ̂k+1)du+

∫ 1

0

P (θ̂k ≤ θ̂k+1 ≤ u)du, (39)

≤
∫ 1

0

(
P (u ≤ θ̂k) + P (θ̂k ≤ u)P (u ≤ θ̂k+1) + P (θ̂k+1 ≤ u)

)
du, (40)

≤
∫ 1−θk

−θk

(
P (θ̂k ≥ θk + u) + P (θ̂k ≥ θk + u)P (θ̂k+1 ≤ θk + u) + P (θ̂k+1 ≤ θk + u)

)
du,

(41)

≤
∫ 1−θk

−θk

(
P (θ̂k ≥ θk + u) + P (θ̂k ≥ θk + u)P (θ̂k+1 ≤ θk+1 + ε+ u) + P (θ̂k+1 ≤ θk+1 + ε+ u)

)
du.

(42)

Figure 6: Satisfying equation (42) necessitates to cut the tail of the distribution of θ̂k in red dotted
line, and/or the tail of the distribution of θ̂k+1 in blue line.

Applying Hoeffding inequality to both terms (see figure 6), we obtain:

P (θ̂k > θ̂k+1) ≤
∫ 1−θk

−θk

(
exp

(
−2t∗u2

)
+ exp

(
−2t∗u2

)
exp

(
−2t∗

(
u+ ε)2

))
+ exp

(
−2t∗

(
u+ ε)2

)))
du,

(43)

≤
∫ 1−θk

−θk

(
exp

(
−2t∗u2

)
+ exp

(
−4t∗u2

)
+ exp

(
−2t∗u2

))
du, (44)

≤
∫ +∞

−∞

(
2 exp

(
−2t∗ε21

)
+ exp

(
−4t∗ε21

))
du, (45)

≤ 2

√
π

2t∗
+

√
π

4t∗
=

√
π

2t∗

(
2 +

√
1

2

)
. (46)

Then, injecting equation (46) in equation (38), we have:

E
[∣∣∣k ∈ [K], k̂ 6= k∗

∣∣∣] ≥ (K − 1)

(
1−

√
π

2t∗

(
2 +

√
1

2

))
. (47)

Finally, the right term of equation 27 is lower bounded by:

µθ(π∗θ)− µθ(π∗
θ̂
) ≥ ∆p(K − 1)ε

(
1−

√
π

2t∗

(
2 +

√
1

2

))
= c1Kε

(
1−

√
π

t∗

)
. (48)
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Lower bound of the left term. The left term of equation (27) is the instantaneous regret of the
optimal exploration policy π∗E . The optimal (in term of sample complexity) exploration policy cannot
be an optimal target policy since estimating ε-approximations of arms necessitates to play exactly the
same number of times the arms:

µθ(π∗θ)− µθ(π∗E) ≥ c2, (49)

where c2 > 0 is a constant depending on the problem parameters θ and p1, ..., pN .

Lower bound of the regret. Now, injecting the lower bound of µθ(π∗θ)− µθ(π∗E) (equation (49))
and the lower bound of µθ(π∗θ)− µθ(π∗

θ̂
) (equation (48)) in the regret decomposition (equation (27)),

we obtain:

E[R(T )] ≥ t∗c2 + (T − t∗)c1Kε
(

1−
√
π

t∗

)
, (50)

≥ t∗c2 + Tc1Kε

(
1−

√
π

t∗

)
− c1t∗Kε

(
1−

√
π

t∗

)
. (51)

The lower bound of number of samples for finding a bias ε of a coin is Ω
(
1/ε2 log 1/δ

)
[Anthony

and Bartlett, 1999]. At each time step, a maximum of N = K players are sampled. Hence, the time t∗
where π∗E finds exactly an ε-approximation of each arm θk is at least:

Ω

(
K

Nε2
log

1

δ

)
⇔ ∃c3 > 0, t∗ = c3

K

Nε2
log

1

δ
. (52)

We have:

E[R(T )] ≥ c3c2
K

Nε2
log

1

δ
+ Tc1Kε

(
1− ε

√
Nπ

c3K log 1
δ

)
− c1c3

K2

Nε
log

1

δ

(
1− ε

√
Nπ

c3K log 1
δ

)
. (53)

Finally setting δ = 1/T and ε =
√
K/ 3
√
T , obtain:

E[R(T )] ≥ Ω

(
T 2/3 log T

N
+ T 2/3K3/2

(
1−

√
Nπ

T 2/3 log T

)
− K3/2

N
T 1/3 log T

(
1−

√
Nπ

T 2/3 log T

))
.

(54)

Hence, we have:

E[R(T )] ≥ Ω

(
T 2/3

(
log T

N
+K3/2

))
. (55)

C.8 Proof of Theorem 5
Lemma 4. In Algorithm 3, so that player n sends successfully m messages, with a probability 1− δ
player n needs to send a number of messages C(m), which is at most:

m

⌈
log δ/m

log

(
1−

∑K
k=1

ρn(πu)

K
θk
) + 1

⌉
messages.

Proof. Let C(1) be the random variable corresponding to the number of trials of player n to send a mes-

sage. C(1) follows a geometric distribution with a probability of success p = µn(πu) =
∑K
k=1

ρn(πu)

K
θk,
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and probability of failure q = 1− p. Let F be the number of failures before the success. We have:

P(C(1) ≤ F + 1) = 1− qF = 1− δ,

=⇒ F =

⌈
log δ

log q

⌉
Consequently, for sending m messages, with a probability 1− δ player n needs at most :

C(m) ≤ m


log δ/m

log(1−
∑K
k=1

ρn(πu)

K
θk)

+ 1


Theorem 5 The total number of sent messages during Algorithm 3 is with probability 1− δ less

than:

2N


log δ/2N

log(1−
∑K
k=1

ρn(πu)

K
θk)

+ 1

 messages.

Proof. Using Lemma 4, the total number of messages sent by all players to send successfully their
probabilities of sending messages and their estimations is with probability 1− δ:

C(2N) ≤ 2N


log δ/2N

log(1−
∑K
k=1

ρn(πu)

K
θk)

+ 1

 (56)

C.9 Proof of Theorem 6
With a probability at least 1− δ, Algorithm 3 stops while finding the ε-approximations of θ at:

t∗ ≤ K log 2K/δ

2ε2(1− p1/K)2N−2
∑N
i=1 pi

+
K

pN

(√
1

2
log

NK

δ
+ C(2)

)
,

where pN is the lowest probability of sending a message among the players, and C(2) is the needed
number of sent messages to successfully send 2 messages.

Proof. A player n stops while finding its estimations when it plays each arm k at least t∗n times (Lemma
2). Let tkn be the number of plays of arm k by player n before the algorithm stops at time t∗. tkn is a
binomial random variable with parameters t∗ and pn/K. Then we have:

E[tkn] =
pn
K
.t∗ (57)

The estimation does not terminate if this event occurs: E = {∃n ∈ [N ],∃k ∈ [K], tkn < t∗n + C(2)}.
Applying Hoeffding’s inequality we get:

P(tkn −
pn
K
.t∗ ≤ −ε) ≤ exp−2ε

2

=
δ

NK
(58)
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Hence, when E does not occur =⇒ ∀n we have with probability at most δ:

t∗n + C(2)− pn
K
.t∗ ≤ −

√
1

2
log

NK

δ

=⇒ ∀n t∗ ≥

(√
1

2
log

NK

δ
+ C(2) + pn

log 2K/δ

2ε2(
∏
n′ 6=n(1− p′n/K))2

∑N
i=1 pi

)
K

pn

=⇒ ∀n t∗ ≥ K

pn

(√
1

2
log

NK

δ
+ C(2)

)
+K

log 2K/δ

2ε2(
∏
n′ 6=n(1− p′n/K))2

∑N
i=1 pi

=⇒ t∗ ≥ K

pN

(√
1

2
log

NK

δ
+ C(2)

)
+K

log 2K/δ

2ε2(1− p1/K)2N−2
∑N
i=1 pi

,

Then, when E does not occur and hence the estimation terminates, we have ∀n with probability at
least 1− δ:

t∗ <
K

pN

(√
1

2
log

NK

δ
+ C(2)

)
+K

log 2K/δ

2ε2(1− p1/K)2N−2
∑N
i=1 pi

,

where pN and p1 are respectively the lowest and the greatest probability of sending a message among
the players.

C.10 Proof of Theorem 7
Lemma 5. The expected instantaneous regret in the model θ of the target policy π∗

θ̂
using the estimated

model θ̂ with respect to the optimal policy π∗θ using the true model θ is upper bounded by:

µθ(π∗θ)− µθ(π∗
θ̂
) ≤ 2Kε, (59)

where µθ(π) denotes the mean reward of the policy π in the model θ.

Proof.

µθ(π∗θ)− µθ(π∗
θ̂
) = µθ(π∗)− µθ̂(π∗) + µθ̂(π∗)− µθ̂(π∗

θ̂
) + µθ̂(π∗

θ̂
)− µθ(π∗

θ̂
) (60)

Then, we have:

• µθ(π∗)− µθ̂(π∗) =
∑K
k=1 z

klkθk −
∑K
k=1 z

klkθ̂k ≤ Kε,

• µθ̂(π∗θ)− µθ̂(π∗
θ̂
) ≤ 0, since π∗

θ̂
is the best policy in the model θ̂.

• µθ̂(π∗
θ̂
)− µθ(π∗

θ̂
) =

∑K
k=1 ẑ

k l̂kθ̂k −
∑K
k=1 ẑ

k l̂kθk ≤ Kε.

Theorem 7: For δ = 1/T, ε = K/ 3
√
T , when ∀n ∈ [N ], pn = p, the expected cumulative regret with

respect to the target policy π∗ of Algorithm 3 followed by a policy π∗
θ̂
is upper bounded by:

E[R(T )] ≤ T 2/3

(
2K2 +

log 2KT

2(1− p/K)2N−2Np

)
+
K2

p

(√
1

2
logNKT + C(2)

)
+K

Proof. Let T be the time horizon, πu be the uniform policy used in Algorithm 3, which outputs an
ε-approximation with high probability of θ, and π∗θ be the optimal policy. Let t∗ be stopping time
of the exploration phase. Then, the expected cumulative regret with respect to a target policy π∗θ of
Algorithm 3 is expressed as:

E[R(T )] = t∗((µθ(π∗θ)− (µθ(πu)) + (T − t∗)((µθ(π∗θ)− µθ(π∗
θ̂
)), (61)
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where µθ(π∗
θ̂
) denotes the mean reward in the model θ of the optimal policy using the estimated

model θ̂. The left term of equation 61 is the instantaneous regret of the exploration policy πU , and the
right term is the instantaneous regret of the estimated optimal policy π∗

θ̂
.

Theorem 6 allows us to upper-bound the stopping time of Algorithm 3 with t∗ on an event of high
probability 1− δ:

t∗ ≤ K

pN

(√
1

2
log

NK

δ
+ C(2)

)
+K

log 2K/δ

2ε2(1− p1/K)2N−2
∑N
i=1 pi

(62)

When ∀n ∈ [N ], pn = p, we have:

t∗ ≤ K

p

(√
1

2
log

NK

δ
+ C(2)

)
+K

log 2K/δ

2ε2(1− p/K)2N−2Np
(63)

The regret of uniform policy with respect to the optimal policy π∗θ is upper bounded by:

µθ(π
∗
θ)− µθ(πu) ≤ K

and on the other hand we know by Lemma 5 that:

µθ(π∗θ)− µθ(π∗
θ̂
) ≤ 2Kε (64)

Then the expected cumulative regret is controlled by the trivial upper bound KT on the comple-
mentary event of probability less than δ:

E[R(T )] ≤ t∗(µθ(π∗θ)− µθ(πu)) + (T − t∗)(µθ(π∗θ)− µθ(π∗
θ̂
)) + δKT (65)

(66)

Then, by setting δ = 1/T , the expected regret of Algorithm 3 followed by a policy π∗
θ̂
is:

E[R(T )] ≤ Kt∗ + (T − t∗)× 2Kε+K (67)
≤ Kt∗ + 2KεT +K (68)

≤ K2

p

(√
1

2
logNKT + C(2)

)
+

K2 log 2KT

2ε2(1− p/K)2N−2Np
+ 2KεT +K (69)

(70)

Finally, by setting ε = K/ 3
√
T , we conclude the proof:

E[R(T )] ≤ T 2/3

(
2K2 +

log 2KT

2(1− p/K)2N−2Np

)
+
K2

p

(√
1

2
logNKT + C(2)

)
+K (71)

C.11 Proof of Theorem 8
Applying Algorithm 2 on a model estimate θ̂ returns an α-fair policy in the true model θ:

α ≥ 1− max
n∈[N ]

pn −
2‖θ − θ̂‖∞

maxn∈[N ]
θ̂knzkn
1−pn

(72)

24



Proof. Theorem 3 states that the policy returned by Algorithm 2, denoted as π† has the following
fairness guarantees:

α̂ =
minn∈[N ] µn,θ̂(π†)

maxn∈[N ] µn,θ̂(π†)
≥ 1− max

n∈[N ]
pn, (73)

with µn,θ̂(π†) denoting the expectation of rewards received by player n in estimated model θ̂ when
following policy π†. We may write it as follows:

µn,θ̂(π†) = θ̂kn
∏

n′, s.t. kn′=kn

(1− pn′) =
θ̂knzkn

1− pn
. (74)

We therefore get:

α =
minn∈[N ] µn,θ(π†)

maxn∈[N ] µn,θ(π†)
(75)

=
minn∈[N ]

θknzkn

1−pn

maxn∈[N ]
θknzkn
1−pn

(76)

≥
minn∈[N ]

θ̂knzkn

1−pn − ‖θ − θ̂‖∞
maxn∈[N ]

θ̂knzkn
1−pn + ‖θ − θ̂‖∞

since
zkn

1− pn
≤ 1,∀n (77)

= α̂− 2‖θ − θ̂‖∞
maxn∈[N ]

θ̂knzkn
1−pn + ‖θ − θ̂‖∞

(78)

≥ 1− max
n∈[N ]

pn −
2‖θ − θ̂‖∞

maxn∈[N ]
θ̂knzkn
1−pn

(79)
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