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Abstract

We study effective transmission conditions able to reproduce the
effect of a periodic array of Dirichlet wires on wave propagation in
particular when the array delimits an acoustic Faraday cage able to
resonate. In the study of Hewett and Hewitt. 2016 Proc. R. Soc.
A, 472: 20160062, different transmission conditions emerge from the
asymptotic analysis whose validity depends on the frequency, specifi-
cally to the distance to a resonance frequency of the cage. In practice,
dealing with such conditions is tricky especially if the problem is set
in the time-domain. In the present study, we demonstrate the validity
of a simpler unified model derived in Marigo and Maurel 2016. Proc.
R. Soc. A, 472: 20160068, unified meaning valid whatever the dis-
tance to the resonance frequencies. The effectiveness of the model is
discussed in the harmonic regime thanks to explicit solutions. It is
also exemplified in the time domain where a formulation guarantying
stability of the numerical scheme has been implemented.



1 Introduction

A Faraday’s cage is a cavity whose metallic boundary acts as a shield against
external electrical discharges. When this boundary is punctured the shield-
ing is not perfect anymore. Originally set in the static case, Faraday cage
structures have been studied in electromagnetism for applications to filtering
and shielding by gratings and grids. In this context, the question of the ra-
diation leakage for instance from microwave oven doors has been addressed
theoretically [II, 2 3] and experimentally [4]. More recently, the problem has
been revisited and extended to the acoustic case i.e. governed by Helmholtz
equation [5, [0, [7] and to the electromagnetic case, i.e. governed by Maxwell’s
equations [8]. The aim is to evaluate the effectiveness of the shielding when
waves propagate outside a cage made of a periodic arrangement of wires; in
two-dimensions, the distance between the wires is h and their typical extend
is e. The low frequency regime is considered i.e. kh = O(e) and ¢ < 1,
where k is the typical wavenumber imposed by the source. Besides, in most
of these studies, thin wire approximation is used which means that ; < 1
hence the shielding is controlled by the number N of wires per unit length.
Martin derived explicit solutions using multiple scattering theory for N point
like wires evenly distributed on a line (not a cage) or on a large circle (a cage)
[5]. For a cage, Hewett and co-authors showed that the asymptotic limit of
large N results in a continuum model involving homogeneized transmission
conditions across an effective interface [0, [7]. For thin wires, these conditions
are derived using the specific scaling (£) = O(e™<) for every ¢ > 0, intro-
duced in [9] for thin Dirichlet fibres in a large volume. This scaling allows
the coupling between the two sides of the array to be captured in the limit
problem that is the zero order problem provided by the asymptotic analy-
sis. This is a key point in the present context. Indeed, for thick wires with
(7) = O(1), the coupling cannot be captured by the limit problem; at the
zero order, the array is crudely replaced by a Dirichlet wall. (In [8] this is
used to discriminate between different geometries of arrays those producing
an efficient shielding.) The coupling is captured at the first order. For the
problem of scattering by a linear array in free space considered in [5], this
is incidental: the zero order model predicts zero transmission and the first
order model a small transmission. However, when the array delimits a cavity,
the limit problem is ill-posed at the resonances of the close cavity. To over-
come this difficulty Hewett and Hewitt derived a model made of two different
conditions, ones being valid far from the resonances and the others near the
resonances [7]. The problem has been approached differently by Marigo and

Maurel [10, 11] who derived effective conditions without considering a spe-



cific wave problem. These unified conditions, which gather the zero and first
order conditions, have been further applied to the scattering by a linear array
in the free space (not a cage) [10] and to the scattering by the same array at
a distance D of a Dirichlet wall with kD = O(1) (a one-dimensional cage),
see Appendix B in [11]. The underlying idea is that the effective conditions
remain valid in any wave problem as long as this problem does not involve a
length comparable to that of the array spacing (the microstructure). We can
notice that the same idea applies to classical transmission conditions across a
flat interface : while no interface is truly flat in the least at the atomic scale,
it is commonly admitted that what matters is that it appears to be flat at
the scale of the wavelength. Accordingly their validity is not interrogated
whenever a new problem is considered. Intuitively this should be true after
any homogenization process if the resulting conditions have the same, good,
properties as the actual ones. In [I1] the construction of unified conditions,
avoiding an iterative resolution, provides a well-posed effective problem. This
being said, well-posedness does not implies effectiveness of the model to ap-
proximate the actual solution. We address this question in the case of a cage
by constructing asymptotic expansions of the solutions of the actual problem
and of the unified, approximate, problem. By construction the expansions
coincide far from the resonances; more interestingly they also coincide near
and at the resonances. It is a good news for homogenization that no compli-
cation occurs in a simple configuration where the unique additional length
scale, that of the resonant cavity, is at the largest, wavelength, scale. More
generally, this interrogates the pertinence of an iterative resolution which
reconstitutes faithfully the expansion of the solution. Indeed, such an expan-
sion can fail in satisfying basic conservation laws. In contrast, a model using
unified conditions is shown to enjoy the same good properties of the actual
problem (conservation of the fluxes in the harmonic regime and conservation
of the energy in the time domain).

The rest of the paper is organized as follows. In §2| we remind the results
of the homogenization procedure for an array in the free space. The result
is the zero and first order transmission conditions as used in an iterative
resolution and the construction of unified, up-to-first order, conditions. We
move on to the Faraday cage in where we prove that the solution of
the unified problem efficiently approximates the actual solution far, near
and on the resonances. Numerical results are collected in §4] and 5] In the
harmonic regime, §4] explicit solutions of the effective models are available.
We illustrate the effectiveness of our (unified) model that we compare with
the 3 solutions resulting from an iterative resolution being piecewise-valid
far, near and on resonance. (It is shown that the 3 solutions coincide with



Taylor expansions of the unified one.) To anticipate, the advantage of the
unified solution can be summarized by comparing the forthcoming figures
and [/} In §5] we consider the transient regime which poses the problem of
the stability of effective models. The initial formulation of the unified model
is shown to belong to a family of formulations with the same asymptotic
limit. We show that only a part of this family ensures stability of the model
when it is associated with a law of energy conservation involving a positive
effective energy. The numerical implementation of a stable effective model
allows us to show its effectiveness by comparison with direct numerics. We
also illustrate the problem of numerical instability for unstable formulation
and the link with the behavior of the effective, interfacial, energy. Concluding
remarks and extensions of the present work are given in §6| We also collect
additional calculations and results in 4 appendices.

We denote (p,u) the fields satisfying the wave equation in the time do-
main 9
ou _ g, P
ot ot
(the wave speed is ¢ = 1), and in the harmonic regime with time dependance
e~ 1 satisfies the Helmholtz equation

+ divue = 0, (1)

Ap+kp =0, (2)

with k& = 2. We denote x = (x1,x2) the spatial coordinate and we consider
an array of wires whose boundaries are associated with Dirichlet boundary
condition p = 0. The array with spacing h is comprised in x; € (—eq,€1)
and it can be unbounded or bounded along x,. Within the array, a wire
has typical extends 2e; = O(h) along x; and 2e; = O(h) along x5 (figure
1)). To conduct the asymptotic analysis, we introduce the non-dimensional
coordinate & = ¥, = (21, 22), with L of the order of a typical wavelength
imposed by the source, and we introduce the small parameter

5—h<<1
=7 ]

2 Reminder: a linear array in the free space
(not a cage)

Here we consider the free space and an array of wires evenly distributed on
the interface T' = {(0, ) € R? x5 € R}, hence unbounded along s.
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Figure 1: A linear array in free space (not a cage) — Left panel : the actual
problem on p° in rescaled coordinate * = *. Right panel : the resulting
effective problem on p**. The asymptotic homogenization, symbolized with
the arrow involves elementary problems on (@, Q") set in an elementary cell

Y containing a single wire.

2.1 Iterative or unified transmission conditions

The asymptotic analyses conducted in 7] and in |10} [11] are basically identical
and they provide the same results. With p = py+ep; + O(e?), the zero-order
term pg is found to satisfy the wave equation in the transient regime or
in the harmonic regime with boundary conditions

po(0%,25) = 0. (3)

The first-order term p; is found to satisfy (|1f) or (2)) with boundary conditions
fed by po, specifically

. _ po ,\+ o Ipo ;-
p1(07,22) = Aaml (07, z9) e (07, 22),
o o (4)
+ _ RrYLO0 n+ _ A 2P0 -
p1(0 ,ZEQ) = 69:1 (0 ,ZL‘Q) A@xl (0 ,ZL‘Q).

The two real constants (A, B) are given by the elementary solution Q" _set
in rescaled coordinate y = 2 in the domain Y = {(yl, y2) € R x (0,1) \\?},

where Y C (=5, ) x (0,1) is a canonical wire that we suppose symmetric
with respect to the axis of equation y; = 0 (inset of ﬁgure. The elementary
solution @7 is the 1-periodic w.r.t to 1y, solution to

AQT =0, inY, Q"=0 ondY, and lim VQ' =0, lim VQ' = e,

Y1—>—00 Yy1—+00
(5)

and the constants B and A are defined by
Q ~ A QF ~ y+B (6)

Y1—>—00 Y1 —+00



A usual resolution consists in solving the problem on py with , then that on
p1 using ; we call the conditions and iterative transmaission condi-
tions. Following [12, 13, [14], unified transmission conditions are constructed

recombining and in

ap,& - _ apap76 + apapﬁ -
P07, 2) = A o (0", x9) —eB o (07, z2),
a ap,& 8 ap,& (7)
ap,€ () — p—p7 + _ pp, -
p (O 7372) eB axl (O 7'1'2) eA axl (O 7372)'

Obviously p*¢ = py+ep1+0(g?); hence both p**¢ and (py+ep;) approximate
p up to O(e?).

Remark 2.1 The above relations are written in the case of wires being sym-
metric with respect to yy; otherwise an additional elementary solution @~ is
involved resulting in an additional constant, see (2.31) in [10]. The elemen-
tary solution Q™ is the 1-periodic w.r.t. to yo solution to

AQ =0, inY, Q=0 ondY, and lim VQ =e;, lim VQ =0.
Yyi1—>—x0 y1—+o0
(8)
For symmetric wires, Q™ (y1,y2) = —Q " (—y1,y2) hence Q- ~ y; —B and
Yy1——00
QL ~ —-A

Yy1——+00

2.2 Remark on a simple scattering problem

Let us stress a drawback of an iterative resolution when illuminating the
array by an incident wave e~***! (coming from +o00) at normal incidence on
the array, hence a solution of the form

pP(x) = e 1 L R for x; >0, p*(x) = T ™1 for x; < 0.

(9)
In an iterative resolution, R* is sought of the form R*® = Rg+eR4 up to the
first order (the same for 7). The solution py ruled by (3)) provides Ry = —1
and 75 = 0. Next py, of the form R,e* for x; > 0 and T;e~** for x; < 0,
and ruled by provides Ry = —2ikB and 77 = —2ikA. Reconstructing
R*® and 7T up to the first order leads to

R™ = (Ro+eR1) = —(1 +2ikhB), T = (To+¢Ti) = —2ikh A, (10)

which do not satisfied the conservation of the fluxes |R*|? + |T*|*> = 1.
(They satisfy the conservation up to O(¢?)). Consider now the solution (9]
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ruled by the unified conditions (7)), we obtain

1 — (kh)*(A% — B?) T _ —2ikhA

1 — 2ikhB + (kh)2(A% — B2)’ 1 — 2ikhB + (kh)2(A2 — B2)’

(11)

which satisfies exactly |R*|* 4+ |T**|> = 1. By construction, (Ro + ¢R1)

and (7o + €71) in are the expansions up to O(g?) of R* and T* in

(11). We may say that contains non valuable terms O(e?); this has

no consequence. To the opposite, cancelling these terms a posteriori would

affect the properties of the solution, here the conservation of the fluxes. We

can say as a rule that the solutions of the unified problem do not have to be
interrogated again.

R =

3 A linear array atop a Dirichlet wall (a cage)

We now envision a Faraday cage, see figure 2. We consider two rectangular
domains Q" = (0,d") x (0,£) and Q" = (—d",0) x (0, ¢), with d*,¢ > 0, that
share the common interface I' = {(0,23) € R? 25 € (0,¢)}. We denote by
Q=Q"UQ UT and by I'* the lateral boundaries of Q, i.e.

I'* = {(£d*, 25) € R? 2y € (0,0)}.

A large positive integer N > 0 is the number of wires in (0,¢), whence

N ~ f, and the analysis holds far from the lateral boundaries at x5 = 0, 1.

We puncture the domain ) along the interface T' by subtracting the set

L= U € {V + ieg} . Finally, our domain is the open set Q¢ = Q\.Z*. On
1<i<N

that domain, we consider the Helmholtz equation written in non-dimensional

form with K = (kL)?: find p° solution to

Ap* 4+ Kp® =S, in ),
(12)
Onp® =iVKp® onT*H, p=0 ondQ\I'",

where S is a source term compactly supported in QF (figure . Providing S
is regular enough, Problem is well-posed.



Actual problem on p° Problems on p*, p*¢
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Figure 2: A linear array atop a Dirichlet wall I'™ — The actual problem
on p° and as results of asymptotic analysis, the limit problem on p* and
of the unified problem on p**e,

3.1 The question put to the unified problem

As e — 0, Problem ((12) “tends” to the following limit problem: find p*
solution to

Ap*+ Kp*=S inQF, Ap*+ Kp*=0 in Q,

Opp* =ivVKp* onT*, p*=0 ondQ\I'", p*=0 on O,

(13)
and it turns out that the limit problem uncouples the behavior of p* above
and below I'. (The limit problem is the zero-order problem, p* = py, involv-
ing the boundary condition ) As previously said, Problem right) that
is posed in 2" may be ill-posed while the initial problem is not. Indeed, there
exists a sequence of values (K),en where Problem right) admits a non
trivial kernel of finite dimension. These values are known as the eigenvalues
of the Laplace operator in €2~ with Dirichlet boundary conditions which are
the perfect resonances of the closed cavity €2°. This ill-posed limit problem
reflects the presence of the quasi-resonances for the actual problem hav-
ing a small imaginary part due to radiative damping and a real part close to
K.

Away from these particular frequencies, we expect that the unified up-to-first-
order problem can be used. Specifically, p° can be approximated (with



an error of order £2) by solving the following problem: find p*¢ solution to

( ap,& ap,& 1
Ap + Kp =S in Q+7 Ap*™c + Kp*™* =5 in (I,
a ap,& ap.€ -
7 iRp™ onTY, P =0 on O\T,
33@1
pPe =0 ondQ"\(TUL"),
R apap,z’:‘ apap,é‘ - apap,s apap,&‘
prE=eBn— —eA Py =eA—— —¢B on I
\ o+ 0xy1 o+ Ox1 |- 0 dz1 o+ 91 jor
(14)

We emphasize that, unlike the limit problem , Problem ([14) turns out
to be well-posed for any dimensionless frequency K. However this does not
presume that it approximates p® when K is close to an eigenvalue K of
the limit problem right). This is the question addressed in the rest of
this section. To do so, we consider K a simple eigenfrequency of the cavity
problem right) and the resonance frequency K, of the actual cavity is
close to that eigenfrequency. Being “far from" or “close to" the resonance can
be measured by the relative amplitudes of the fields p° inside and outside the
cavity. Outside the cavity, p° = O(1) imposed by the source, and we define
three cases :

e The off-resonance case (1) — It corresponds to |K — K| = O(1), hence
far from the perfect resonance, and we shall see that p° = O(e) is small
within the cavity 2. This is the case where the validity of is not really
questioned.

e The near-resonance (2i) and on-resonance case (2ii) — These cases corre-
spond to K close to K with

K(e) = K} + eky + 25a, (15)

(see figure [3)). For an arbitrary 1, p° = O(1) becomes significant within the
cavity €)7; it is termed the near-resonance (2i). Arbitrary x; means k; # k,
K being a specific value which makes (K + ex) close to the actual resonance
K,, see forthcoming (20). This on-resonance case (2ii) is characterized by
large amplitudes p* = O(é) inside the cavity. In this close vicinity of the

actual resonance |K — K — ex| = O(&?), the parameter ky can be used to

get the resonance curve as a(k2) = €4/ [ - [P°]?.

The performance of Problem to approximate p® in the cases (1), (2i)
and (2ii) is demonstrated below. The demonstration relies on the construc-
tion of asymptotic expansions of p® and p*>° and we shall see that the leading
orders of the two expansions coincide in the three cases. This was expected,



| max|p°|

10*

100 F
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Figure 3: Resonance curve by means of max|p?| in the cavity 2 close to the
resonance K, (plain red line). The dashed grey line shows the off-resonance
solution blowing up at the resonance K of the close cavity (its validity
is limited to p* = O(e)). The dashed green line shows the near-resonance
solution blowing up at (K +ex) close to the actual resonance K, (its validity
is limited to p* = O(1)). The inset show the parametrization of the resonance
curve in the on-resonance regime whose validity is limited to p* = O(%)

by construction, in the case (1) but it may appear surprising in the resonant
cases (2).

Remark 3.1 We restrict ourselves to the case where K is a simple eigenfre-
quency of the cavity problem -right). The result holds for multiple eigen-
frequencies but requires more involved calculations.

3.2 Asymptotic behaviour of the exact solution

The determination of the asymptotic behaviour of p® is based on the method
of matched asymptotic expansions, which permits to capture the boundary
layer effect occurring in the vicinity of the wires. The main idea is to distin-
guish between two "far field regions" located far from I' and a near field area
located in its vicinity, the two types of expansions matching in some inter-
mediate area. In the present case, we can construct asymptotic expansions
of the form

Z " pm (1, 2) far from I'  (far field expansion),
e m>mg
p= m Ty T2 . C )
Z eqm | —, —, To in the vicinity of ' (near field expansion),
e €
m>mg

(16)
where the integer mgy will be equal to —1 or 0. Since we are interested in
the macroscopic behavior of p®, we present the results on the leading order

10



in the far field expansion; the step-by-step construction of the asymptotic
expansion is technical and it is postponed in Appendix [A]

3.2.1 The off-resonance case (1)

The off-resonance case consists in taking a fixed K # K (independent of ¢)
that is not an eigenvalue of the cavity problem left).

Lemma 3.2 Assume that K is not an eigenvalue of the cavity problem
left). Then, far from T', p* admits the following leading-order asymptotic

P in Q7
p°~ { n (17)
eAp™ in Q,
where P* is the unique solution to leﬁ) and p~ s the unique solution to
Ap~+ Kp~ =0 in Q"

or* (18)
— r
Bz, on

We point out that p* = e Ap~ is small in the cavity 2", which means that the
array efficiently shields the domain ).

p- =0 on dQ\I, P

Y

3.2.2 The near-resonance case (2i): k1 # K

We consider K a simple eigenfrequency of the cavity problem right),
which is for instance the case for the first eigenvalue in two dimensions. We
denote by p; a corresponding real-valued eigenvector such that

/_(p:;)2dm =1 (19)

Remark 3.3 Obviously the orthogonality condition does not entirely
define p among all the normalized eigenvectors associated with the eigenvalue
K. Indeed if p! fullfills (19)), so does —pk. Naturally the arbirtrary choice
of p;, does not change the results below.

Then, we take K (¢) of the form which means that we consider frequencies
located in a e-neighborhood of K. At that stage, we introduce the real

number k )
8 *
k=—B /F <8Z71L (O,xg)) dzs (20)

with B the constant appearing in . We shall make the distinction between
the two sub-cases (2i) k1 # k and (2ii) k1 = K, and we start here with k1 # k.

11



Lemma 3.4 Assume that K is of the form and that k1 # k. Then, far
from T', p° admits the following behavior

. {m, in Q, Al

aipl, in Q) K1 — K’
where P is the unique solution to (13-left) for K = K, A is the constant
appearing in and

oP* op’
1=/ == —= ) 22
/1—\ aiL‘l (0, 372) aiL‘l (0, .TQ)dxg ( )

By contrast to the non-resonant case, p* = ayp;, is of order unity inside the
cavity. There is no shielding effect as the fields are as intense inside and
outside the cavity.

3.2.3 The resonant case (2ii): k; =k

Lemma 3.5 Assume that K is of the form and that k1 = k. Then p°
has the following behavior

P’ + as APT in Q7,

Al
S~ with  ap = , 23
R RS r-erepr P
£
with I is defined in , I* are defined by
oP" op* i oP- op?*
I"= [ —(0 —(0 d I'= [ —(0 —(0 d
. a$1( ’x2)8$1( ’xQ) L2 pal‘1< ’m2)8$1< ,1‘2) T2,
(24)
and P* and P~ are the (unique) solutions to
AP+ K:P*=0  inQ", AP + K'P = _% o
orT _ i/ K:P™ on I'7, P = on 0OQ\T,
axl " < ap*
op* P =-== on I,
pr=_-2== on I, Oy
9o Pt de =0
(PP =0 on OQF\(T*UT) | .t P T
(25)

In the close vicinity of a resonance, the field p* = O(2) in @ becomes more
intense within the cavity than outside and it would blow up as e vanishes.
Indeed, in the limit of zero €, p® tends to p* and we recover a perfect resonance
with unbounded amplitude inside the cavity.

12



3.3 Asymptotic behaviours of the homogenized solution

The obtention of the asymptotic behaviour of p** solution to also relies
on the construction of its asymptotic expansion. However, this expansion is
much simpler than that of p*. Indeed, the approximate problem does not see
the wires and we have a classical expansion of the form

PP = Z eMpr(xy,m9) In QT U, (26)
m>mg
where my is equal to —1 or 0. Below we show that we recover the off-resonance
and the two different resonant cases— and , corresponding to .
3.3.1 The off-resonance case

In that case, as for the exact problem, the formal expansion (26)) is plugged
into (14), and we find mo =0 (p*? = 0 in Q" and ). Next, p{® is solution
to

Apgp + Kpgp = S n Q+, Apgp + Kpgp — O

opy’
8];01 = VK py on ", p»=0 ondQ\I'", py =0
(27)

and as K # K the solution reads

i P* inQF,
Py =
0 0 in €.

In €27, the first non-zero contribution appears at the order 1, with pj” solution

to
Ap® + Kp® = in 0,

oP*
oxy’
Remembering that we have denoted p~ the unique solution to ((18]), we obtain
that pi* = A p~. Eventually, we get for p»¢ = pif +epi* + O(e?) the leading-
order asymptotic
{P* in Q"
pap,e ~

eAp™ in

on [

pr=0 ono\I', pr=A

which coincides with .

13
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3.3.2 The near-resonance case ki # Kk

In that case, inserting the formal expansion into (14 and separating the
different powers of ¢, we find again that my, = 0. But now, pg’ is solution to

Apgp + K:Lpgp =S in Q+, Apzap + K;:pgp =0 in 9—7
o
éfo —iVK:py  onT*, p=0 ondQ"\I'", |[pr=0 on 9.
T
(28)

The problem (28}left) is identical to (27Heft) for K = K and we have de-
noted P its unique solution. In contrast, the problem right) is ill-posed
at the eigenfrequency K of the close cavity. However, as p} is the eigenvector
associated with K, we can write

. {Rﬁ in Q,
Po =

ap %

o’ pr in (r,

but @} is unknown. (This means that the problem at the dominant first order
cannot be solved; it corresponds to the limit problem at an eigenvalue of
the Laplace operator in 2.) The value of o® is obtained from the first-order
problem in 27, namely find pj® solution to

Ap? + K pi? = —ky a7"p), in

OP; 0P,
8.171 L 3331

pr=A on I, pi? =0 on O\I,

which is solvable if and only if

o A OP © )ap,’;
P = To)—2
! ki — kK Jp Oz ) 9,

(making use of and (20)) and we exactly recover (with of® = o).

(07 [Eg)dl'g )

3.3.3 The on-resonance case k| = K

Inserting the formal expansion into (14), we find mo = —1 with p™
solution to

Ap™, + Kp™®, =0  inQF, Ap® + Kip™ =0 in O,
op*
;SL? - Z\/?f{ 2} on ', p® =0 ondQ \I'", pZ =0 on 08,

14



The term p*, plays basically the same role as pj” in the near-resonance case.
It is solution to (27Heft) in QF but without the source S hence p™; = 0 in
Q7. It is solution to the ill-posed problem right) in 2" hence equal to p}
up to an unknown constant a5’ in {27, namely

. 0, in QF,
P =
ay’ pr, in (.
As in the near-resonant case, 3" is obtained from the problem at the next

order, in the present case, the zero order. At the zero order, p° is solution
to

(A 2P * o ap __ : +
APF +HEnpy =5 in Apy -+ Kopy = —n o), in
a ap a -
apo —i/Kp¥ onTt, p¥=0, ondQ"\(I'"Ul), Py’ =0 on I\T,
T
op:
a * ap __ ap n
W= —Aap?e ont. b= —Baig onl
\ 1

As P is solution to (25Heft) and P is solution to (L3}left) for K = K} , we
recover that

Py =af APT + P inQF,
as in , but o5 has to be determined. Besides, the problem in ) is
solvable by construction (with x; = x) and with P~ solution to (25}right) we
have

Py = ay’BP” + 5%p,  in (Y,
where 5°° is unknown at this order (but we do not need to determine it). As
we have done to find aj” in the near-resonance case, we determine the value
of a5” using the solvability condition for pi” in €27, solution to

AP + Kip? = —k1 (0" BP™ + B2°p)) — koay’p),  in 0,

oPT OP* oP- op:
pi? =0 on Q\T, P =A (Of{pA + n) - B (aap— + B pn) onT,

0551 8361 2 8331 : 8371
Al _
and we get that af = hence we entirely recover (23))

Ko — A2+ + B2I-’
(a3 = ag).

4 A one-dimensional cage in the harmonic regime

To begin with, we consider a one-dimensional cage which means a cage lat-
erally unbounded along x,. In the harmonic regime, the time dependence is
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e~ and the scattering problem is set for an incident wave with wavenumber

k = k(cg,s9), cj +s5 = 1 and k = £ (we use ¢ = 1). The wave comes from
x; = +00 on the array, hence pseudo-periodic conditions along x5 apply. The
array is made of square wires e = e¢; = ey and spacing h = 1 (with arbitrary
unit) at distance D = 7 of a Dirichlet wall I'". We call p the solution of
the actual problem computed numerically using a modal method described

in [10]; we call p* (omitting ¢) the solution of the homogenized problem.

4.1 Validity of the unified model, comparison with the
iterative model

4.1.1 Solution of the unified model

The solution of the scattering problem is explicit using (2)) along with (7)) [}
It reads p**(x) = p*(xy )e*se*2 with

efikc(gxl + Rape’ikCQX1’ fOl" X1 c (0’ —|—OO),
pr(x) = . (29)

P sin (keg(x1+ D)), for x; € (—=D,0),

and
R — _E’ Do — _QZ'kCgh.A7
2 Z

and z = (1 — ikcphB) sin(kcyD) + kcgh(B + ikcoh(A*— B?)) cos(kcoD).
(30)

Expectedly, |R*| = 1 and P* is bounded. Besides, defining the resonance
as R* = 1 provides the resonance frequency k, and the corresponding am-
plitude P*» by means of the condition that z is purely imaginary

max

2
tan(k,coD) + kpcohBB =0, P>

= 1
w2 Akpcoh cos(kycoD)’ (31)

hence k,coD ~ nm <1 — % + (%)2). (We have checked that defining the

resonances as the maximum amplitudes within the cavity provides almost
the same results for (k,, P> ).)

max

To begin with, we report in figure 4| the fields p(x) and p*(x) for 3
frequencies corresponding to the cases (1), (2i) and (2ii) studied in §3] Off-
resonance, the incident wave is basically reflected as on a Dirichlet wall with

0

0
'In dimensional form, ¢ is replaced by h in @, since e— = h—.
31'1 8)(1
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R* ~ —1 resulting in a weak amplitude within the cavity. In contrast, on-
resonance R* =~ 1 and the amplitude is large within the cavity. In between,
near-resonance, the fields inside and outside the cavity are comparable in
amplitude. It is noticeable that the agreement between p(x) and p*(x) from
(29) with is qualitatively very good.

off-resonance near-resonance on-resonance

Figure 4: Wavefields in a 1D cage — p(x) computed numerically and p*(x)
from —. The source is a plane wave of amplitude unity at oblique
incidence 45° on a periodic array of square wires with spacing h = 1 and
with e = e; = e3 = 0.1 ( x2 € (0,10)); the Dirichlet wall I" is at x; = —T7.
The amplitude within the cavity is O (¢) off-resonance (k = 0.700), O(1)
near-resonance (k = 0.640) and O(1) on-resonance (k = 0.633).

The validity of is further illustrated in figures [5 and [f}, We have
computed the maximum amplitude max|p| within the cavity against k €
(0,2) for e = 0.01, 0.1 and 0.2 (plain blue lines in figure [f]). Next, max|p™|,
reported in dashed black lines, is determined from (29)-(30) (the values of
(A, B) for e = 0.01, 0.1 and 0.2 are given in in Appendix[B]). Notably, for
kcoD > 5, we have max|p*| = P*. Classical trends of the resonance curves
are observed. As e increases, the leakage of the cage decreases resulting in
resonances with higher quality factors, that is thiner in frequency and higher
in amplitude. These resonances take place close to k)cyD = nm, in the

reported case ki = 0.635, k3 = 1.270 and k; = 1.904. The prediction of

17



max|p|
: :

— 004 —

1071 e=0.01h

= actual problem
= = unified problem

1073 0.60

«— 0.005 —

100,

10—2,

— 0.001 ——

10% ¢

1074 0.6475

kh

Figure 5: Maximum pressure in the cavity against the dimensionless fre-
quency kh, max|p| from direct numerics (plain blue lines), max|p*¢| from
(29)-(30) (dashed black lines). The right-panels show a zoom of the left-
panels.

the unified problem appear to be excellent up to kh = 2 that is beyond the
expected range of validity of the homogenisation (with kh = O(e) assumed
to be small) although a slight discrepancy is visible above kh ~ 1 for e = 0.1
and 0.2.

From the representation of figure [5] we have determined the resonance
frequency k; and the corresponding amplitude at the resonance P,,,. against
h € (0,3). Results, in figure |§|, show that the 1D cage has resonances behav-
ing as for its 2D analog [7] and conform to (31)). As the effective problem
tends to the limit problem for vanishing h, decreasing h makes k; closer to
ki; next ki departs from k} essentially linearly with A. Amusingly, as in the
2D cage, e ~ 0.1h is a critical value; below k; decreases with h, above it in-
creases. From (1)), k,, = k7, is obtained for B = 0, and B = 0 for e ~ 0.115h.
In any cases P, ~ % decreases with h as the leakage increases.

4.1.2 Comparison with the iterative model

The iterative model is made of 3 predictions, off-resonance, near-resonance
and on-resonance. We have shown in §3| that the asymptotics of the unified
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resonance frequency Plnax

0.65

0.55

3 1072

log h

Figure 6: Variations of the resonance frequency k; and maximum amplitude

Pax at the resonance against h. Plain lines: computed from direct numerics;
dashed black lines: from .

model coincide with the iterative solution in the 3 regimes. However, this
does not presume how the two solutions compare for a given h. As previ-
ously said, the problem is one-dimensional along x; which makes explicit the
various functions needed to define the solutions of the iterative model, see
E|. We give below the resulting expressions in dimensional coordinate with

pe (Xh Xg) — pe (Xl)eikSQXQ .

e Off-resonance case — In this case p° ~ eAp~ for x; < 0 (see (L7))), hence
using 2, p° reads

4,Ah (k‘ceD)?’S. <m7rx1)

too —di— in

D D h
)~y mr - QiA—(kc@D) (1 +

2
m—=1 kCgD 1 D

mm
Expectedly, the amplitude within the cavity blows up at all the perfect res-

onances of the close cavity kcyD = mm. (The solution is valid far from these
resonances. )

X1

D) @

Remark 4.1 The solution is the Taylor expansion of p*(x1) in at

?In non dimensional form and with L = D, hence z; = % € (—1,0) (¢ = £ and

K} = (nm)?, K = (kcgD)?), we have

+oo . 3/2 .
4K . )
=2y (K EZ:;B) ~2iVE (I421),p}(@1) = V2sin (nray),  Pie) = e e

400 n o
. Z — S (Mmnx
Pt (x1) = —V2nme™™ ™ P (z1) = —2V/2 ( ml—((’f)?l) s (mm)) SV
m#n,m=1 n
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the first order in (kh), hence z ~ sin(kcyD) in (30)), see [

€ * : _ _AI
e Near-resonance case — From (21f), p* ~ aqp! for x; < 0 with oy = g

with T = —2v/2i (n7r)2 and from , k = —2B(nm)? and k; = K_EK”; =
D ((kcgD)?* — (nm)?), see 2. Hence, we have

—44 % sin <mlT)X1>

k ? '
Ca
nmw D
Again, this amplitude blows up, but now at a value closer to the actual

resonance frequency k,, namely for kcyD ~ nrw (1 — B%) corresponding to

the first order expansion of the dispersion relation in (31]). (The solution is
valid far from this resonance.)

pE(xa) ~

Remark 4.2 The solution coincides with the Taylor expansion of p™(x1)
mn up to O(§2 around the resonance of the close cavity, namely for
keoyD = nw(1+ek) [

e On-resonance case — Here, applies, hence p* ~ %2p; for x; < 0 with

ay = m. Next, from (24) along with 2, I* = —2i (n7)® and I" =

—3(nm)* (using ) and by construction kg = (%)2 [(%)2 -1+ 2%} It
follows that

3The off-resonance case: reads p°(z1) = Z 5 -
m=1 (Q> —1

2ie AVK (1+x;) in non-dimensional form, which coincides with p*(z;) =
2ikcoh
ikcoh A sin (keg(x1 + D)) + O(e?) from (29)-(30) up to O(e?), using (1 + z1) =

~ sin(kcgD)
-2 . . 2mmsin v K
mg % Sln(mﬂ-xl) and Sln( V K(.’I;l + 1)) = - m

4The near-resonance case: reads pf(z1) ~ %ﬂ;}gl) which coincides with
p*P in up to O(e), using that sin (VK(z; + 1)) = cos(nm)sin(nmz1) + O(e) and
sin VK + evVK(cos VK —isinVK) = enm cos(mr)(l% + B) + O(e?).
+oo
2

, 3
5 for I" we have used that Z 1= (@) =5 for any n.

sin(mmaxy).

m#n,m=1
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The leakage of the cavity is recovered hence the amplitude within the cavity
is finite. This solution is valid in the close vicinity of the resonance k,,.

Remark 4.3 Again, the solution cotncides with the Taylor expansion
of p™(x1) in up to O(1), around the resonance nw of the closed cavity
kcgh = nm(1 — eB + €%k) [l We also obtain that the mazimum amplitude is

reached for
s (M _ghB g (BBY
(o) _(D) (1 2D+3(D ,

which is the Taylor expansions of the dispersion relation in .

We end this comparison by reporting in figure [7]the same numerical result
as in figure [5 but now we compare the actual solution with the solutions
(dashed grey lines) valid far from the resonances, (dotted green lines)

max]p]
-

- ()Tl—l'(?“%()l\‘d]l('(’,
¥ >

~ e actual problem

. .

"""" = = off-resonance
.
............ near-resonance

o
g
____

Figure 7: Same representation as in figure [5| Direct numerics for the actual
problem and from the iterative model: off-resonance curve from (32)), near-
resonance curve from (33)) and on-resonance curve from (34]).

5The on-resonance case: In non-dimensional form (34) reads p°(x1) ~
—2iAsin(nry)

e(l;; — B2 +int A2 — Bk + %152)

. —2iAsin(nmxy)
(129)) which reads as p*?(x1) = —=
() €(k‘ — B2 4 i(mr).AQ)

, which has the same expansion up to O(1) of p* in

+0(1).
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valid near the first resonance and (dashed red lines in the insets) in its
close vicinity. The results are conform with those reported for the 2D cage in
[7] and conform with the idea of piecewise-valid solutions. Compared to the
unified solution which is valid in the whole range of frequency, the validity
of each prediction is locally as good; the main difficulty in their use is to
define the frequency ranges where each of them can be used. Eventually, it
is visible that the result for e = 0.01 is not satisfactory essentially because
the off-resonance solution departs significantly from the actual one; this case,
which can be treated within the "thin wire approximation", is discussed in

the Appendix [C|

5 A two-dimensional cage in the transient regime

We now move on to the transient regime and consider a two-dimensional
cage that is to say a cage laterally bounded along x,. As the fields depend
on time and on space, we consider p(x) — p(x,t).

5.1 enlarged formulations of the model

To begin with, we note that the transmission conditions cannot be used as
written in that is written across a zero thickness interface. Introduced
in [12, 3] enlarged formulations of the transmission conditions consist in
modifying by simple Taylor expansions of p* (0%, x,,t) around x; = 4a
with @ > 0 resulting in (in dimensional form):

8 ap 8 ap
p**(—a,x2,t) = hA b (a,x9,t) — (hB+a) P (—a,xa,1),
6X1 X1
5 5 (35)
w B P B P B
p*(a,xq,t) = (h8+a)_8xl (a,x2,t) —hA o, (—a,xa,1),

and we see that the new p* approximates p up to O(¢?) if a = O(e;) =
O(h), see (B.9) in [11]. In other words, it exists a family of effective models
parametrized by a and having the same asymptotic limit. The advantage of
the models in enlarged formulations is that they enjoy “good" energetic
properties as soon as a > a. and we shall see that 0 < a. < e;. For the time
being, we show that it is sufficient that a > e;: Let us consider the balance
of energy in €2 be a bounded region of the space containing a segment I'" and
Q, = Q\I'y where I'; = {(x1,x2) € (—a,a) x I'} is the enlarged interface
ruled by . Multiplying the first equation of by u, the second by p
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and summing up, we get

d 1
— (& + &) =0, E*(t;a) = = ((u™)?* + (p™)?) dx ,
i 2, »

E.(t;a) = g /F ((B v %) (uipfa v u‘ip‘{a) _ 2Auip|7auip|a> dx, .

(u1}}, stands for ui*(£a, xp,¢).) "Good" energetic properties means that the
effective interface provides a positive energy contribution &, a lack of which
may lead to severe instability of any time-discretization scheme; this will be
illustrated in the forthcoming

Lemma 5.1 The quadratic form (B + %)(a? + %) — 2Aaf is positive if
a> ej.

We set Q = aQ" + Q™ with a, 8 two reals and Q ", Q" defined in (F),
(8). @ satisfies:

AQ=0, inY, Q=0 ondY, and lim VQ = e, lim VQ=ae,.
Y1—>+00

Yr——0o0
(37)
. e e e
We define H(Gyl) with H <y1€< —#) =4 (y1 + El)’ H <|y1| < #) =
0, H (y1 > El) =« <y1 — #) , and ¢ = (Q — H being continuous across

any interfaces (in particular at y; = £5) and satisfying

qylj_ooaA—ﬁ(B+%), qylﬁwo‘(5+%> “BA.(38)

We define the restriction Y* C Y with Y* = {(yl, y2) € (—y*,y*) x (0,1) \?}
and y* > e;. Integrating ¢AQ over Y* and using — gives

0= / gAQdy = — V¢ (Vq+VH)dy +(a*+5?) (B + %)—ZQBA—Fo(y*),

Y*
with lim o(y*) = 0. Next, integrating HAQ over Y* leads to

y*—-+o00

0= [ HAQly =— | VH-(Vg+VH)y +(o*+5) (v - %) +o(y").
Y * Y*

Since [,. VH-VHdy = (a*+ %) (y* — <), and passing to the limit y* —
+00, we finally find

OS/YVq-quy = <B+6—h1> (a® + B%) —2A4a8, Y(a,B) € R%
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We deduce that for a > e, 0 < (B - %) (a? + %) — 2A4ap, V(a, B) € R2

Transmission conditions have been implemented numerically using a = e,
that is restoring the actual thickness of the array. The actual problem and
the unified problem involving have been implemented numerically in a
consistent manner. In both cases, the numerical method combines a Finite
Element scheme in space and a Finite Difference scheme in time [15]. P2
Finite Element are used on a triangular mesh along with a centered order 2
Newmark scheme in time, unconditionally stable without numerical damping
[16].

5.2 Temporal evolution of the field in the cage

We consider now the 2D cage shown in figure 9] the linear array is composed
of 10 circular wires of radius e = 0.1 (hence e; = e) and spacing h = 1
comprised in x5 € (0,10). The bottom boundary I'" at x; = —5 is associated
with a Dirichlet boundary condition and radiation boundary conditions are
imposed on I'" at x; = 10. Eventually the lateral boundaries at x, = 0 and
x5 = 10 are associated with Neumann boundary condition.

Remark 5.2 Note that in , Dirichlet condition was chosen on all bound-
aries for the ease of writing. This choice is however arbitrary and it does not
affect the model whose essential ingredients are the transmission conditions;
besides the analysis does not apply near the ends of the array where a specific
analysis is required which is outside the scope of the present study (see [17]).
In our simulations, Neumann boundary conditions on the lateral walls of the
cavity avoids very small amplitudes within the cavity which would fall within
numerical errors.

We use a source S exciting a range of frequencies which includes the first 3
resonances of the cavity, namely S(x,t) = g(x)s(t), with g(x) = 1/7(0.1)?
within the disk centered at (x; = 1,x9 = 5) and of radius 0.1, g(x) = 0
elsewhere. Next, s(t) = e~ sin(w,.t) with o = 5 1073 and w, = 1, see figure
For the actual problem on p, a refined mesh (Ah = 1072) is used in the
vicinity of the wires to ensure that the near evanescent field of the order of
e is well resolved; far from the wires, a coarser mesh (Ah = 0.2) ensures at
least 16 points per wavelength up to w ~ 2. For the effective problem ruled
by with a = e, we have checked that a constant mesh step Ah = 0.2 is
sufficient to produce converged solutions. In time, we use the same time step
for both problems At = 41072 to facilitate the comparison of the solutions.

24



lin-

0 400
t

Figure 8: The source s(t) and its Fourier transform $(w); the red arrows
show the resonance frequencies of the cage.

To begin with, we report in figures [0] and [L0] snapshots of the fields p and
p*?, both being computed numerically. Three regimes are exemplified:

e The short times — the source emits, part of the wave train hits the array
and it is essentially reflected. The amplitude inside the cavity is weak as the
shielding is efficient for most of the frequencies. However, we see in figure
[ that the field is not zero in the cavity both in the actual and effective
problems. The cavity is little by little filled in.

e The intermediate times — the source is still emitting but with weaker am-
plitude. Meanwhile, the energy within the cavity has grown up. At these
intermediate times, the amplitudes inside and outside the cavity are compa-
rable.

e The long times — the source does not emit anymore and the waves issued
from the source, directly or after reflection on the array, have left the calcu-
lation domain. Now the cavity releases energy very slowly, 'very slow’ being
related to the weak radiative damping of the cavity.

The agreement between both solutions is good at short times. More inter-
estingly, the solutions keep on agreeing at intermediate and long times.

More quantitatively, we report in figure [I1}left the time variations of
the quantity P(t) (resp. P*(t)) being the spatial average of p(x,t) (resp.
p**(x,t)) over the upper half-part of the cavity avoiding the near field of
the wires in the actual geometry; we choose the domain Q = {(x1,xs) €
(0,10) x (—2.5,—2¢e)}, hence

P(t) = /Q px t)dx,  P(t) = /Q P (x, 1) dx. (39)

The spectral content P (w) makes the first 3 resonance frequencies to appear.
The quantitative agreement is excellent for kh € (0,1), with a relative error
less than 1%. It reaches 10% at the second resonance. Eventually, although
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the trends around the third resonance are reasonably captured, the error
reaches 100% very locally for kh € (1.77,1.83) due to a small shift between
the actual resonance and that predicted by the unified model.

5.3 Energetic aspects - stability of the model in time

In this section we move on to energetic aspects of the effective model and
we address two different questions. Firstly, we have said that ensure
stability of the model for a = e as used in the numerics reported in the
previous section; we shall see that a > a. with a. < e is sufficient in a specific
geometry that is when (A, B) are known. If a < a. numerical instabilities in
time are fostered, resulting in a blow up of the solution p*»(x,t). Next, the
stability is associated with a positive interfacial energy &. whose link with
the actual energy is inspected.

5.3.1 Stability of the model with enlarged transmission conditions

In the Lemma |5.1| we have established a criterion of stability of the enlarged
transmission conditions ; it is sufficient that a > e to ensure the stability.
The criterion can be refined for given (A, B); as & in is convex for
(B+4%)>0,&>0if

a > a. = h(|A| — B), (40)

see[] We report in figure [12}left the resulting stability diagram in the plane
(a,e) for wires being discs or squares. In both cases, (A, B) are function of
e = e1 = ey only (the radius of the disc or the half-length of the square). It is
visible that a. ~ e for squares while a. is significantly lower than e for discs (in
both cases, a. < e). While the value of a is incidental in the harmonic regime,
it is expected that a < a. produces numerical instability in the transient
regime. We have used the transmission conditions for various a around
a.; for our wires with radius e = 0.1, the critical value of a is a. = 0.030.
A typical instability observed numerically by means of the blow-up in time
of p**(x,t) is illustrated in figure [12right; we have reported |P*(t)| from
against ¢ for a stable formulation a > a. (dashed black line, the solution
is bounded) and for an unstable formulation a < a. (plain blue line, the
solution blows up exponentially). In the inset for the unstable formulation,
& (t;a) < 0 diverges exponentially to —oo being roughly compensated by the
exponential growth to +oo of the energy in the volume £*°(¢;a). "Roughly"

" Denoting B, = B + >0, E(, B) = (Ba(a2 +B%) — 2Aaﬂ) can be positive if and
only if B, > 0; in this case, E(«, ) is convex and its minimum with respect to « is
E.(8) = B% (B2 — A?) 2. Hence E > 0 is guarantied for B, > |[A| > 0.
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means that the conservation of the energy is not satisfied in our numerics
when the fields have too large amplitudes. Note that the stability of the
numerical solution in the close vicinity of a = a. depends on the mesh and
time step; a complete analysis of this problem which is outside the scope of
the present work requires to identify the discrete numerical energy associated
with the numerical scheme.

5.3.2 Meaning of the interfacial energy &

It is one thing to know that a > a. ensures the stability as it guaranties
& (t;a) > 0, it is quite another to interpret &.. Heuristically, &. approximates
the sum of two actual energetic contributions : (i) that of the evanescent field
being approximated by static fields (provided by the elementary problems)
and (ii) that of the propagating field being approximated by linear fields (the
loadings in the elementary problems). Up to now we have used a = e hence
& = & (t;e) and we begin with this case. We have computed the actual and
the effective energies

ng<t) = %/Q (u2 —|—p2) dx s Qb = {(Xl,X2> c (-b, b) X F},

o (t) =& (te) + %/Q . (™) + (p™)?) dx, Te={(x1,x2) € (—e,e) x '},
b\le

for b € (e, 5e). The results are reported in figure . The top panels show the
fields p(x,tg) and p*(x,to) in the vicinity of the wires (to = 19); the contri-
bution to p of the evanescent near-field is visible which is not reproduced by
p™ , by construction (the effect of the evanescent field has been encapsulated
in the transmission conditions). As b increases, the domain €, over which the
energy is calculated increases. In the actual problem, &, increases accord-
ingly being supplied by the evanescent field and by the propagating field. In
contrast, in the effective problem, £ increases being supplied by the propa-
gating field only, as & approximates the whole energy of the evanescent field.
We expect the two energies to coincide (up to the error of the model) when
b is large enough so that the actual energy also contains the whole energy
of the evanescent field. The results in figure support this scenario. We
observe that £ > &g, up to b ~ 2.5¢ afterwards the two energies coincide
up to a relative error (about 5%) attributable to the error of the model.

We now move to the influence of a, the enlargement of the interface. We
have computed &.(t; a) for a € (0.10,0.25) that we compare to its counterpart
in the actual problem

1

Eq,(t) = 5/9 (w”+p*)dx, Q. ={(x1,%) € (—a,a) x T}
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From what we have seen from the previous representation, we could expect
that &.(t;a) ~ Eq,(t) as soon as a > 2.5e that is as soon as &, contains
the whole contribution of the evanescent field. This is not the case as illus-
trated in figures [14) and [I5} the reason relies this time on the contribution of
the propagating field. For every a, &.(t;a) approximates the energetic con-
tribution of the evanescent field but it has also to approximate that of the
propagating field. The propagating field is approximated by its expansions,
a constant at zero order and a linear function at the first order; hence, the
approximation becomes cruder as a increases. It results that the ability of
& (t; a) to ressemble Eq, is a compromise between the actual extension of the
evanescent field and the validity of a linear approximation of the propagat-
ing field. From figure [14] it is visible that for small a & (t;a) > &g, as the
contribution of the evanescent field is incomplete in &g, ; reversely, for large
a, &(t;a) < &g, indicating that &£.(t;a) underestimates the contribution of
the propagating field. The compromise is obtained for a ~ 1.6e, although it
is visible from figure [15] that the evanescent field is still strong at x; = 1.6e.

Note that, if the comparison of & (¢;a) and &g, () is enlightening on the
meaning of the interfacial energy, there is no guaranty that the value of a
minimizing their difference coincide with the value of ¢ minimizing the error
between p and p™ in the far field. (In the temporal regime, we do not find
a clear minimum of this error as a varies; in the harmonic regime, we have
observed a minimum in the scattering coefficients for a ~ 1.5¢[f])

6 Concluding remarks and perspectives

We have shown both theoretically and numerically that the transmission con-
ditions derived in [I0 1] for an array of Dirichlet wires in free space apply
without additional work when the array delimits a resonant cavity. These
conditions, called unified conditions in the present study, have several advan-
tages, (i) they are valid at any frequency and for any size of the wires, (ii) in
their enlarged version, they guaranty stability in the transient regime. The
point (i) is linked to the fact that the unified conditions avoid an iterative
resolution of the asymptotic problems which is at the origin of the problem
stressed in [7]. (The zero order problem is ill-posed at the resonance frequen-

8 The question of the value of a producing the best approximation of the actual solution
does not have a theoretical answer. Besides, the answer is not universal; in [I2] for a 3-
phase array distributed on a circle, increasing the values of a produces larger errors, in
[18] for a 2-phase linear array a minimum of the error was found to occur for a = e, in [19]
for a rough Neumann boundary the optimal value was shown to vary with the geometry
of the roughness.
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cies of the closed cavity.) The point (ii) is linked to the fact that the effective
problem in its enlarged version is associated with a positive interfacial energy
which prevents from numerical instabilities.

More generally, we can remark that the construction of a unified, or
unique, problem gathering the results of the asymptotic analysis up to first
oder (or higher orders) follows the construction of the models of continuum
mechanics or continuum physics. As for these classical models, the properties
of new homogenized models can be analyzed in all generality, independently
of the specific context in which they will be used, as the sources and the
surrounding boundaries. In contrast, an iterative resolution focuses on a
specific solution for given sources and surrounding boundaries. As such it
reduces the range of applicability of the homogenization, as the work has to
be done for each new problem. Besides, as in the exemple reported in this
study, it can lead to unnecessary complications.

Eventually, in a dynamical context of wave propagation, we stress the
interest of establishing the effective models in the time domain in order to
check the good energetic properties, conservation of a positive energy in the
bulk and of the fluxes of energy. (We have given an illustration of the blow-up
of the numerical solution in time when these properties are not satisfied.)
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A Step by step derivation of the resonant cases

In this Appendix, we use the Ansatz (16). We shall use the following result:
any harmonic function ¢(y) in Y satisfgéng a homogeneous Dirichlet condition



on AY and with no exponential growth when y; goes to 00 can be written
as

q(y) = aQ (y) + Q" (y), (41)
where Q* are defined in and @

Remark A.1 For the sake of concision, the proof of existence and unique-
ness of Q@ and Q7 is not written here (see e.g [8]) . It is based on the
application of the Laz-Milgram Lemma together with a Hardy-equality [20,
Lemma 2.5.7]. A crucial point is that there is no harmonic function in Y
satisfying a homogeneous Dirichlet condition on AY and behaving like a con-
stant as y; goes to both +oo.

A.1 The near-resonant case (2i): k1 # K

In that case, we make the Ansatz (16 with my = 0. Inserting the formal
series into Equation and separating the different powers of ¢ leads to
a collection of equations for the near and far field terms. These equations
are linked with the matching conditions that enforces the far and near field
expansions to coincide in some intermediate area (see e.g.[12, 21),[10]). In the
present case, they can be written as

1—mo m m
pi(0i7$2> = y1l—i>I§:loo (n; <ynlql)| aai%(oiuxé) - qz<yax2)> { Z —1.

(42)
By convention, the previous sum is empty (and vanishes) if i —mgy < 1. First,
the leading order far field term py and near field term ¢y (1-periodic w.r.t ys)

are solutions to:

Apo+ K po=15 in QF, Agp=0 in,
) .
a—? —i/Kipo onD',py=0 on (90U )N\ (I UT), g6=0 ondV,
1
(43)

complemented (and linked) by the zero order matching conditions (i=
0). In 1 right) Y denotes the periodicity cell Y = {(yl, y2) ER x (-3, 3) \V} :
Using (41]), go can be written as qo(y, z2) = a(x2)Q (y) + b(z2)Q " (y), and
the matching condition indicates that ¢y tends to constants as y; goes to
+o00. From Remark [A.1] we get a(z2) = b(x2) = 0, hence po(0%,z5) = 0.
These conditions complement the Problem ([#3}left), and the solution reads

po=PFP; inQ" and py=op] inQ, (44)
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where P is the unique solution to (L3Heft) and p} is defined in (19). It
remains to determine «;. In fact, the value of a4 is imposed by the solvabil-
ity condition associated with the far field problem of order 1 in 2°. More
specifically, we have

Apr + Kjpr = —kioqp,, in (7, A =0 inY, (
. 45)
pm =0 on O \T, ¢1=0 ondY,

with ¢; 1-periodic w.r.t. o and the first order matching conditions (42)
(i = 1). As previously, we look for ¢;(y,xs) = a(x2)Q (y) + b(22)Q" (y).
Identifying in the matching conditions the parts linear in y; and the con-
stants, we get a(x2) = apo 2(07, 22), b(x2) = g—i?(o—'—,l’g), hence p (07, z2) =
—Ba(za) + Ab(xs), pl(O xg) = —Aa(x) + Bb(xs), and using

a * 8 *
Dy, m2) = g " (0.2)Q (y) + 5. (0.2)Q" (9),
N i Iy
pl(O ,ZL’Q) =A—" 81‘1 (0 1‘2) Ozllg a—m(o,l'g)

Finally, integrating over {2 left) after multiplication by p; and integrating
by part, we see that Problem left) is solvable if and only if

oP;
aq <K/1+B / <ax1 ) dl’g) A/ axl O .%2 O 1(0 %2)dl’2

In view of the definition (20 of x and since by assumption x; # k, the
previous equation entirely defines o in .

A.2 The on-resonance case (2ii) : kK1 =k

In that case, we still make the Ansatz but we found my = —1 (reflecting
the presence of a strong resonant effect).

A.2.1 The leading order: : = —1

As previously, the far field term p_; and near field term ¢_; (1-periodic w.r.t.
y2) are solutions to:

Ap_1+Kyp1=0 inQF, Agy =0
3@];1 =iy/K:paonT" py=00n (0QUIN)\(T"UT), g1 =0
1
(46)

31

in,
on 8?,



complemented by the matching conditions for i = —1. As previously, we
deduce from the near field equation (46}right) that ¢_1(y, z2) = a(z2)Q (y)+
b(x2)Q ™ (y), hence again, as imposes that ¢_; tends to a constant as y;
goes to oo, we obtain that a(zy) = b(xe) = 0, and therefore ¢_; = 0.
Consequently p_;(0%, z5) = 0. Together with left), we deduce that

p_1=0 inQ", and p_1 = agp, in ), (47)

where p? is defined in , the constant ay being undetermined at this stage.
Expectedly, in the absence of a source term at the order 1 = —1, the field
outside the cavity is zero at this order.

A.2.2 The order : =0

The analysis of the leading order provides neither the leading order asymp-
totic for p° in Q7 nor the constant ay. Therefore, we need to analyse py and
qo (1-periodic w.r.t. yo) solutions to:

Apo+ K:pp=S inQF, Apo + K} po = —kagp? in 0,
% = i/Kipoon I'", pp=00n Q\(IUT), |po=0 ond\T,
Ty
(48)
Ag =0 inY, g =0 ondY, (49)

together with the zero order matching conditions and using . Look-
ing for qo(y, x2) = a(r2)Q (y) + b(z2)Q" (y) and identifying in the match-
ing conditions the parts linear in y; and the constants, we get a(zy) =
042%(0, x9) and b(zy) = 0, hence

* *

0 0
G0(y, 2) = 0 =22 (0, 22)Q (y), po(07,72) = —A 222 (0, 23), po(07,2) = —B

axl 8371
(50)
The above relations provide p°(0%, z3) which complement the Problems (48))
set in Q" and €07; at this stage, they are disconnected. In ", p, solution to

(48Heft) along with (50bcenter) reads
po(xz) = as AP () + Pi(x) in Q" (51)

where P and P} are the (unique) solutions to (25Heft) and (13}left). It then
provides the asymptotic behavior of pf in Q% (up to the definition of «y).
In @, since K is a resonance frequency, the far field problem right)-
(Okright) is not well-posed (it has a kernel of dimension 1 spanned by p}):
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However, it is solvable. Indeed, mutliplying (48}right) by p} and integrating

over €2 giVGS
Qg | R B / " (0 132) dl‘g =0
r Eifl ’ ’

and the above equality is fulfilled for any as by definition of k (see (20))). It
follows that po solution to (48}right) along (50fright) reads

po(x) = ceBP (x) + Bpy,(x) in 0, (52)

where P~ is the unique solution to (25}right) and pj, is the real-valued eigen-
vector associated with K (for the cavity problem (L3}right)). In (52), s
that reaches back from the order i = —1 (see (47))) and S are constants that
remain to be determined.

A.2.3 The order :=1

Here, we shall determine the constant a, that we need to parametrize locally
the resonance curve. To do so, it is enough to investigate the solvability of
the far field problem for p; in " and the near field problem for ¢; (1-periodic
w.T.t. Y2)), namely,

2 ) % -
Apy + K, p1 = —Kpo — kaap,, in 7, | Agq = —2a b (0, 29) < nY,
" " 6$18$2 8y2
{ Po = aQBP_ + /Bp:u P11 = Oa on 89—\F7 ¢ = 0 on a?
(53)
We have used the forms of p_; in (47), of py in (52) and of ¢o in (50). The
two problems are complemented by the matching conditions at oder -1

0p_
(1 = —1) with 8p21 (0%, 25) = 0. We define Q, 1—periodic w.r.t. y,, unique
1
solution to
oQ .
AQ = —2£ inY, Q=0 ondVY, lim VQ =0. (54)
892 y1—+o0

(Here again, see Remark , the well-posedness of results from the
Lax-Milgram Lemma.) As ¢ = (@1 — s Ppi (0,22)Q) satisfies Ag = 0

Ox10x2

with ¢; = 0 on 8?, we look for ¢; of the form

(Y, w2) = a(22)Q (y) + b(22)Q" (y) + ag——

33



Inserting ¢; in (53}right), identifying the parts linear in y; and the constants,
we obtain that

~ Opo - Ipo + *p;
ql(yaxQ) - al’l (O 71;2)62 (y) + 81‘1( x?)Q ( ) +@28$18 2<0,1'2>Q(y),
— _ apO - apO +
P1 (0 s JIQ) = _8:E1 (O ,.TQ) + A_aZL‘l (0 ,ZEQ).

Eventually, using py given by and , we end up with

+ - E3
(0 ) = ((A)Qap _ (3)28i> n <A8P Bﬁgp") |
|z1=0 |z1=0

axl axl a T 8[1,‘

which complements Problem (| .—left It is now sufficient to mutliply .—
left) by pf and to mtegrate over (I to see that Problem (B3Heft) is solvable
if and only if anky = fr p1 ax (0, x9)dzy — K fQ_ pop;dex , resulting in

OP™" op: oOP op: OP* Op
. 2 n 2 n n
“ [%2 (4) /r ( 0xy 8m1)|jx02 +(5) /F (8901 8m1)|fx02] A/ <8x1 6x1> md§)27

as mentioned in (with and (24)). In (55)), note that the term in 6
has canceled; also, we have used that P~ is orthogonal to p}. Also, we have

used that lirjrcl @ = 0 for wires symmetric w.r.t ys, as ) is an odd function
Y1—TOo0

of y9; the result on ay holds for any wire shape.

B The Elementary problem

Here, we report additional informations on the effective parameters (A, )
issued from the elementary solution Q" to : Figure right shows an
example of the fields Q" (y) for a wire being a disk or a square, and Figure
[[6}left show the variations of (A, B) against ; values of (A,B) used for
squares (in the harmonic regime) and for dlsks (in the transient regime)
throughout the paper are given in the table (56).

e (half square length) | A B e (disk radius) | A B
0.01 0.4143 0.4138 0.01 0.4411 0.4407
0.1 0.0684 0.0265 0.1 0.0892 0.0588
0.2 0.0088 —0.1384 0.2 0.0178 —0.0932
(56)
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C The thin wire approximation

The thin wire approximation presented in [7] allows to capture the leakage
of the cavity at the dominant order. The reason is that the amplitude within
the cavity is of order € including at the resonance frequency. (This is already
visible in figure [5| for e = 0.01~ where the amplitude P,,., does not overcome
0.1.) This is obtained by choosing a scaling £ = O(e™¢) (with ¢ a constant),
which means that the wire thickness e vanishes exponentially faster than the
array spacing h when ¢ goes to zero. In this case it is found that

aptw
89&1

ptW(O,Xg) = hAo ( 8271

(0% x,) — 2~ (0_,X2)> , (57)

with p™ continuous. Expectedly, the above condition is consistent with the
formulation (7)) when A = B = A,. For the simple scattering problem
considered in , the solution reads as in (29) with

z 2ikcgh
R — _37 Ppor — _LAO, z = 1+kc@hAo(cos(k09D) —isin(k:(:gD)),
z z
(58)
and Ag = —% log (sin 2—26), which is consistent with (29)-(30) in the consid-

ered limit. We report the resonance curves in figure [I7] as in figure 5l The
thin wire model appears to more limited, its accuracy depending on how
close (A, B) are to their asymptotic value Ay.

References

[1] Chen CC. 1971 Diffraction of electromagnetic waves by a conducting
screen perforated periodically with holes. IEFEE Transactions on Mi-
crowave Theory and Techniques 19, 475-481.

[2] McPhedran R, Maystre D. 1977 On the theory and solar application of
inductive grids. Applied physics 14, 1-20.

[3] McPhedran R, Derrick G, Botten L. 1980 Theory of crossed gratings. In:
Petit R. (eds) Electromagnetic Theory of Gratings pp. 227-276. Springer.

[4] Ulrich R. 1968 Interference filters for the far infrared. Applied Optics 7,
1987-1996.

[5] Martin P. 2014 On acoustic and electric Faraday cages. Proc. R. Soc. A
470, 20140344.

35



(6]

17l

8]

191

[10]

[11]

12|

[13]

[14]

[15]
[16]

17]

18]

Chapman SJ, Hewett DP, Trefethen LN. 2015 Mathematics of the Fara-
day cage. Siam Review 57, 398-417.

Hewett DP, Hewitt 1J. 2016 Homogenized boundary conditions and res-
onance effects in Faraday cages. Proc. R. Soc. A 472, 20160062.

Delourme B, Hewett DP. 2020 Electromagnetic shielding by thin peri-
odic structures and the Faraday cage effect. Comptes Rendus. Mathé-
matique 358, T77-784.

Felbacq D, Bouchitté G. 1997 Homogenization of a set of parallel fibres.
Waves in random media 7, 245-256.

Marigo JJ, Maurel A. 2016 Two-scale homogenization to determine ef-
fective parameters of thin metallic-structured films. Proc. R. Soc. A 472,
20160068.

Maurel A, Marigo JJ, Ourir A. 2016 Homogenization of ultrathin
metallo-dielectric structures leading to transmission conditions at an
equivalent interface. JOSA B 33, 947-956.

Delourme B . 2010 Modéles et asymptotiques des interfaces fines et
périodiques en électromagnétisme. PhD thesis, U. Pierre et Marie Curie,
France.

Delourme B, Haddar H, Joly P. 2012 Approximate models for wave
propagation across thin periodic interfaces. Journal de mathématiques
pures et appliquées 98, 28-T71.

David M, Marigo JJ, Pideri C. 2012 Homogenized interface model de-
scribing inhomogeneities located on a surface. Journal of Elasticity 109,
153-187.

https://uma.ensta-paris.fr/soft/XLiFE++/

Bathe KJ, Wilson EL. 1976 Numerical methods in finite element analy-
sis. Number BOOK. Prentice-Hall.

Semin A, Delourme B, Schmidt K. 2018 On the homogenization of the
Helmholtz problem with thin perforated walls of finite length. ESAIM:
Mathematical Modelling and Numerical Analysis 52, 29-67.

Marigo JJ, Maurel A, Pham K, Shitti A. 2017 Effective dynamic proper-
ties of a row of elastic inclusions: The case of scalar shear waves. Journal
of elasticity 128, 265—289.

36


https://uma.ensta-paris.fr/soft/XLiFE++/

[19] Maurel A, Marigo JJ, Pham K. 2018 Effective boundary condition for
the reflection of shear waves at the periodic rough boundary of an elastic
body. Vietnam J. Mech 40, 303-323.

[20] Neédeélec JC. 2001 Acoustic and electromagnetic equations: integral rep-
resentations for harmonic problems. Springer Science & Business Media.

[21] Maz'Ya V, Nazarov S, Plamenevskij B. 2012 Asymptotic theory of el-
liptic boundary value problems in singularly perturbed domains vol. 1.
Birkh&user.

37



I+ short times

10T ] . ‘
------------- ortlh h :1 = ' ‘
| ‘m et

X1 ) 5

X1

Figure 9: Snapshots at short times — p(x,t) solution of the actual problem
(top panels) and of p*(x,t) solution of the effective problem ruled by
with a = e (bottom panels); both p and p* are computed numerically.
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Figure 10: Same representation as in figure [J] at intermediate times and at
long times.
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Figure 11:  Left: Time variation of P(t) (plain blue line) and of P(t)
(dashed black line) for ¢ € (0,400). Right: corresponding spectra P(w) and
P=»(w); the dotted grey line shows the spectrum of the error |p*™ — pl.
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Figure 12: Numerical instability in the effective problem ruled by unstable
conditions when a < a, — Left: Stability diagram for discs and squares.
Blue lines show a.(e) from for wires of extend e. The red symbols show
an estimate of a. determined numerically as the lowest value of a producing
a stable solution. Right: exponential growth in time of |P*(t)|, (39), for
an unstable formulation (e = 0.015 < a,, plain blue lines) and for a stable
formulation (a = 0.033 > a,, dashed black lines). The inset shows £*(¢; a)
diverging to +oo and &:(t; a) diverging to —oo for a = 0.015.
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0.1 b 0.5 0 60 0 t 60
Figure 13: Energies in the actual and effective problems — Top panels show a
zoom of p(x,ty) and p*(x,ty) in {(x1,x2) € (—1.5,1.5) x (=3,3)} (to = 19).
Bottom panels show the difference between the time averaged energies &
and &g, against b and time variations of the energies for @ b = e = 0.1 and

@ b= bHe = 0.5.

0.05 0.06[ ¢ 0.1
® ©
L
[ ‘£F(t; a)
I
1 E(t;a)
0 . 0 0
0.1 o 0.25 0 . 30 0 . 30 0 . 30

Figure 14: Relative difference between the time averaged interface effec-
tive energy &-(a) and the time averaged actual energy &g, against a; time
variations of &.(t;a) (dashed black lines) and E(¢; a) (blue plain lines) for &
a=0.1 B a=0.15and © a = 0.25.
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Figure 15: Effective fields p*(x, to) (to = 19) in the vicinity of I" for a = 0.1,
a = 0.16 and a = 0.25 (top panels) and corresponding profiles of p (blue
plain lines) and p* (dashed black lines) at x; = a (bottom panels).

—0.5

€
h

Figure 16: Left: effective parameters (A, B) against { for squares (plain
lines) and for disks (dashed lines); the dotted grey line shows Ay =
—% log sin (%) Right: Examples of solution Q" to the elementary problem

(5)-
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Figure 17: Validity of the thin wire approximation- same representation as in
figure [5] Plain blue lines: direct numerics, dashed black lines: unified model

with — and dotted green lines: Thin wire model with —.
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