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Abstract 38 

 39 

The search for the most ancient traces of life on Earth has always been fraught with controversies 40 

because of the inevitable degradation undergone by fossilized biomolecules. Laboratory experiments 41 

may provide unique clues to achieve a better mechanistic understanding of the key processes 42 

involving (biogenic or abiotic) organic carbon during a geological history. The Earth atmosphere has 43 

changed over geological times, from a CO2-rich atmosphere during the Hadean and Archean to the 44 

O2-rich atmosphere of the present day, with a direct impact on the nature of the gas phase trapped 45 

within the sediment porosity. Yet, the influence of the nature of this gas phase on fossilization 46 

processes has almost never been investigated. Here, we conducted a series of fossilization 47 

experiments using an emblematic biomolecule (e.g. RNA) and clay minerals at 200°C for 7 days in 48 

closed systems in equilibrium with two different gas phases (e.g. CO2 versus N2/O2). The multiscale 49 

characterization of experimental residues using a suite of advanced microscopy and spectroscopy 50 

techniques showed that the final organo-mineral assemblages strongly depend on the nature of the 51 

gas phase. In addition to the nature of the mineral phases, results showed that the nature of the gas 52 

phase impacts the chemistry of the residual N-rich organic compounds trapped within the interlayer 53 

spaces of Mg-smectites (e.g. mainly aliphatic-rich under CO2 vs dominated by heterocycles under 54 

N2/O2). Altogether, the present study demonstrates the necessity to take into account the nature of 55 

the gas phase composition when experimentally simulating fossilization processes aiming at better 56 

constraining which biosignatures may be preserved in ancient rocks. Finally, the experimental results 57 

reported here may serve to identify the potential biosignatures that should be searched for on other 58 

planetary bodies. 59 

 60 

 61 

 62 

 63 

 64 
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1. Introduction 65 

 66 

There is still no consensus on how life originated on Earth nor on what the primordial living 67 

cells were (Mann, 2012; Szostak, 2017). Only the fossil record may offer the necessary clues to form 68 

a proper appreciation of both the diversity and disparity of ancient life, as well as key information on 69 

its origins (Summons & Hallmann, 2014; Knoll et al., 2016). For instance, inspection of the modern 70 

biosphere conspicuously fails to anticipate the existence of morphologically curious fossil groups 71 

such as Ediacarian biota, trilobites or sauropods (Sereno, 1999; Hughes, 2007; Erwin et al., 2011). 72 

The study of the ancient fossil record may thus help better constrain the emergence of primordial life 73 

in terms of patterns, rates and processes, as well as the evolution of early terrestrial 74 

paleoenvironments.  75 

But this is not that facile. Although the ancient fossil record may contain fundamentally 76 

important biogeochemical signals, its poor quality makes it not that easy to decode (McMahon et al., 77 

2018). The search for the earliest traces of life has to take place in the most ancient, and thus disturbed, 78 

geological record. Difficulties do not only pertain to the inevitable degradation of fossilized 79 

biomolecules occurring during the geological history of their host rocks (Bernard & Papineau, 2014; 80 

Briggs & Summons, 2014), but also to the possibility that abiotic chemical pathways yield organic 81 

microstructures exhibiting morphological and geochemical signatures very similar to fossilized 82 

biogenic ones (Grotzinger & Rothman, 1996; Garcia-Ruiz et al., 2003; Horita, 2005; McCollom & 83 

Seewald, 2006; Cosmidis & Templeton, 2016; Rouillard et al., 2018). 84 

Although extrapolating laboratory results to natural settings remains difficult, notably 85 

because geological timescales cannot be replicated in the laboratory, fossilization experiments 86 

conducted under carefully controlled and reproducible conditions can provide unique clues on the 87 

degradation/generation processes of (biogenic or abiotic) organic carbon (Bernard & Papineau, 2014; 88 

Javaux, 2019). Of note, such laboratory experiments do not aim at reproducing the full complexity of 89 

natural settings (this will never be achieved), but rather aim at creating simple systems to evidence 90 

anticipated processes, verify/test thermodynamics predictions or qualitatively and/or quantitatively 91 
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investigate the influence of specific parameters. 92 

Following early studies (e.g. Oehler & Schopf, 1971; Oehler, 1976; Briggs & Kear, 1993; 93 

Briggs, 1995), many experimental studies have recently been conducted to document the chemical 94 

changes of (biogenic or abiotic) organic compounds during a geological history (Ruhl et al., 2011; 95 

Schiffbauer et al., 2012; Watson et al., 2012; Li et al., 2013, 2014; McNamara et al., 2013a, 2013b; 96 

Fraser et al., 2014; Bernard et al., 2015; Colleary et al., 2015; Picard et al., 2015, 2016; Alleon et al., 97 

2016a, 2017; Miot et al., 2017; Igisu et al., 2018; Saitta et al., 2018; Vinogradoff et al., 2018, 2020). 98 

Altogether, these studies highlighted that the degradation of organic molecules can be more abstruse 99 

than is generally believed. Besides temperature conditions, these studies documented the influence 100 

of the nature of the organic compound, the nature of the mineral matrix and the nature of the fluid on 101 

the organo-mineral evolution. 102 

Yet, most of the experiments reported in the literature were conducted using either modern 103 

microorganisms or modern biomolecules resistant to fossilization, even though primordial living cells 104 

were not as evolved as modern ones and likely did not produce complex resistant macromolecules. 105 

In fact, according to the RNA World concept, the primary ‘living’ substance on the early Earth was 106 

RNA (ribonucleic acid) or any compound chemically similar (Hud et al., 2013; Higgs & Lehmann, 107 

2015). Yet, it has long been known that nucleic acids cannot withstand diagenetic conditions (Lindahl, 108 

1993; Levy & Miller, 1998; Mathay et al., 2012), hence drastically limiting the chances of finding 109 

preserved fragments within ancient rocks. Conducting fossilization experiments using RNA would 110 

offer unique clues on the traces potentially left by the RNA world in the fossil record. 111 

Plus, despite their high potential for biopreservation (e.g. Ehlmann et al., 2008; Summons et 112 

al., 2011; Cai et al., 2012; Kennedy et al., 2014; Wacey et al., 2014; McMahon et al., 2018) and 113 

despite their continuous formation at the surface of the Earth since the Hadean (Hazen et al., 2008, 114 

2013), smectitic clay minerals have rarely been used in fossilization experiments (Wilson & 115 

Butterfield, 2014; McMahon et al., 2016; Naimark et al., 2016; Newman et al., 2019; Viennet et al., 116 

2019a). Because of their ability to adsorb, protect, concentrate, and transform biomolecules, clay 117 

minerals such as smectites are believed to have played a major role in the origin of life (Bernal, 1951; 118 
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Cairns-Smith, 1966; Hazen et al., 2008, 2013; Meunier et al., 2010; Brack, 2013). Yet the exact 119 

impact of clay minerals on biomolecules during fossilization processes remains to be carefully 120 

investigated experimentally. 121 

Last, with the exception of experiments conducted by Schiffbauer et al. (2012) which aimed 122 

at investigating the effect of redox conditions, the influence of nature of the gas phase has never been 123 

investigated. While the exact composition and density of the atmosphere of the early Earth have long 124 

been debated (Walker, 1985; Sleep et al., 2001; R. Lowe & Tice, 2004; Tian et al., 2005), it is now 125 

widely accepted that it contained no free O2 and was rather dominated by N2 and CO2 (Marty et al., 126 

2013; Kasting, 2014), as suggested by studies of Hadean magmas (Trail et al., 2011). The 127 

concentration of CO2 likely declined from multibar levels during the early Hadean to a few tenths of 128 

a bar by the mid- to late Archean (Marty et al., 2013; Kasting, 2014). Such evolution obviously 129 

impacted the nature of the gas phase trapped within the sediment porosity. Investigating the influence 130 

of the gas phase on the preservation/degradation of molecular biosignatures during advanced 131 

fossilization processes thus appears critically needed to properly decode the fossil record. 132 

Here, we experimentally submitted RNA in the presence of Mg-smectites to hydrothermal 133 

conditions in pure bi-distilled water at 200°C for 7 days in equilibrium with a gas phase only 134 

composed of CO2 (simulating a primitive atmosphere) or with a gas phase composed of N2 and O2 135 

(simulating a modern atmosphere). We characterized the water-insoluble solid residues of 136 

experiments at a multiple length scale using X-ray diffraction and advanced spectromicroscopy tools. 137 

 138 

2. Materials and methods 139 

 140 

2.1. Starting materials 141 

 142 

Powder of pure RNA from torula yeast (Sigma-Aldrich) was used for the present experiments. Mg-143 

smectites were synthetized in the lab from a hydrogel of theoretical half-unit-cell formula of saponite: 144 

Na0.4(Mg3)(Al0.4,Si3.60)O10(F0.05,OH0.95)2. The hydrogel was obtained by mixing reagents under air 145 
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in the following order: pure water, hydrofluoric acid, sodium acetate, magnesium acetate tetrahydrate, 146 

aluminium acetate basic and aerosol. The hydrogel was mixed at room temperature for 3 hours and 147 

then introduced in a PTFE-lined stainless steel autoclave under air. The autoclave was heated at 220°C 148 

for 3 days. After cooling down at room temperature, the Mg-smectites were Ca-saturated by putting 149 

in contact 1 mol.L-1 of aqueous CaCl2, renewed 5 times, for a total duration of ~60 H. Then, the Ca-150 

saturated Mg-smectites were dried at 60°C after centrifugation within pure water to remove salts. 151 

Note that, the initial content of carbon and nitrogen (measured by CHNS elemental analysis see 152 

section 2.4.1 below) within the Ca-saturated Mg-smectites are below 0.4 %Wt and 0.0 %Wt, 153 

respectively. 154 

 155 

2.2. Fossilization experiments 156 

 157 

The fossilziation experiments were conducted in closed system in titanium Parr® reactor of 100 mL 158 

at 200°C for 7 days with 1 bar (at 25°C) of a mixture of N2 and O2 or 1 bar of pure CO2. Fifteen mL 159 

of pure water were mixed either with 300 mg (±< 0.1%) of Mg-smectites and 150 mg of RNA (± < 160 

0.5%). Pure CO2 (purity > 99.7%) was flushed into the reactors for 10 min at 20°C. Then the reactor 161 

was sealed and heated to 200°C. After 7 days, the sealed reactors were cooled down at ambient 162 

temperature. The liquid and solid phases of the residues were separated by centrifugation within pure 163 

water before drying at 50°C for ~12 hours. All experiments were triplicated to ensure reproducibility. 164 

 165 

2.3. Ultracryomicrotomy 166 

 167 

Cryo-ultramicrotome sections (70 nm thick) were prepared for X-ray absorption near edge structure-168 

scanning transmission X-ray microscopy (XANES-STXM) and transmission electron microscopy 169 

(TEM) characterization using the Leica ultramicrotome available at UMET (Lille, France). 170 

Experimental residues were mixed with 0.1 mL of water-ethanol (50/50 %Vol) before being frozen 171 

in liquid nitrogen at -160°C. The sections of frozen residues were then deposited on holey carbon 172 
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film TEM grids. 173 

 174 

2.4. CHNS estimations 175 

 176 

The total carbon and nitrogen contents of the solid fractions of the residues were determined using a 177 

Flash 2000 Thermo CHNSO elemental analyser operating at ISTeP (France). About 2 to 3 mg of each 178 

residue were combusted under oxygen/helium flux at 960°C. Uncertainties are about 0.02 wt% for N 179 

and 0.07 wt% for C. 180 

 181 

2.5. X-ray diffraction (XRD) 182 

 183 

Powder XRD patterns were obtained on a Panalytical X’pert Pro MPD 2 circles operating at IMPMC 184 

(Paris, France), with a step size of 0.033°2θ an a counting time per step of 250s over the 3–65°2θ 185 

CuKα1,2 angular range. Additional measurements were done using oriented preparations at both 186 

atmospheric pressure or under vacuum (3.10-4 atmosphere) using an Anton Parr HTK 1200 oven and 187 

a temperature monitor TCU1000N coupled to a EDWARDS RV3 pump. The divergence slit, the anti-188 

scatter slit and the two Soller slits were 0.5°, 1°, 0.04° and 0.04 radiant, respectively. 189 

 190 

2.6. Fourier-transform infrared (FTIR) spectroscopy 191 

 192 

FTIR spectra were recorded over the 400-4000 cm-1 range with a 4 cm-1 resolution using a Nicolet 193 

6700 FTIR spectrometer fitted with a KBr beamsplitter and a DTGS-KBr detector operating at 194 

IMPMC (Paris, France). Spectra were obtained using an attenuated total reflectance (ATR) geometry 195 

using a Specac Quest ATR device fitted with a diamond internal reflection element. 196 

 197 

2.7. X-ray absorption near edge structure (XANES) spectroscopy 198 

 199 
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XANES data were collected using the scanning transmission X-ray microscope (STXM) of the 200 

HERMES beamline at SOLEIL (Belkhou et al., 2015). Beamline optical elements were exposed to a 201 

continuous flow of pure O2 to remove carbon contamination. Energy calibration was done using the 202 

well-resolved 3p Rydberg peak of gaseous CO2 at 294.96 eV. XANES data were extracted from image 203 

stacks collected at energy increments of 0.1 eV over the carbon (270–350 eV) absorption range with 204 

a dwell time of ≤ 1 ms per pixel to prevent irradiation damage (Wang et al., 2009). Alignment of 205 

images of stacks and extraction of XANES spectra were done using the latest version aXis2000 206 

software (Hitchcock, 2018). The C-XANES spectra shown in the present contribution correspond to 207 

homogeneous carbon-rich areas of several hundreds of square nanometers and were normalized to 208 

the carbon quantity by integrating the spectra (after subtraction of a power law background) from the 209 

pre-edge region up to the mean ionization energy (e.g. 282-291.5 eV at the C K edge) using the 210 

QUANTORXS freeware available online (Le Guillou et al., 2018). This freeware also allowed 211 

estimating the N/C values of the organic compounds found within the residues, with a precision of ± 212 

0.02 (Alleon et al., 2015). 213 

 214 

2.8. Scanning transmission electron microscopy (STEM) 215 

 216 

STEM investigations were performed using a Thermofisher Titan Themis 300 microscope operated 217 

at 300 keV, located at the “centre commun de microscopie – CCM” at the university of Lille. 218 

Hyperspectral EDS data were obtained using the super-X detector system equipped with four 219 

windowless silicon drift detectors. These detectors have a high sensitivity for light elements and allow 220 

a high counting rate of the carbon, nitrogen and oxygen X-rays. The probe current was set at 600 pA 221 

with a dwell time at 10 µs per pixel. The post-processing of the hyperspectral data was performed 222 

using Hyperspy (De la Pena et al., 2017). The signal was first denoised using PCA, then fitted by a 223 

series of Gaussian functions and a physical model for background/bremsstrahlung. The integrated 224 

intensities of the Gaussian functions were used to quantify the compositions thanks to the Cliff-225 

Lorimer method, using experimentally determined k-factors. Absorption correction was taken into 226 
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account, which is mandatory to correct for the re-absorption within the sample of the carbon, nitrogen 227 

and oxygen X-rays. Finally, end-member phases (smectites, phosphates, amorphous silicon oxides, 228 

organic compounds) were identified and their spectra used as inputs for linear combination fitting 229 

(multiple linear least square fits). Pixels of similar composition were given the same colors scaled as 230 

a function of the proportion of each phase. 231 

 232 

3. Results 233 

 234 

3.1. Bulk investigations 235 

 236 

In the absence of Mg-smectites, the final N/C values of the residues of experiments conducted 237 

under N2/O2 (0.13) were higher than for those of experiments conducted under CO2 (0.11) (Table 1). 238 

This was similar for residues of experiments conducted in the presence of Mg-smectites (0.18 under 239 

N2/O2 vs 0.14 under CO2 – Table 1). In the absence of Mg-smectites, 7.8 wt.% of the initial C and 240 

1.7 wt.% of the initial N were preserved in residues of experiments conducted under CO2, while 35.4 241 

wt.% of the initial C and 9.4 wt.% of the initial N were preserved in residues of experiments conducted 242 

under N2/O2 (Table 1). In contrast, in the presence of Mg-smectites, more C and N remained in the 243 

residues obtained under CO2 (i.e. 36.5 wt.% of the initial C and 10.8 wt.% of the initial N under CO2 244 

versus 20.4 wt.% of the initial C and 7.6 wt.% of the initial N under N2/O2) (Table 1). 245 

The XRD patterns of the residues reveal that NH4
+-rich phosphates formed during the 246 

experiments conducted in the absence of Mg-smectites under N2/O2 (Fig. 1). In addition, low 247 

amounts of Ca-rich phosphates formed under N2/O2, while low amounts of Mg hydrated carbonates 248 

formed under CO2. Of note, the Mg and Ca cations came from the pristine RNA salts to compensate 249 

the negative charge from the phosphorus backbone. Minor amount of Anatase came from the reactor 250 

itself that was released during the residue sampling. During the experiments involving Mg-smectites 251 

and RNA, the structure of the Mg-smectites did not evolve that much as indicated by the XRD patterns 252 

of the residues (Fig. 1), even though the slight variations of the position and width of the 001 reflection 253 
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indicate some disturbance along the c-axis. These residues also contained Al- and Mg-phosphates, 254 

whatever the nature of the gas phase (Fig. 1).  255 

None of the residues displayed IR absorption features of RNA (Fig. 2). All the residues of 256 

experiments conducted in the absence of Mg-smectites exhibited adsorption bands attributed to CH 257 

in alkenes (bands at 983, 930 and 908 cm-1), to CH in alkanes (bands at 1457 and 1374 cm-1), C=O 258 

and N-H in amides (bands at 1585, 1680 and 3200 cm-), to CH2 and CH3 moieties (bands at 2924, 259 

2860, 2871 and 2960 cm-1, plus the band at 1275 cm-1 for the residues of experiments conducted 260 

under N2/O2). Of note, residues of experiments conducted under CO2 exhibited well defined bands 261 

corresponding to C-O in alkoxy at 1050, 1100 and 1150 cm-1, while only a large feature centered at 262 

1200 cm-1 attributed to C-O in acyl or phenol or alkoxy could be observed for residues of experiments 263 

conducted under N2/O2. Bands at 740 and 1440 cm-1 could be attributed to P-C in aromatic 264 

compounds (NIST Office of Data, 2019) while the one at 1014 cm-1 for residues of experiments 265 

conducted under N2/O2 could be attributed to PO4
3- in phosphates. 266 

The Mg-smectites structures of the tetrahedral and octahedral layers did not evolve during the 267 

experiments as attested by XRD and FTIR (cf. the Si-O; -OH and Mg3-OH absorption features at 268 

981, 790; 3675 and 668 cm-1). The formation of phosphates, evidenced by XRD, was confirmed by 269 

FTIR (cf. bands at 560 and 600 cm-1 attributed to PO4
3- in phosphates). The adsorption band at 1381 270 

cm-1 in spectra of residues of experiments conducted under CO2 were attributed to CO3
2- in 271 

carbonates, while the adsorption bands at 1440 and 1560 cm-1 corresponded to R-NH3
+ or NH4

+ and 272 

NH, respectively. In addition, the residues of experiments conducted in the presence of Mg-smectites 273 

displayed a band at ~1700 cm-1 (more intense for experiments conducted under N2/O2), attributed to 274 

carboxylic C=O, and bands at 2852, 2928, 2870 and 2960 cm-1 (more intense for experiments 275 

conducted under CO2), corresponding to C-H bonds. 276 

 277 

3.2. Spatially-resolved investigations 278 

 279 

 STEM investigations allowed mapping mineralogical heterogeneities within the residues of 280 
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experiments conducted in the presence of Mg-smectites (Fig. 3). Although Mg-smectites remained 281 

the main component of the final residues, Al- and Mg- phosphates were observed, confirming XRD 282 

results. In addition, although not detectable using XRD, C-free amorphous Mg,Ca phosphates, C-free 283 

amorphous SiOx particles as well as N-poor organic particles were observed within the residues. The 284 

Mg-smectites appeared closely associated with N-rich organic compounds whatever the atmosphere 285 

(Fig. 3.B., C. E. and F.), while Ca-carbonates were only observed within residues of experiment 286 

conducted under CO2. 287 

STXM-based XANES investigations revealed that RNA was no more present within the 288 

residues (Fig. 4.). The XANES spectrum of RNA presents a series of peaks attributed to nucleobases 289 

(aromatic and olefinic carbons (285 eV), heterocycles (285.9 eV), ketone and phenol groups (286.7 - 290 

287.4 eV)) and ribose (saturated carbons (288 eV) and hydroxyl groups (289.3 eV)) (Le Guillou et 291 

al. (2018)) (Fig. 4). The organic residues of experiments conducted in the absence of Mg-smectites 292 

appeared very homogeneous and significantly more aromatic than RNA. While under CO2, RNA 293 

evolved into a polyaromatic residue (peak at 285.4 eV attributed to conjugated aromatic cycles – 294 

Bernard & Horsfield (2014)), the organic residues of the experiments conducted under N2/O2 295 

displayed olefinic or aromatic carbons (peak at 285 eV), C=O or C=N or C≡N moieties (peak at 286.7 296 

eV) as well as carboxylic groups (peak at 288.4 eV) (Alleon et al., 2017; Vinogradoff et al., 2018). 297 

In contrast, the organic fraction of the residues of experiments conducted in the presence of 298 

Mg-smectites was heterogeneous (Fig. 4). Despite similar N/C (~ 0.1), the organic compounds 299 

associated to the Mg-smectites were not identical in residues of experiments conducted under N2/O2 300 

and CO2. Under N2/O2 these compounds mainly contained aromatic or olefinic carbons (peak at 285 301 

eV), conjugated aromatic cycles (peak at 285.4), heterocycles at 285.8 eV, the compounds that formed 302 

under CO2 mainly exhibited aliphatic carbons (peak at 288 eV) and amide groups (peak at 288.2 eV) 303 

with a relatively low amount of aromatic or olefinic carbons (peak at 285 eV). Nanoscale aromatic 304 

particles (N/C < 0.05) mainly composed of aromatic and olefinic carbons (peak at 285 eV), 305 

conjugated aromatic cycles (285.4 eV) and C=O and C=N groups were observed in the residues 306 

whatever the nature of the gas phase. 307 
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 308 

4. Discussion 309 

 310 

4.1. Impact of the nature of the gas phase 311 

 312 

The nature of the gas phase (N2/O2 vs CO2) impacted the chemistry of the residues in the 313 

absence of Mg-smectites. Although, the N/C values of the solid residues were relatively similar 314 

whatever the nature of the gas phase, it was not the case of the final amounts of C and N (Table 1). 315 

In fact, the residues of experiments conducted under N2/O2 were roughly 5 times richer in C and N 316 

than the residues of experiments conducted under CO2. This was possibly related to the precipitation 317 

of NH4
+-phosphates (that only occurred during the experiments conducted under N2/O2) and their P-318 

C bonds preserving the N and C content. The precipitation of such phosphates pinpointed alkaline 319 

conditions (Babić-Ivančić et al., 2006; Birnhack et al., 2015) having likely impacted the chemical 320 

structure of RNA (cf XANES and FTIR data – Figs. 2 and 4). 321 

Although the aromaticity of the organic fraction increased during all experiments, as expected 322 

(Schiffbauer et al., 2012; Li et al., 2014; Bernard et al., 2015; Alleon et al., 2016a, 2017; Vinogradoff 323 

et al., 2018; Viennet et al., 2019a), its oxygen content varied with the nature of the gas phase. In fact, 324 

the organic fraction of the residues of experiments conducted under N2/O2 displayed a higher 325 

concentration of oxygen-bearing functional groups, including phenol, alkoxy and amide groups (cf. 326 

XANES and FTIR data – Figs. 2 and 4), in good agreement with the experimental study of Schiffbauer 327 

et al. (2012). 328 

The nature of the gas phase also impacted the nature of the final residues of the experiments 329 

conducted in the presence of Mg-smectites. Besides the precipitation of Ca-carbonates under CO2 330 

and of Ca-phosphates under N2/O2, similar mineral phases formed whatever the nature of the gas 331 

phase as a result of the dissolution of Mg-smectites and the degradation of RNA: amorphous silica 332 

particles and Al-, Mg- and Mg-Ca-phosphates. Yet, the organic fractions of the residues are different. 333 

In contrast to results obtained in the absence of Mg-smectites, the final concentrations of C and N 334 
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trapped within the solid residues were higher under CO2, even though the N/C values were slightly 335 

higher under N2/O2. Of note, an higher amount of residue is obtained under CO2, as a result of the 336 

lower dissolution rate of smectite under CO2 (Viennet et al., 2017, 2019b).  337 

Although the free aromatic-rich particles produced during the experiments were similar 338 

whatever the nature of the gas phase, the organic compounds associated to the Mg-smectites were 339 

not. This is a quite important point given that these compounds constituted the main organic reservoir 340 

of the residues, as confirmed by their N/C values similar to those of the bulk residues. These organic 341 

compounds were N-rich within residues of experiments conducted under CO2 while they were O-rich 342 

within residues of experiments conducted under N2/O2, in good agreement with the experimental 343 

results of Schiffbauer et al. (2012). In fact, other things being equal, Schiffbauer et al. (2012) showed 344 

that the presence of oxygen results in a much more aggressive and accelerated degradation of organic 345 

compounds. Here, the main driver of the final N/C values was likely the pH. Acidic conditions are 346 

known to enhance the thermal degradation of RNA (Matoba et al., 1988), thereby impacting organo-347 

mineral interactions. 348 

The organic compounds associated with Mg-smectites might be either adsorbed onto or 349 

bonded to surfaces (lateral or basal) or trapped within their interlayer space (Lagaly et al. (2013), and 350 

references therein). Exposed to high vacuum (3×10-4 atmosphere), the 001 reflections of the 351 

experimental residues and of reference Mg-smectites saturated with NH4
+ exhibited a markedly 352 

different behaviour (Fig. 5), attesting that the interlayer space of the Mg-smectites of the residues 353 

were full of organic compounds (Ferrage et al., 2005; Gautier et al., 2017; Viennet et al., 2019a). In 354 

fact, if no organic compounds were present, the layer to layer distance would have decreased under 355 

vacuum as a result of the release of H2O molecules. 356 

XANES and FTIR data revealed that the organic compounds trapped within the Mg-smectites 357 

of the residues of experiments conducted under CO2 were mainly composed of aliphatic carbons and 358 

amide groups, suggesting that cationic exchange occurred during the experiments, Ca2+ having been 359 

replaced by the positively charged organic compounds that efficiently compensated the permanent 360 

charge of smectites. In contrast, the organic compounds trapped within the Mg-smectites of the 361 
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residues of experiments conducted under N2/O2 did not display any amide groups, but rather 362 

heterocycles (conjugated or not), carboxylic groups and C=N or N-H bonds. Because they can be 363 

positively charged as well, heterocycles such as piperidine or pyrrolidine may have replaced Ca2+ 364 

within the interlayer space via cationic exchange (Byrne, 1953; Oades & Townsend, 1963; Brindley 365 

& Thompson, 1966; Gournis et al., 2004, 2006; Park et al., 2008; Viennet et al., 2019a). 366 

 367 

4.2 Implications for decoding the ancient fossil record. 368 

 369 

The experimental results reported here have strong implications for our comprehension of 370 

the ancient fossil record. Because Archean paleontology relies on imperfect, degraded signals, 371 

interpretations have always been and are still, by essence, subject to controversy (Schopf, 1975; 372 

Alleon & Summons, 2019). Over the years, many authors have highlighted the equivocal nature of 373 

the main criteria used to discuss the biogenicity of putative remnants of life in rocks (Craig, 1954; 374 

Buick, 1990; Altermann & Kazmierczak, 2003; Pasteris & Wopenka, 2003; Tice & Lowe, 2004; 375 

Awramik & Grey, 2005; Sugitani et al., 2007; Brasier et al., 2015; Wacey et al., 2016, 2018; Rouillard 376 

et al., 2018; Alleon & Summons, 2019). With the exception of the recently described objects that 377 

have yet to be critically evaluated (Delarue et al., 2017, 2020; Dodd et al., 2017; Hassenkam et al., 378 

2017; Tashiro et al., 2017; Alleon et al., 2018), none of the plethora of ‘microfossils’ reported from 379 

Archean rocks have been fully accepted as authentic biological remains (Schopf, 1975; Alleon & 380 

Summons, 2019). 381 

The advanced chemical characterization of ancient potential microfossils using spatially 382 

resolved spectroscopy techniques can provide some clues regarding their molecular structure (Javaux 383 

& Marshal, 2006; Bernard et al., 2007, 2010; Schiffbauer et al., 2007; Igisu et al., 2009; Steemans et 384 

al., 2010; Galvez et al., 2012; Dutta et al., 2013; Alleon et al., 2016b, 2018; Bobroff et al., 2016; 385 

Delarue et al., 2017, 2020; Loron et al., 2019; Javaux, 2019), but this is not sufficient to conclude on 386 

their biogenicity. In fact, what remains critically missing is information on the original chemical 387 

nature of these organic constituents, i.e. information on what these compounds were at the time of 388 
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their generation, before the geological history they underwent. Obtaining such information requires 389 

the nature and the extent of the transformations that biogenic compounds have undergone since their 390 

fossilization to be quantified, i.e. it requires laboratory investigations (Bernard & Papineau, 2014; 391 

Briggs & McMahon, 2016; McMahon et al., 2018; Alleon & Summons, 2019; Javaux, 2019). 392 

Many experimental studies investigated the degradation of organic molecules during 393 

fossilization processes (cf above), highlighting that it can be quite abstruse, depending on the nature 394 

of the organic compound, the nature of the mineral matrix and the nature of the fluid. But, as 395 

demonstrated here, special care is needed when conducting laboratory experiments. In fact, most 396 

experiments reported in the literature have been conducted either under argon or nitrogen or under 397 

the oxygen-rich present day atmosphere. Yet, Schiffbauer et al. (2012) demonstrated that an O2-rich 398 

atmosphere leads to a more aggressive degradation than an inert atmosphere. Worse, the experimental 399 

results reported here evidence that the nature of the gas phase impacts the nature of the organic 400 

compounds produced during fossilization processes. Given that the Earth atmosphere has changed 401 

over geological times, from a CO2-rich atmosphere during the Hadean and Archean to the O2-rich 402 

atmosphere of the present day (Marty et al., 2013; Kasting, 2014), it definitely appears fundamental 403 

to take into account the nature of the gas phase trapped within the sediment porosity (which depends 404 

on the composition of the atmosphere to some extent) when experimentally simulating fossilization 405 

processes aimed at better constraining which biosignatures may potentially be preserved in ancient 406 

rocks. 407 

 408 

5. Concluding remarks 409 

The present study highlights the effect of the nature of the gas phase (CO2 or N2/O2) on the 410 

thermal degradation (at 200°C and 15.6 bars) of RNA in the presence or absence of Mg-smectites. 411 

The organic fractions of the residues of experiments conducted in the absence of Mg-smectites consist 412 

in aromatic organic compounds, richer in oxygen and nitrogen under N2/O2 than under CO2. The 413 

nature of the gas phase does not impact significantly the nature of the mineral assemblage of residues 414 

of experiments conducted in the presence of Mg-smectites. Yet, the N-rich organic compounds fixed 415 
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within the interlayer space of the Mg-smectites are dominated by amide groups in residues of 416 

experiments conducted under CO2 gas, while they are dominated by heterocycles such as piperidine 417 

or pyrrolidine un residues of experiments conducted under N2/O2. Of note, whatever the nature of 418 

the gas phase, the organic compounds of the experimental residues did not carry anymore information 419 

on the original chemical structure of RNA. Yet, as shown here, the hydrothermal degradation of such 420 

a (N,P)-rich organic molecule in the presence of Mg-smectites led to the precipitation of a quite 421 

uncommon mineral assemblage comprising submicrometric (Al,Mg,Ca)-phosphates, amorphous 422 

silica particles and organic-rich clay minerals (plus Mg-carbonates for experiments conducted under 423 

CO2). Such submicrometric, heterogeneous organo-mineral assemblage could be tentatively seen as 424 

a signature of the so-called “RNA world”. Although additional experiments are required to further 425 

constrain the impact of fossilization processes, the present experimental results open new avenues for 426 

the search for potential biosignatures on other planetary bodies, including rocky and/or icy ones (such 427 

as Mars, Ceres, Enceladus or Europa) on which organic compounds, hydrothermal systems and/or N-428 

rich clay minerals have recently been detected (Carter et al., 2013; Ammannito et al., 2016; Carter, 429 

2017; Choblet et al., 2017; Carrozzo et al., 2018; Eigenbrode et al., 2018; Nordheim et al., 2018; 430 

Marchi et al., 2019). In other words, there is no doubt that many additional laboratory experiments 431 

should be conducted to support astrobiological exploration in eventually providing evidence of the 432 

existence of extraterrestrial life. 433 
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Table caption 772 

 773 

Table 1: Concentrations of carbon and nitrogen within the residues.  774 

Experiments RNA  
RNA-

CO2 

RNA-

N2/O2 
 

Smectite-RNA-

CO2 

Smectite-RNA-

N2/O2 

Initial mass of Mg-smec-

tites (mg) 
-  - -  300 (±0.1) 300 (±0.1) 

Initial mass of RNA (mg) -  150 150  150 150 

Final mass of residue (mg) -  7.0 26.6  270 193.2 

%wtC (±0.07) 31.6  52.9 63.3  6.4 5.0 

Initial mass of C (mg)   47.4 47.4  47.4 47.4 

Final mass of C (mg) -  3.7 16.8  17.3 9.7 

% of C preserved   7.8 35.4  36.5 20.4 

%wtN (±0.02) 14.9  5.7 8.1  0.9 0.9 

Initial mass of N (mg)   22.3 22.3  22.3 22.3 

Final mass of N (mg) -  0.4 2.1  2.4 1.7 

% of N preserved   1.7 9.4  10.8 7.6 

N/C (±0.02) 0.47  0.11 0.13  0.14 0.18 

 775 
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Figure captions 777 

 778 

Figure 1: Powder XRD patterns of the residues of experiments conducted in the presence or 779 

absence of Mg-smectites under N2/O2 and under CO2. 780 

 781 

Figure 2: Infrared spectra in the middle range of the residues of experiments conducted in the 782 

presence or absence of Mg-smectites under N2/O2 and under CO2. 783 

 784 

Figure 3: Spatially resolved characterization of the residues of experiments conducted in the 785 

presence of Mg-smectites under N2/O2 and under CO2. a, STEM image of a residue of experiments 786 

conducted under CO2 at 200°C in the presence of Mg-smectites. b-c, Maps of minerals and organic 787 

compounds (same area as a.). d, STEM image of a residue of experiments conducted under N2/O2 at 788 

200°C in the presence of Mg-smectites. e-f, Maps of minerals and organic compounds (same area as 789 

D.). 790 

 791 

Figure 4: XANES spectra of organic compounds encountered in the residues. The spectrum 792 

of RNA is shown for comparison. 793 

 794 

Figure 5: XRD patterns on oriented preparation of NH4
+ saturated Mg-smectites and of the 795 

residues of experiments conducted in the presence of Mg-smectites under N2/O2 and under CO2 at 796 

atmospheric pressure and under vacuum. 797 
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