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ABSTRACT

Mixability has been shown to be a powerful tool to obtain algorithms with optimal regret. However,
the resulting methods often suffer from high computational complexity which has reduced their
practical applicability. For example, in the case of multiclass logistic regression, the aggregating
forecaster (Foster et al. (2018)) achieves a regret of O(log(Bn)) whereas Online Newton Step
achievesO(eB log(n)) obtaining a double exponential gain inB (a bound on the norm of comparative
functions). However, this high statistical performance is at the price of a prohibitive computational
complexity O(n37).
In this paper, we use quadratic surrogates to make aggregating forecasters more efficient. We
show that the resulting algorithm has still high statistical performance for a large class of losses.
In particular, we derive an algorithm for multi-class logistic regression with a regret bounded by
O(B log(n)) and a computational complexity of only O(n4).

1 Introduction

In online learning, a learner sequentially interacts with an environment and tries to learn based on data observed on
the fly (Cesa-Bianchi and Lugosi (2006), Hazan et al. (2016)). More formally, at each iteration t ≥ 1, the learner
receives an input xt in some space X ; makes a prediction ŷt in a decision domain Ŷ and the environment reveals the
output yt ∈ Y . The inputs xt and the outputs yt are sequentially chosen by the environment and can be arbitrary. No
stochastic assumption (except boundedness) on the data sequence (xt, yt)1≤t≤n is made. The accuracy of a prediction
ŷt ∈ Ŷ at instant t ≥ 1 for the outcome yt ∈ Y is measured through a loss function ` : Ŷ × Y → R. The learner aims
at minimizing his cumulative regret

Rn(f) =

n∑
t=1

`
(
ŷt, yt

)
−

n∑
t=1

`
(
f(xt), yt

)
, (1)

with respect to any function f ∈ F in a reference class. All along this paper, we will consider parametric class of
functions fθ indexed by θ ∈ Θ ⊂ Rd. We will also assume convexity of the loss according to index θ, which we denote
`x,y : θ 7→ `(fθ(x), y) for any (x, y) ∈ X × Y . In this general context, many algorithms have been designed based on
different assumptions and obtaining different trade-offs for regret. We review below the most relevant ones for our
purpose.

Assuming only convexity of the loss `, a well-known strategy for the learner is Online Gradient Descent (Zinkevich
(2003)) with an optimal regret of order O(

√
n). However, if the loss is α-mixable, the learner may achieve the faster



Algorithm OGD ONS Foster et al. (2018) GAF (Ours)

Regret B
√
n dKeB log(n) dK log(Bn) dK(B2 +B log(n))

Total complexity ndK nd3K3 B6n25(Bn+ dK)12 nK3d2 +K2n4

Table 1: Regret bounds and computational complexities (in O(·)) of relevant algorithms for logistic regression with K
classes.

rate O( 1
α log(n)) by using an aggregating forecaster (see Vovk (2001), Van Erven et al. (2015)). Yet, such an algorithm

is not constructive in general and when it is, the computational complexity is often very high (a notable exception
is the least-squares setting). To reduce it, a stronger assumption has been introduced by Hazan et al. (2007) with
η-exp concavity. Under the latter hypothesis, Online Newton Step (ONS) has a regret bounded by O( 1

η log(n)) and a
computational complexity of O(n). However this efficiency comes at the price of deteriorating statistical performance.
Indeed, η-exp concavity implies α-mixability for η ≥ α and in some cases, the gap between η and α can be very large.

The most spectacular case of this phenomenon occurs for logistic regression. In this setting, the loss is defined as

` (ŷt, yt) = − log (σ(ŷt)yt) where σ(z)i =
ezi∑
j e
zj

and the regret is computed with respect to linear functions F = {x 7→ Wx,W ∈ Θ}, where Θ = B(RK×d, B) is
the Frobenius bounded ball of radius B > 0. On this subset, the logistic loss is η-exp concave only for η ≤ e−B .
The regret of Online Newton Step can thus be of order O(eB log(n)). On the other hand, as remarked by Kakade
and Ng (2008) (binary case) and Foster et al. (2018), the logistic loss is 1-mixable and an aggregating algorithm may
achieve O(log(nB)). Nevertheless, the algorithm relies on Monte Carlo methods and must sample from log-concave
probability distributions which is extremely computationally expensive (see Table 1). Therefore, in this framework,
the exp-concavity assumption leads to an efficient algorithm with low dependence on B while mixability yields an
inefficient algorithm with much better statistical performance.

Between these two extremes, other algorithms and trade-offs have been analyzed. First, it has been shown that in some
situations, Follow The Regularized Leader (FTRL) can achieve a fast rate without an exponential constant (Bach et al.
(2010), Marteau-Ferey et al. (2019), Ostrovskii et al. (2021)). However, several additional assumptions are necessary to
achieve these rates. Unfortunately, they are essentially unavoidable. Indeed, Hazan et al. (2014) showed a polynomial
lower bound for the proper algorithm (i.e., with linear prediction function) in the regime B = log(n). This prevents
algorithms like ONS and Follow The Regularized Leader from reaching logarithmic regret without an exponential
constant in B. This result motivates the search for improper algorithms with better computational complexity than
Foster et al. (2018).

For binary logistic regression, two efficient improper algorithms have been proposed in the literature. First, in the i.i.d.
framework, Mourtada and Gaïffas (2019) have proposed the Sample Minmax Predictor (SMP). It achieves an excess
risk of order O((B2 + d)/n) with computational complexity equivalent to Follow The Regularized leader. In the online
framework, Jézéquel et al. (2020) proposed AIOLI, which is based on quadratic approximations of the logistic loss as
well as virtual labels to regularize. The regret is upper-bounded O(dB log(n)) and the computational complexity is
O(n(d2 + log(n))).

These previous works left open the question of achieving the same type of performance in a setting other than binary
logistic regression. In particular, for multi-class logistic regression, no other algorithm than Foster et al. (2018) is
known to achieve logarithmic regret without an exponential constant.

Contributions We introduce in Section 3 a new generic online learning algorithm, that we call Gaussian Aggregating
Forecaster (GAF) . GAF achieves logarithmic regret with a small multiplicative constant for a large class of convex
loss functions (see Theorem 1). The latter includes several popular loss functions such as squared loss, binary and
multi-class logistic loss. Our assumptions on the loss functions are slightly stronger than α-mixability but generally
weaker than assumptions widely used in the statistical framework such as generalized self-concordance (see Bach et al.
(2010)).

In the particular but significant setting of multi-class logistic regression, GAF has a regret bounded by O(dKB2 +
dKB log(n)) and a total computational complexity of O(nK3d2 + K2n4), thus significantly improving on the
O(B6n25(Bn+ dK)12) complexity of Foster et al. (2018), which was the best known to date for algorithms without
exponential dependence on B. Table 1 summarizes the regrets and computational cost obtained by the relevant
algorithms in this framework. It is worth pointing out that, by using standard online-to-batch conversion Helmbold
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and Warmuth (1995), this paper also provides new results on the excess risk in the statistical i.i.d. Indeed, even in this
extensively used framework, the only existing improper algorithms without exponential constant in B so far are GAF
and Foster et al. (2018). Jézéquel et al. (2020) and Mourtada and Gaïffas (2019) are in fact restricted to binary outputs
only.

Our new algorithm is inspired by the aggregating forecaster of Vovk (2001) that we apply to quadratic approximations
of the loss, in order to make it more efficient. The high-level idea is that these quadratic approximations replace
complicated log-concave distributions with Gaussian distributions, from which it is much easier to sample and thereby
drastically reducing the complexity of the algorithm. We believe that this approach can be applied to much broader
contexts than those analyzed here.

2 Setting

We recall here the setting and introduce the main notations and assumptions that will be used throughout the paper.

Setting and notation Our framework is formalized as a sequential game between a learner and an environment. At
each forecasting instance t ≥ 1, the learner is given an input xt ∈ X ; forms a prediction ŷt ∈ Ŷ ⊆ RK (possibly based
on the current input xt and on the past information x1, y1, . . . , xt−1, yt−1). Note that the prediction space Ŷ ⊆ RK
may be uni-dimensional (K = 1) in some settings (least-square regression) or multi-dimensional (K ≥ 1) in some
cases (e.g., vector-valued regression, multi-class classification). Then, the environment chooses yt ∈ Y ; reveals it to the
learner which incurs the loss `(ŷt, yt). Finally, the performance of the learner is assessed by the regret

Rn(θ) =

n∑
t=1

`(ŷt, yt)−
n∑
t=1

`xt,yt(θ) ,

with respect to all θ ∈ Θ ⊂ Rd. Here, `x,y(θ) = `(fθ(x), y) where F = {fθ : X → Ŷ} is the reference class of
functions. For simplicity of notation, we also define `t(θ) = `xt,yt(θ) and Lt(θ) =

∑t
s=1 `s(θ) + λ‖θ‖2 for all t ≥ 1

and λ > 0.

In all specific examples considered in this work, the learner will be compared to linear functions fθ : x 7→ θ>Φ(x),
where θ ∈ Θ = B(Rd, B) and Φ is a function from X to Rd×K such that for any x ∈ X and i ∈ [K], ‖Φ(x).,i‖ ≤ R.
We introduce and discuss below our main assumptions on the losses.

Assumptions We assume that, for all (x, y) ∈ X × Y , the losses `x,y are convex, C2 and satisfy the following
assumptions.

(A1) The loss function ` is α-mixable. In other words, for all (Gaussian) probability distributions π over Rd and
input x ∈ X , there exists ŷ ∈ Ŷ such that for all y ∈ Y ,

`(ŷ, y) ≤ − 1

α
log
(
Eθ∼πe−α`x,y(θ)

)
.

(A2) There exists ζ > 0 such that, for all (x, y) ∈ X × Y and θ1, θ2 ∈ Rd,

`x,y(θ1) ≤ `x,y(θ2) +∇`x,y(θ2)>(θ1 − θ2) + eζ‖θ1−θ2‖
2

‖θ1 − θ2‖2∇2`x,y(θ2) .

(A3) There exists β > 0 such that, for all (x, y) ∈ X × Y and (θ1, θ2) ∈ Θ× Rd,

`x,y(θ1) ≥ `x,y(θ2) +∇`x,y(θ2)>(θ1 − θ2) +
β

2
(θ1 − θ2)>∇2`x,y(θ2)(θ1 − θ2) .

(A4) ` is γ-smooth i.e., for all x ∈ X , y ∈ Y, θ ∈ Rd,∇2`x,y(θ) ≤ γI .

In general, these assumptions are rather weak and related to standard assumptions of (online) convex optimization. (A1)
follows from instance from exp-concavity. As we illustrate in Section 4, all are satisfied for broadly used loss functions
such as squared loss, binary and multi-class logistic loss. We provide more details on these assumptions below.

Mixability (A1) is a standard assumption in online learning to achieve fast rates for the regret (Van Erven et al.,
2015), which was introduced by Vovk (2001). It is a weaker condition than exp-concavity because (A1) holds with
ŷ = Eθ∼π[θ] for η-exp concave loss functions when η ≥ α.

Assumption (A2) basically prevents the Hessian from changing too quickly on θ. This condition is new but not very
restrictive because, as we prove in Lemma 6, it is weaker than other widely accepted assumptions such as generalized
self-concordance (Bach et al., 2010).
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The lower bound (A3) is the most original assumption and is crucial to make aggregating forecaster efficient. This
bound is close to the one needed in the analyses of ONS, which can be derived from η-exp-concavity. However, the key
difference is that (A3) uses the Hessian in the quadratic term and not the outer product of the gradient. This makes the
right-hand-side closer to the third Taylor series approximation of the loss and allows much larger values for β. For
example, as we will show in the section 4.2, this change allows us to remove the exponential constant for the logistic
regression setting. In this case, (A3) is verified with β ' B−1, while η-exp-concavity would require η ' e−B .

3 Algorithm and regret bound

GAF is a new sequential forecasting rule inspired by the aggregating forecaster of Vovk (2001). It may be implemented if
the loss function ` is mixable (A1) and ensures fast performance guarantees on the regret under Assumptions (A1)-(A4)
as shown in Theorem 1. GAF requires the following hyper-parameters: a regularization parameter λ > 0 and α, β > 0
such that the loss ` satisfies assumptions (A1)-(A4).

Algorithm (GAF) At each time step, the prediction ŷt is formed by GAF by following a two steps procedure. A first
estimator θt ∈ Rd is computed by solving

θt = argmin
θ∈Rd

{
t−2∑
s=1

˜̀
s(θ) + `t−1(θ) + λ‖θ‖22

}
. (2)

Basically, θt follows a regularized leader where the losses `s for s ≤ t−2 are substituted with quadratic approximations
˜̀
s. Then, GAF computes the quadratic approximation of `t−1 at point θt. For any θ ∈ Rd, it defines

˜̀
t−1(θ) = `t−1(θt) +∇`t−1(θt)

>(θ − θt) +
β

2
(θ − θt)>∇2`t−1(θt)(θ − θt). (3)

Finally, GAF predicts ŷt ∈ Ŷ such that for all y ∈ Y ,

`(ŷt, y) ≤ − 1

α
log
(
Eθ∼P̃t−1

e−α`xt,y(θ)
)
, where P̃t−1(θ) =

e−αL̃t−1(θ)∫
Rd e

−αL̃t−1(θ)dθ
, (4)

with L̃t−1(θ) =
∑t−1
s=1

˜̀
s(θ) + λ‖θ‖2. Such a prediction ŷt exists as soon as Assumption (A1) is true. In Section 4, we

present some specific cases where ŷt can be computed in a closed form.

We now state our main theoretical result, which is an upper bound on the regret suffered by GAF.
Theorem 1. Let d, n ≥ 1, B > 0, and Θ ⊂ B(Rd, B). Let (x1, y1), ..., (xn, yn) ∈ X × Y be an arbitrary sequence
of observations and ` a loss function that verifies Assumptions (A1)-(A4) with α, ζ, β, γ > 0. GAF (4), run with
regularization parameter λ ≥ max{4, d}ζα−1, satisfies the following upper-bound on the regret

Rn(θ) ≤ λ‖θ‖2 +
d

α

[
1

2
+

2
√

3

β

]
log

(
1 +

nβγ

2λ

)
, ∀θ ∈ Θ .

In particular, the choice λ = max{4, d}ζα−1 yields

Rn(θ) ≤ max{4, d}ζB
2

α
+
d

α

[
1

2
+

2
√

3

β

]
log

(
1 +

nαβγ

dζ

)
, ∀θ ∈ Θ .

Theorem 1 states that GAF has a logarithmic regret in the number of samples with a multiplicative constant proportional
to α−1(1 + β−1). Recalling that α is the mixability parameter, α−1 is the optimal multiplicative constant that can be
obtained using an (computationally expensive) aggregating forecaster. The constant β is the curvature parameter in the
quadratic lower-bound assumption (A3). Having β−1 as a multiplicative constant can be seen as similar to the regret
bound of ONS. However, it is important to note the crucial difference that, unlike ONS, it is the Hessian that is used in
the quadratic substitutes of Assumption (A3) and not the gradient outer product. Thus, in some cases, it is possible to
have a much larger value for β, than would be attainable using the exp-concavity. For example, for multiclass logistic
regression, the loss is 1-mixable (Proposition 1, Foster et al., 2018) but only e−B-exp concave. We prove in Lemma 4
that this loss verifies Assumption (A3) with parameter β ' (log(K) +BR)−1. Therefore, GAF achieves, in the logistic
case, a regret upper bounded by O(dB2R2 + d(log(K) +BR) log(n)). More details on this specific case are given in
Section 4.2.

We provide below a sketch of the proof of Theorem 1 that highlights the key steps in the proof. The full proof is
available in Appendix B.
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Sketch of proof. The proof starts from the definition (4) of the prediction ŷt formed by the algorithm. It satisfies the
mixability assumption (A1) for all y ∈ Y

`(ŷt, y) ≤ − 1

α
log
(
Eθ∼P̃t−1(θ)e

−α`t(θ)
)
, where P̃t−1(θ) =

e−αL̃t−1(θ)∫
Rd e

−αL̃t−1(θ)dθ
.

Next, we decompose the term on the right side of the inequality into two terms: an approximation error that will be
small for well-chosen parameters; and a term, which telescopes and is standard for aggregating forecaster’s analysis
(Vovk, 2001), except that here it is written with quadratic surrogate losses. We have,

`(ŷt, yt) ≤ −
1

α
log

(∫
Rd e

−α(`t(θ)−˜̀
t(θ))−αL̃t(θ)dθ∫

Rd e
−αL̃t−1(θ)dθ

)

= − 1

α
log
(
Eθ∼P̃te

−α[`t(θ)−˜̀
t(θ)]

)
︸ ︷︷ ︸

Ωt

+
1

α
log

(∫
Rd e

−αL̃t−1(θ)dθ∫
Rd e

−αL̃t(θ)dθ

)
︸ ︷︷ ︸

Ψt

.

Now, the core idea is that since L̃t is quadratic, the integrals inside Ψt are Gaussian, which allows closed form formulas
for the analysis (and fast computational time). Using that ∇˜̀

t(θt+1) = ∇`t(θt+1) and the expression of Gaussian
integrals, it is possible to show that

Ψt = L̃t(θt+1)− L̃t−1(θt) +
1

2α
log

(
|At|
|At−1|

)
,

where At is the Hessian of L̃t/2. Therefore, summing over t = 1, . . . , n and using L̃0(θ1) = 0, it yields
n∑
t=1

`(ŷt, yt)− L̃n(θn+1) ≤
n∑
t=1

Ωt +
1

2α
log

(
|An|
|A0|

)
.

But, from Assumption (A3) together with the definition (2) of θt+1, for any θ ∈ Θ, Lt(θ) ≥ L̃t(θ) ≥ L̃t(θt+1). Thus,
the regret can be bounded for any θ ∈ Θ by

Rn(θ) =

n∑
t=1

`(ŷt, yt)− Ln(θ) ≤ λ‖θ‖2 +

n∑
t=1

Ωt +
1

2α
log

(
|An|
|λI|

)
. (5)

Finally, Assumption (A2) allows to bound the approximation error Ωt by a telescopic term close to the usual one but
with 1

β as multiplicative constant instead of 1
α ,

Ωt ≤
C

β
log

(
|At|
|At−1|

)
.

The proof is concluded by applying Assumption (A4).

4 Specific settings: squared loss and multi-class logistic

In this section we show how our general framework cover several interesting settings. In particular, we prove that our
Assumption (A1)-(A4) are satisfied and provide concrete implementations of GAF in those contexts.

4.1 Squared loss

For linear regression with squared loss, we recover classical results by Vovk (2001). This framework is defined, as a
special case of our generic setting of Section 2, by setting: input domain X = B(Rd, R), output domain Y = [−Y, Y ]
with Y > 0, decision domain Ŷ = R, loss function `(ŷt, yt) = (ŷt − yt)2 and input feature Φ(x) = x. Now we can
verify that all assumptions are true:

(A1) By Lemma 2 and Lemma 3 of Vovk (2001), the squared loss is mixable with parameter α = 1/(2Y 2).
(A2) The inequality is true for any ζ > 0 as ex > 1/2 for all x > 0. We will take ζ = (8Y 2dB2)−1.
(A3) It holds with β = 1 because the Taylor expansion of order 2 of a quadratic function is an equality.
(A4) It is true with γ = R2 since ∇2`x,y(θ) = 2xx> ≤ 2R2I .
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In particular, in this particular case the quadratic approximations are exact ˜̀
t = `t for all t ≥ 1. Therefore, GAF

reduces to the classical non-linear Ridge regression of Vovk (2001) and Azoury and Warmuth (2001) that predicts

ŷt = θ̂>t xt with θ̂t = argminθ∈Rd
{
Lt−1(θ) + θ>xt + λ‖θ‖2

}
.

A direct consequence of Theorem 1, by substituting the constants derived above, yields

Rn(θ) ≤ 1 + 8Y 2d log
(
1 + 16nB2R2

)
.

This result essentially recovers the existing regret bound for the non-linear Ridge regression (see e.g., Theorem 11.8 of
Cesa-Bianchi and Lugosi (2006)).

4.2 Logistic regression

The most interesting application of our general framework is logistic regression. In this section, we show the validity of
our assumptions and the concrete implementation of GAF in this context. We present the theoretical results obtained
and discuss the computational complexity.

The goal of logistic regression is to form a K-dimensional prediction ŷ ∈ Ŷ = RK of a categorical label y ∈ Y =
{1, ...,K} from the observation of an input label x ∈ X = B(Rd′ , R), d′ ≥ 1. The performance of ŷ is measured by
the logistic loss defined by

` (ŷ, y) = − log (σ(ŷ)y) where σ(z)i = ezi∑
j e
zj .

Defining the input feature Φ(x) ∈ Rd×K with d = d′K and the linear predictions respectively as

Φ(x)i,j =

{
xi−d′j if d′j ≤ i < d′(j + 1)

0 otherwise
and fθ(x) = θ>Φ(x), for θ ∈ B(Rd, B),

one can check that our setting recovers the standard multi-class logistic regression setting (see Foster et al. (2018) for
an equivalent convention). We check below Assumptions (A1)–(A4).

(A1) It holds with α = 1, since by Proposition 1 of Foster et al. (2018), the logistic loss is 1-mixable. Indeed, given
a distribution π on RK , the choice ŷπ = σ+(Eŷ∼πσ(ŷ)), where σ+(z)k := log(zk), satisfies

Eŷ∼π exp(−`(ŷ, y)) = Eŷ∼πσ(ŷ)y = σ(ŷπ)y = exp(−`(ŷπ, y)) ,

for any y ∈ [K].
(A2) It is true for ζ = 4R2 by Lemma 6 in Appendix C.
(A3) It holds with β = (log(K)/2 +BR+ 1)−1 by Lemma 4 in Appendix C applied with the choices a = θ>1 Φ(x)

and b = θ>2 Φ(x) ∈ [−BR,BR]K .
(A4) It is valid with γ = R2. Indeed, ∇2`x,y(θ) = Φ(x)(diag(p)− pp>)Φ(x)> ≤ Φ(x)Φ(x)> ≤ R2I , where

p = σ(θ>Φ(x)).
In particular, the proof of the mixability assumption (A1) provides us a concrete expression for Equation (4) of GAF by
setting ŷt = σ+(Eθ∼P̃t−1(θ)(σ(θ>xt))) . (6)

Substituting the above parameters into Theorem 1 yields the following corollary.
Corollary 2. Let R,B > 0 and d′, n,K ≥ 1. Let (x1, y1), ..., (xn, yn) ∈ X × Y be an arbitrary sequence of
observations and `(ŷ, y) = − log (σ(ŷ)y). GAF, run with λ = 32d′KR2, β = (log(K)/2 +BR+ 1)−1, and α = 1,
satisfies

Rn(θ) . d′KB2R2 + d′K [log(K) +BR] log
(
1 + n

d′K(log(K)+BR)

)
, (7)

for all θ ∈ B(Rd, B), where . denotes an approximate inequality which is up to universal multiplicative and additive
constants.

Computationally efficient approximation Yet, a key difficulty remains to compute exactly ŷt in Equation (6): the
calculation of the expectation. In general, there is no closed-form expression and an approximation algorithm, such as
Monte Carlo sampling, must be used. We provide now a fully implementable approximated version of GAF, which
satisfies the same regret guarantees up to negligible additive constants. It is described in Algorithm 1.

First, to ensure that our approximation of the expectation produces forecasts close to those of the exact algorithm,
we must smooth the function σ+ in Equation (6). Following the idea of Foster et al. (2018), we thus define for some
µ ∈ [0, 1

2 ], the smoothing operator smoothµ : ∆K → ∆K by

smoothµ(p) = (1− µ)p+ µ1/K, ∀p ∈ ∆k .
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Parameters λ, µ, β, ε, δ > 0,m ≥ 1
initialize A0 = λI, b0 = 0, θ1 = 0
for t = 1, ..., n do

receive xt ∈ Rd
sample independently ω1, ..., ωm ∼ N (θ>t Φ(xt),Φ(xt)

>A−1
t−1Φ(xt))

predict ỹt = σ+(smoothµ( 1
m

∑m
i=1 σ(ωi))) where σ(z)i = ezi∑

j e
zj , σ+(z)i = log(zi) and

smoothµ(z) := (1− µ)z + µ1/K.
receive yt ∈ {1, ...,K}
update θt+1 = argminθ∈RKd b

>
t−1θ + θ>At−1θ + `xt,yt(θ)

bt = bt−1 +∇`xt,yt(θt+1)− β∇2`xt,yt(θt+1)θt
At = At−1 + β

2∇
2`xt,yt(θt+1)

end
Algorithm 1: Efficient-GAF for K-class logistic regression

Now, we can show that σ+(smoothµ(·)) is µ-Lispchitz. Denoting the smoothed approximation of ŷt by
ȳt = σ+(smoothµ(Eθ∼P̃t−1

(σ(θxt))), Lemma 16 of Foster et al. (2018) shows that using ȳt instead of ŷt wors-
ens the regret bound only by an additional constant µn; hence our choice µ = n−1. The last step of the approximated
algorithm consists in using Monte Carlo sampling to approximate the expectation by a finite sum

ỹt = σ+

(
smoothµ

(
1

m

m∑
i=1

σ(ωi)

))
where ωi

i.i.d.∼ N (θ>t Φ(xt),Φ(xt)
>A−1

t−1Φ(xt)) .

Using Chernoff’s inequality, we show below that ỹt concentrates well to ȳt which entails the following guarantee.
Proposition 3. Let δ > 0. Efficient-GAF, run with parameters λ = 32d′KR2, β = (log(K)/2 +BR+ 1)−1, m ≥ 1,
and µ = (log(n/δ)/m)1/3 satisfies with probability 1− δ the regret bound

Rn(θ) . d′KB2R2 + d′K [log(K) +BR] log

(
1 +

n

d′K(log(K) +BR)

)
+ n

(
K

m
log
(n
δ

)) 1
3

with a computational cost O(nK3d2 +K2nm). In particular, the choice m = n3 log(n/δ), yields the regret bound (7)
with probability 1− δ and a total computational time of order O

(
nK3d2 +K2n4 log(n/δ)

)
.

Proof. We first prove the computational complexity upper-bound. At each iteration t = 1, . . . , n, the algorithm
performs the following computations:

(i) Update A−1
t : since the rank of At −At−1 is K, the inverse A−1

t can be updated in O(K3d2) operations.
(ii) Update θt+1: by Theorem 4 of Jézéquel et al. (2020), this can be done in O(log(n) +K2d2).

(iii) Compute ỹt: to do so, it must sample m times from a Gaussian of dimension K. The cost is thus O(mK2).
Therefore, the overall time complexity of the algorithm is O

(
nK3d2 +K2nm

)
.

We now prove the corresponding regret bound. First, we define

p̃t := smoothµ

(
1
m

∑m
i=1 σ(ωi)

)
and p̄t := E[p̃t] = smoothµ

(
Eθ∼P̃t−1

(σ(θ>Φ(xt))
)
.

With this notation, ỹt = σ+(p̃t) and ȳt = σ+(p̄t). Using that σ(σ+(p)) = p for any p ∈ ∆K yields for all yt ∈ [K]

`(ỹt, yt) = − log
(
σ(ỹt)yt

)
= − log

(
σ(σ+(p̃t))yt

)
= − log(p̃t,yt) ,

where p̃t,i denotes the i-th component of p̃t. Similarly, `(ȳt, yt) = − log(p̄t,yt). Therefore, fixing some ε > 0, we have

P
[
`(ỹt, yt)− `(ȳt, yt) > ε

]
= P

[
− log

(
p̃t,yt
p̄t,yt

)
> ε
]

= P [p̃t,yt − p̄t,yt < (e−ε − 1)p̄t,yt ] .

Using that e−ε − 1 ≤ 1− 2ε for ε ∈ (0, 1
2 ) together with the multiplicative Chernoff’s bound (see e.g., Theorem 1.10.5

of Doerr (2020)), entails for all 0 < ε < 1
2 ,

P [`(ỹt, yt)− `(ȳt, yt) > ε] ≤ P [p̃t,yt < (1− 2ε)p̄t,yt ] ≤ e−2ε2mp̄t,yt ≤ e−ε
2mµ/K , (8)

where the last inequality is because smoothµ(p)i ≥ µ/K for all i ∈ [K]. Taking ε =
√

K
µm log(n/δ), we have

P
[
`(ỹt, yt)− `(ȳt, yt) >

√
K
µm log

(
n
δ

)]
≤ δ

n . (9)
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Furthermore, denoting p̂t = Eθ∼P̃t−1
(σ(θ>Φ(xt)) so that p̄t = smoothµ(p̂t) and following Lemma 16 of Foster et al.

(2018), we get

`(ȳt, yt)− `(ŷt, yt) = log
( p̂t,yt
p̄t,yt

)
= log

( p̂t,yt
smoothµ(p̂t)yt

)
= log

( p̂t,yt
(1− µ)p̂t,yt + µ

K

)
= log

( 1

1− µ
(
1− 1

Kp̂t,yt

)) ≤ 2µ
(
1− 1

Kp̂t,yt

)
≤ 2µ . (10)

Combining (9) and (10), and using a union bound yields with probability at least 1− δ∑n
t=1 `(ỹt, yt)− `(ŷt, yt) ≤ n

√
K
µm log

(
n
δ

)
+ µn .

Optimizing µ = (log(n/δ)K/m)1/3 and using Corollary 3 concludes the proof.

Using Gaussian distribution improves significantly the computation time with respect to log-concave distribution as
considered by Foster et al. (2018). Indeed, it allows to get exact and efficient samples from P̃t−1 which leads to a
computation time of order O(n4). On the contrary, since it is not possible to draw an exact sample from a log-concave
distribution, Foster et al. (2018) must resort to expensive random walks to approximately sample from it. Using the
method from Bubeck et al. (2018), as suggested by Foster et al. (2018), leads to a O(B6n24(Bn+ dK)12) computation
time per iteration (see their Example 3 with the choices ε = n−2 and µ = n−1).

Note that our analysis shows a clean trade-off between the computational time and the regret bound. One could set a
smaller value for m at the price of a larger regret. In particular, it is worth pointing out that our analysis consider the
worst case scenario. In the experiments that we considered, it seems that much less samples are sufficient to reach a
good accuracy. This is partly because the lower-bound p̄t,yt ≥ µ ≈ 1/n in Inequality (8) may be very coarse for many
t. If the p̄t,yt were of order Ω(1), one could choose m = O(n2) instead of m = O(n3). Another possible explanation
comes from the fact that, if At is large enough, the variance of the samples is small and the convergence is much
faster. In our experiments, the choice of m = 100 already provides a good approximation. We leave to future work the
possibility to improve the complexity in favorable scenarios.

Comparison with Jézéquel et al. (2020) In the binary case, a more efficient algorithm called AIOLI has been
introduced in Jézéquel et al. (2020). The latter achieves a similar regret bound as GAF, while having a computational
complexity of only O(n(d2 + log(n))). This was possible because AIOLI does not rely on Monte Carlo sampling at
all and uses only convex optimization instead. Therefore, one may wonder if it is possible to extend directly AIOLI
to the multiclass setting avoiding Monte Carlo methods used in this work. In fact, we first tried to analyse the regret
of natural extensions of AIOLI but we found the following inherent difficulties. On the intuitive side, AIOLI was
based on the observation that when θt is far from 0 (let say θt � 0) either yt = 1 and the curvature was advantageous
or yt = −1 and θ̂t tends to the oracle θt+1. This intuition is a bit lost in the multiclass setting as several oracles are
possible if yt 6= 1. On a more technical side, the analysis in Jézéquel et al. (2020) crucially relies on the relation
g−ytt = −(1 +BR)ηtgt (Equation 20) which seems to have no equivalent in the multiclass setting. Thus, it remains an
open question if an extension of AIOLI to the multiclass setting is possible.

5 Experiments

Although GAF is primarily theoretically motivated in a worst-case analysis, here we study its performance on real
data sets. We consider three datasets (vehicle, shuttle, and segmentation taken from LIBSVM Data 1) and compare the
performance of GAF with two well-used algorithms: Online Gradient Descent (OGD) (Zinkevich, 2003) and Online
Newton Step (ONS) (Hazan et al., 2007). The algorithm of Foster et al. (2018) is not considered because of prohibitive
computational complexity. Concerning the hyper-parameters, the values suggested by the theory are generally too
conservative. We thus choose the best ones in a grid for each algorithm (λ, β ∈ [0.01, 0.03, 0.1, 0.3, 1, 3, 10]).

The averaged losses over time are reported in Figure 1. We can remark that the performance of GAF is similar to the
one of ONS when the number of samples is high. However, the learning of GAF seems more stable than ONS which
leads sometimes (vehicle and segment) to better performance when there are few samples. This is not surprising as
aggregating forecasters are hedging against worst-case scenario. Those results show that GAF is not only a theoretical
oriented algorithm but could also be used successfully in practice. However, we expect it to perform best in a hard
adversarial regime (close to the one described in Hazan et al. (2014)).

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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Figure 1: Averaged losses over time incurred by ONS, GAF, and OGD. The experiments were repeated 20 times and
the empirical quantiles 0.25, 0.5, and 0.75 are reported.

Conclusion and future work

We have shown how to leverage both mixability and quadratic approximations to design an algorithm GAF which
achieves high statistical performance while being more efficient than existing algorithms. In particular, it achieves a
new trade-off for multiclass logistic regression.

Some interesting questions are still remaining and left for future work. The linear dependence in B although better
than what can be achieved by any proper algorithm is still sub-optimal compared to Foster et al. (2018) (logarithmic
dependence). It may be possible to improve it by using other surrogates than quadratics. The essential point would be to
prove an equivalent of Lemma 4 for those surrogates. The computational complexity of computing Equation (6) should
also remain low. The computational complexity may also be improved. Like previous point, other surrogates could
be used to make Equation (6) easier to compute. Finally, we believe that GAF should easily be extended to kernels.
One would need to adapt the analysis to depend on the effective dimension (Jézéquel et al., 2019) of the RKHS instead
of d. It would of interest to see how classical approximation algorithms, like Nystrom and random Fourier features,
deteriorate statistical performance. Finally, we have only provided two examples of loss functions (multi-class logistic
loss and squared loss). An intriguing question would be to see if the algorithm can be used to improve existing results
for other losses such as Huber loss.
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Supplementary material

A Notations and relevant equations

In this section, we give notations and useful identities which will be used in following proofs. At each forecasting
instance t ≥ 1, the learner is given an input xt ∈ X ; forms a prediction ŷt ∈ Ŷ . Then, the environment chooses yt ∈ Y ;
reveals it to the learner which incurs the loss `(ŷt, yt). The regret is defined as

Rn(θ) =

n∑
t=1

`(ŷt, yt)−
n∑
t=1

`xt,yt(θ) ,

with respect to all θ ∈ Θ ⊂ Rd. Here, `x,y(θ) = `(fθ(x), y) where F = {fθ : X → Ŷ} is the reference class of
functions. We assume that, for all (x, y) ∈ X × Y , the losses `x,y are convex, C2 and satisfies Assumptions (A1)-(A4)
with parameters α, ζ, β, γ > 0. We also use the following notations:

• `t(θ) = `xt,yt(θ)

• θt = argminθ∈Rd
{∑t−2

s=1
˜̀
s(θ) + `t−1(θ) + λ‖θ‖22

}
• ˜̀

t−1(θ) = `t−1(θt) +∇`t−1(θt)
>(θ − θt) + β

2 (θ − θt)>∇2`t−1(θt)(θ − θt)

• Lt(θ) =
∑t
s=1 `s(θ) + λ‖θ‖2 and L̃t(θ) =

∑t
s=1

˜̀
s(θ) + λ‖θ‖2

• P̃t−1(θ) = e−αL̃t−1(θ)∫
Rd e
−αL̃t−1(θ)dθ

• At =
∑t
s=1

β
2∇

2`s(θs+1) + λI .

B Main proof

Proof of Theorem 1. Let t ≥ 1. By definition, the prediction ŷt (see Equation (4)) satisfies the Mixability property (A1).
Applied in y = yt, it yields

`(ŷt, yt) ≤ −
1

α
log
(
Eθ∼P̃t−1(θ)e

−α`t(θ)
)
, where P̃t−1(θ) =

e−αL̃t−1(θ)∫
Rd e

−αL̃t−1(θ)dθ

= − 1

α
log

(∫
Rd e

−α(`t(θ)−˜̀
t(θ))−αL̃t(θ)dθ∫

Rd e
−αL̃t−1(θ)dθ

)

= − 1

α
log
(
Eθ∼P̃te

−α[`t(θ)−˜̀
t(θ)]

)
+

1

α
log

(∫
Rd e

−αL̃t−1(θ)dθ∫
Rd e

−αL̃t(θ)dθ

)
. (11)

We recall that L̃t : θ 7→
∑t
s=1

˜̀
s(θ) + λI where for all s ≥ 1

˜̀
s(θ) = `s(θs+1) +∇`s(θs+1)>(θ − θs+1) +

β

2
(θ − θs+1)>∇2`s(θs+1)(θ − θs+1).

Thus, L̃t is a quadratic function with Hessian 2At where

At =

t∑
s=1

β

2
∇2`s(θs+1) + λI . (12)

Moreover, by definition (2) of θt+1 and since 0 = ∇L̃t−1(θt+1) +∇`t(θt+1) = ∇L̃t(θt+1), we have

θt+1 = argmin
θ∈Rd

L̃t(θ) . (13)
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Therefore,
L̃t(θ) = (θ − θt+1)>At(θ − θt+1) + L̃t(θt+1) ,

and recognizing the integral of a multivariate Gaussian distribution P̃t ∼ N
(
θt+1,

1
2αA

−1
t

)
, we get∫

Rd
e−αL̃t(θ)dθ = e−αL̃t(θt+1)

∫
Rd
e−α(θ−θt+1)>At(θ−θt+1)dθ =

√
(π/α)d|A−1

t |e−αL̃t(θt+1) ,

which substituted into (11) gives

`(ŷt, yt) + L̃t−1(θt)− L̃t(θt+1) ≤ − 1

α
log
(
Eθ∼P̃te

−α(`t(θ)−˜̀
t(θ))

)
︸ ︷︷ ︸

Ωt

+
1

2α
log

(
|At|
|At−1|

)
.

Summing over t and using L̃0(θ1) = 0, the sum telescopes,

n∑
t=1

`(ŷt, yt)− L̃n(θn+1) ≤
n∑
t=1

Ωt +
1

2α
log

(
|An|
|A0|

)
.

Denote Ln(θ) =
∑n
t=1 `t(θ) + λ‖θ‖2. By Assumption (A3) followed by (13), for all θ ∈ Rd

Ln(θ)
(A3)

≥ L̃n(θ)
(13)
≥ L̃n(θn+1) .

Therefore, plugging into the previous inequality, the regret can be bounded as

Rn(θ) =

n∑
t=1

`(ŷt, yt)− Ln(θ) + λ‖θ‖22 ≤ λ‖θ‖22 +

n∑
t=1

Ωt +
1

2α
log

(
|An|
|λI|

)
. (14)

Now it remains to bound the approximation terms Ωt. Using Jensen’s inequality and the concavity of log, yields

Ωt := − 1

α
log
(
Eθ∼P̃te

−α(`t(θ)−˜̀
t(θ))

)
≤ Eθ∼P̃t

[
`t(θ)− ˜̀

t(θ)
]

= Eθ∼P̃t
[
`t(θ)− `t(θt+1)−∇`t(θt+1)>(θ − θt+1)− β

2
(θ − θt+1)>∇2`t(θt+1)(θ − θt+1)

]
≤ Eθ∼P̃t

[
`t(θ)− `t(θt+1)−∇`t(θt+1)>(θ − θt+1)

]
.

By Assumption (A2) and Cauchy-Schwartz inequality,

Ωt ≤ Eθ∼P̃t
[
eζ‖θ−θt+1‖2‖θ − θt+1‖2∇2`t(θt+1)

]
≤
√
Eθ∼P̃te

2ζ‖θ−θt+1‖2︸ ︷︷ ︸
Ωt,1

√
Eθ∼P̃t‖θ − θt+1‖4∇2`t(θt+1)︸ ︷︷ ︸√

Ωt,2

. (15)

Now remarking that P̃t = N
(
θt+1,

1
2αA

−1
t

)
, let us bound Ωt,1 the term on the left of the product. There exists an

orthonormal basis e1, . . . , ed in Rd such that θ − θt+1 follows the same distribution as

d∑
i=1

√
1

2α
λi(A

−1
t )Xiei where Xi

i.i.d.∼ N (0, 1), i = 1, . . . , d ,

and λi(A−1
t ) denotes the i-th largest eigenvalue of A−1

t . Thus, since λi(A−1
t ) ≤ λ−1,

Ωt,1 =
√

Eθ∼P̃t
[
e2ζ‖θ−θt+1‖2

]
≤

√√√√ d∏
i=1

E
[
e
ζ
αλi(A

−1
t )X2

i

]
≤

√√√√ d∏
i=1

E
[
e
ζ
αλX

2
i

]
=
(
EX∼χ2

[
e
ζ
αλX

])d/2
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Then, because λ ≥ 4ζα−1 by assumption and using that the moment-generating function of the χ2 distribution (with
one degree of freedom) is EX∼χ2

[
exp(tX)

]
= (1− 2t)−1/2 for t < 1/2 and thus EX∼χ2 [exp(X/4)] =

√
2, the term

can be further upper-bounded as

Ωt,1 ≤ EX∼χ2

[
e
ζ
αλX

]d/2
≤ EX∼χ2

[
e

1
4X
] 2dζ
λα ← Jensen’s inequality

≤ 2
dζ
λα

≤ 2 ← since λ ≥ dζα−1. (16)

We now upper-bound Ωt,2 in (15),

Ωt,2 := Eθ∼P̃t‖θ − θt+1‖4∇2`t(θt+1) = E
θ∼N

(
0, 1

2αA
−1
t

)(θ>∇2`t(θt+1)θ)2 = Eθ∼N (0,Σt)‖θ‖
4

where Σt = 1
2α (∇2`t(θt+1))1/2A−1

t (∇2`t(θt+1))1/2. If we write λi the i-th largest eigenvalue of Σt, there exists an
orthonormal basis e1, . . . , ed such that

Ωt,2 = Eθ∼N (0,Σt)

[
‖θ‖4

]
= E

(Xi)
iid∼N (0,1)

[∥∥∥∥ d∑
i=1

√
λiXiei

∥∥∥∥4
]

= E
(Xi)

iid∼N (0,1)

[( d∑
i=1

λiX
2
i

)2
]

=

d∑
i=1

d∑
j=1

λiλjE
(Xi)

iid∼N (0,1)

[
X2
iX

2
j

]
.

Then remarking that E
(Xi)

iid∼N (0,1)
[X2

iX
2
j ] equals to 3 if i = j and 1 otherwise, we get the following upper-bound

Ωt,2 ≤ 3
∑
i,j

λiλj = 3

(
d∑
i=1

λi

)2

= 3 Tr(Σt)
2 = 3 Tr

( 1

2α
A−1
t ∇2`t(θt+1)

)2

=
3

α2β2
Tr
(
A−1
t

β

2
∇2`t(θt+1)

)2

.

Then, by Lemma 7,

Ωt,2 ≤
3

α2β2
log

(
|At|∣∣At − β

2∇2`t(θt+1)
∣∣
)2

=
3

α2β2
log

(
|At|
|At−1|

)2

. (17)

Then combining equations (15), (16) and (17), we have

Ωt ≤
2
√

3

αβ
log

(
|At|
|At−1|

)
(18)

which, by summing over t = 1, . . . , n, telescopes

n∑
t=1

Ωt ≤
2
√

3

αβ
log

(
|An|
|A0|

)
.

Combining this upper bound with equation (14) yields

Rn(θ) ≤ λ‖θ‖2 +
1

α

(1

2
+

2
√

3

β

)
log

(
|An|
|λI|

)
, (19)

which concludes the proof since by (12) and Assumption (A4)

|An|
(12)
=

∣∣∣∣λI +
β

2

n∑
t=1

∇2`t(θt+1)

∣∣∣∣ (A4)

≤
∣∣∣∣(λ+

nγβ

2

)
I

∣∣∣∣ =
(

1 +
nγβ

2λ

)d
|λI| .
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C Technical Lemmas

The following lemma shows that the logistic loss satisfies Assumption (A3) with β = (log(K)/2 +BR+ 1)−1. Indeed,
it suffices to apply it with a = θ>1 φ(x), b = θ>2 φ(x) and C = BR. Indeed, one can check that

`y(a) = `x,y(θ1)

`y(b) = `x,y(θ2)

∇`y(b)>(a− b) = ∇`x,y(θ2)>(θ1 − θ2)

(a− b)>∇2`y(b)(a− b) = (θ1 − θ2)>∇2`x,y(θ2)(θ1 − θ2) ,

where the terms on the left correspond to the notation of Lemma 4 and the terms on the right to Assumption (A3).

Lemma 4. Let C > 0, a ∈ [−C,C]K , y ∈ [K], and b ∈ RK . Denote `y(a) = − log
(

eay∑
j e
aj

)
. Then,

`y(a) ≥ `y(b) +∇`y(b)>(a− b) +
1

log(K) + 2(C + 1)
(a− b)>∇2`y(b)(a− b) .

Proof. We start the proof by rephrasing our objective. Noting that `y(a) = −a>ey + log(
∑K
j=1 e

aj ), one can
subtract the linear part on both sides of the inequality. Thus, it suffices to prove the inequality for the function
f : a 7→ log(

∑K
j=1 e

aj ). Defining

ξ(a, b) = f(a)− f(b)−∇f(b)>(a− b)− β

2
(a− b)>∇2f(b)(a− b), (20)

with β = (log(K)/2 + C + 1)−1, it is thus enough to prove that ξ(a, b) ≥ 0 for all a ∈ [−C,C]K and b ∈ RK . But,
because ξ(a, a) = 0, the latter is implied by

∇bξ(a, b)>(b− a) ≥ 0 .

Substituting the definition (20) of ξ(a, b), this can be rewritten as

(1− β)(b− a)>∇2f(b)(b− a)− β

2
∇3f(b)[b− a, b− a, b− a] ≥ 0

where for all h ∈ RK ,

∇3f(b)[h, h, h] =
∑
i,j,k

(∇3f(b))i,j,khihjhk . (21)

Rearranging the terms gives the following condition

∇3f(b)[b− a, b− a, b− a] ≤ 2

(
1

β
− 1

)
∇2f(b)[b− a, b− a]. (22)

where ∇2f(b)[h, h] =
∑
i,j(∇2f(b))i,jhihj . Let p ∈ ∆K defined as pi = ebi∑K

j=1 e
bj

. The first two derivatives of f

satisfy

∇f(b) = p, ∇2f(b) = diag(p)− pp>.

Then using that ∂
∂bj

pi = 1[i = j]pi − pipj and chain rules of the derivative, the third derivative may be computed as
follows

(∇3f(b))i,j,k =
∂

∂bk
(1[i = j]pi − pipj)

= 1[i = j]
∂pi
∂bk
− ∂pi
∂bk

pj − pi
∂pj
∂bk

= 1[i = j](1[i = k]pi − pipk)− (1[i = k]pi − pipk)pj − pi(1[j = k]pj − pjpk)

= 1[i = j = k]pi − 1[i = j]pipk − 1[i = k]pipj − 1[j = k]pipj + 2pipjpk . (23)
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Let X be a random variable which takes the values bi − ai with probability pi, for i = 1, . . . ,K. Now, note that

E[X3] =

K∑
i=1

pi(bi − ai)3 =
∑
i,j,k

1[i = j = k]pi(bi − ai)(bj − aj)(bk − ak) ,

E[X2]E[X] =

(
K∑
i=1

pi(bi − ai)2

) K∑
j=1

pk(bk − ak)


=

∑
i,j

pi(bi − ai)(bj − aj)1[i = j]

 K∑
j=1

pk(bk − ak)


=
∑
i,j,k

1[i = j]pipk(bi − ai)(bj − aj)(bk − ak) ,

E[X]3 =
∑
i,j,k

pipjpk(bi − ai)(bj − aj)(bk − ak) .

Therefore, summing Equation (23) over i, j, k and recognizing the above values of E[X3], E[X2]E[X] and E[X]3, the
term on the left-hand-side of Inequality (22) can be rewritten as

∇3f(b)[b− a, b− a, b− a]
(21)
=
∑
i,j,k

(∇3f(b))i,j,k(bi − ai)(bj − aj)(bk − ak)

(23)
= E[X3]− 3E[X2]E[X] + 2E[X]3

= E[(X − E[X])3]. (24)

Similarly,
∇2`(b)[b− a, b− a] = E[X2]− E[X]2 = E

[
(X − E[X])2

]
. (25)

Substituting (24) and (25) and replacing η = (log(K)/2 +C + 1)−1 into Inequality (22), the latter can be rewritten in
the following way

E
[
(X − E[X])3

]
≤ (2C + logK)E

[
(X − E[X])2

]
. (26)

Recall that X takes values bi − ai with probability pi ∝ ebi and that by assumption ‖a‖∞ ≤ C. Almost surely, X is
upper-bounded as

X ≤ max
1≤i≤K

{bi − ai} ≤ C + max
1≤i≤K

bi

and by Lemma 5,

E[X] =

∑K
i=1 e

bi(bi − ai)∑K
j=1 e

bj

(‖a‖∞≤C)

≥ −C +

∑K
i=1 e

bibi∑K
j=1 e

bj

(Lem. 5)

≥ −C − logK + max
1≤i≤K

bi .

Hence, almost surely
X − E[X] ≤ 2C + logK ,

which implies Inequality (26) and thus conclude the proof.

Lemma 5. For all b ∈ RK , ∑K
i=1 e

bibi∑K
j=1 e

bj
≥ max

1≤i≤K
bi − log(K).

Proof. Let p ∈ ∆K defined as pi = ebi∑K
j=1 e

bj
. We can write the left term as

K∑
i=1

pibi = −
K∑
i=1

pi log(e−bi).

By concavity of the logarithm, it follows from Jensen inequality that
K∑
i=1

pibi ≥ − log

(
K∑K
i=1 e

bi

)
= log

(
K∑
i=1

ebi

)
− log(K) ≥ max

1≤i≤K
bi − log(K).
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The following lemma shows that the logistic loss satisfies Assumption (A2). The proof follows from generalized
self-concordance.
Lemma 6. The logistic loss ` verifies for all y ∈ [K], x ∈ Rd and θ1, θ2 ∈ Rd,

`x,y(θ1)− `x,y(θ2)−∇`x,y(θ2)(θ1 − θ2) ≤ e4R2‖θ1−θ2‖2‖θ1 − θ2‖2∇2`x,y(θ2) .

Proof. By example 2 of Marteau-Ferey et al. (2019), the logistic loss is generalized self-concordant with coefficient 2R.
By equation (30) of proposition 4 of the same paper, using λ = 0 and µ = δ(x,y) we have

`x,y(θ1)− `x,y(θ2)−∇`x,y(θ2)(θ1 − θ2) ≤ ψ(‖θ1 − θ2‖)‖θ1 − θ2‖2∇2`x,y(θ2)

with ψ(t) = (et − 1− t)/t2. Using that ψ(t) ≤ et2 for t ≥ 0 concludes the proof.

The following lemma is a classical technical result of linear algebra.
Lemma 7. Let d ∈ N and A,B ∈ S+(Rd) such that A > B, then

Tr(A−1B) ≤ log

(
|A|

|A−B|

)
.

Proof. Using the concavity of X 7→ log |X|, we have

log

(
|A|

|A−B|

)
= log |A(A−B)−1| ≥ Tr(I − (A−B)A−1) = Tr(A−1B).
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