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1. Abstract

The ratiometric fluorescent calcium indicator Fura-2 plays a fundamental role in the inves-

tigation of cellular calcium dynamics. Despite of its widespread use in the last 30 years,

only one publication [4] proposed a way of obtaining confidence intervals on fitted calcium

dynamic model parameters from single ’calcium transients’. Shortcomings of this approach

are its requirement for a ’3 wavelengths’ protocol (excitation at 340 and 380 nm as usual

plus at 360 nm, the isosbectic point) as well as the need for an autofluorence / background

fluorescence model at each wavelength. We propose here a simpler method that eliminates

both shortcommings:

1. a precise estimation of the standard errors of the raw data is obtained first,

2. the standard error of the ratiometric calcium estimator (a function of the raw data val-

ues) is derived using both the propagation of uncertainty and a Monte-Carlo method.

Once meaningful standard errors for calcium estimates are available, standard errors on

fitted model parameters follow directly from the use of nonlinear least-squares optimization

algorithms.

Method name Standard error for the ratiometric calcium estimator

Keywords Calcium measurements, Fura-2, propagation of uncertainty, propagation of

errors, Monte-Carlo method, reproducible research.
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2. Method overview

2.1. Rational

Since its introduction by [2], the ratiometric indicator Fura-2 has led to a revolution in our

understanding of the role of calcium ions (Ca2+) in neuronal and cellular function. This

indicator provides a straightforward estimation of the free Ca2+ concentration ([Ca2+])

in neurons and cells with a fine spatial and time resolution. The experimentalist must

determin a ’region of interest’ (ROI) within which the [Ca2+] can be assumed uniform and is

scientifically relevant. Fluorescence must be measured following excitation at two different

wavelengths: typically around 340 and 380 nm; and, since cells exhibit autofluorescence

or ’background fluorescence’ at those wavelengths, the measured fluorescence intensity

is made of two sources: the Fura-2 linked fluorescence and the autofluorescence. The

measured intensity within the ROI is therefore usually corrected by subtrating from it an

estimation of the autofluorescence intensity obtained from simultaneous measurements

from a ’background measurement region’ (BMR); that is, a nearby region where there is no

Fura-2. At a given time the experimentalist will therefore collect a fluorescence intensity

measurement from the ROI at 340 and 380 nm; we are going to write adu340 and adu380
these measurements, where ’adu’ stands for ’analog to digital unit’ and correspond to

the raw output of the fluorescence measurement device, most frequently a charge-coupled

device (CCD); if the experimentalist is careful not to saturate the sensor, the adu count is

proportional to the number of photo-electrons present in the pixel, or in the group of pixels

when on-chip binning is used, at the end of the exposure period. The experimentalist will

also collect intensity measurements from the BMR, measurements that we are going to

write adu340,B and adu380,B. If P CCD pixels make the ROI and PB pixels make the BMR

and if the illumination time at 340 nm is T340, while the illumination time at 380 nm is T380
(both times are measured in s), the experimentalist starts by estimating the fluorescence

intensity per pixel per time unit following an excitation by a light flash of wavelengths λ

(λ = 340 or 380 nm) as:

fλ =
1

Tλ

(
aduλ

P
−

aduλ,B
PB

)
, with λ = 340 or 380 nm , (1)

where an assumption of autofluorescence uniformity is implicitly made. The following ratio

is then computed:

r =
f340
f380

. (2)

This is an important and attractive feature of the method as well as the origin of its name.

Since only ratios are subsequently used, geometric factors like the volume of the Fura

loaded region under the ROI do not need to be estimated.

The estimated [Ca2+] that we will write Ĉa for short (the ’̂’ sign is used for marking

estimated values) is then obtained, following [2, Eq. 5, p. 3447], with:

Ĉa = Kef f
r − Rmin
Rmax − r

, (3)
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where Kef f (measured in µM), Rmin and Rmax are calibrated parameters (the last two

parameters are ratios and are dimensionless). Rmin is the ratio (Eq. 2) observed in the

absence of calcium, while Rmax is the ratio observed with a saturating concentration. Kef f
is the calcium concentration at which the ratio is half way between Rmin and Rmax . If a

set of experiments is performed on a given cell type with the same batch of Fura, as in

the companion paper [3], the calibration errors on these three parameters will be the same

for each experiment. If different cell types are considered and/or different Fura batches

are used, the calibration errors should be taken into account before making comparison of

estimated calcium dynamics parameters (see [4] for discussion).

If we now want to rigorously fit [Ca2+] dynamics models to sequences of Ĉa, we need

to get standard errors, σ
Ĉa

, on our estimates. This is where the ratiometric method gets

’more involved’, at least if we want standard errors from a single transient as opposed to

a mean of many transients. We typically work (e.g. [4, 3]) in a setting, using the so

called ’added buffer approach’, where we cannot get more than a single transient in given

conditions since Fura is constantly diffusing into the recorded cell modifying thereby the

time constant of calcium transients. It is worth pointing out that there is a more general

interest in obtaining standard errors from a single transient: getting these fluorescence

measurements requires shinning UV light on the neurons we are recording from and gener-

ates photodamage. Despite the ubiquity of ratiometric measurements in neuroscience and

cell physiology, we are aware of a single paper–by some of us [4]–where the ’standard error

question’ was directly addressed. The method proposed in [4] requires a 3 wavelengths

protocol: measurements at 340, 380 and 360 (the isosbestic wavelength) nm; it drops, so

to speak, the above advantage of working with a ratiometric estimator since it fits directly

the adu340 and adu380 data (at the cost of estimating some geometry related parameters)

and it requires a model of the autofluorescence dynamics if the latter is not stationnary.

It therefore requires a slightly more complicated ’3 wavelengths’ recording protocol as well

as a more involved fitting procedure. The dataset of the companion paper [3] exhibits a

clear but reversible autofluorescence rundown that cannot be ignored since autofluores-

cence accounts for half of the signal in the ROI. Rather that constructing / tailoring the

accurate enough autofluorence models required by the ’direct approach’ of [4] we looked

for an alternative method providing standard errors for the ratiometric estimator.
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3. Ratiometric estimator variance

3.1. Fluorescence intensity

As detailed in [2, 4], the fluorescence intensities giving rise to the adu340, adu340,B, adu380
and adu380,B signals can be written as:

I340 =

{
[Fura]total φ

KFura + [Ca2+]

(
Rmin Kef f + Rmax [Ca2+]

)
+ F340B

}
T340 P , (4)

I340B = F340B T340 PB , (5)

I380 =

{
[Fura]total φ

KFura + [Ca2+]

(
Kef f + [Ca2+]

)
+ F380B

}
T380 P , (6)

I380B = F380B T380 PB , (7)

where FλB is the autofluorescence intensity per pixel per time unit at wavelength λ, KFura
is the Fura dissociation constant (a calibrated parameter measured in µM), [Fura]total ,

is the total (bound plus free) concentration of Fura in the cell (measured in µM) and φ

is an experiment specific parameter (measured in 1/µM/s) lumping together the quantum

efficiency, the neurite volume, etc (see [4] for details).

3.2. Recorded signals adu340, adu340,B, adu380 and adu380,B

As detailed and discussed in [11, 4], the signal aduλ recorded with a CCD chip whose

gain is G and whose read-out variance is σ2read−out can be modeled as the realization of a

Gaussian random variable ADUλ with parameters:

µADUλ = G Iλ , (8)

σ2ADUλ = G µADUλ + G2 P σ2read−out , (9)

with the obvious adaptation when dealing with the BMR signal: Iλ is replaced by IλB and P

is replaced by PB. Parameters G and σ2read−out are CCD chip parameters provided by the

manufacturer. Calibration procedures are discussed in [11, 4] and a comprehensive exemple

with data and codes can be found in [8]. Our experience is that the values provided by

manufacturers are good starting points; the user calibrated read-out noise is sometime

slightly larger than the one specified by the manufacturer.

3.3. Variance estimates for adu340, adu340,B, adu380 and adu380,B

So, to have the variance of ADUλ we need to know Iλ and for that we need to know [Ca2+]

(Eq. 4 and 6) precisely what we want to estimate. But the expected value of ADUλ is

G Iλ (Eq. 8), we can therefore use as a first approximation the observed value aduλ of

ADUλ as a guess for G Iλ, so in Eq. 9 we plug-in aduλ for G Iλ, leading to:

σ̂2ADUλ = G aduλ + G2 P σ2read−out ≈ σ2ADUλ . (10)
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In other words, we will use the observed aduλ as if it were the actual fluorescence intensity

times the CCD chip gain, ADUλ = G Iλ, in order to estimate the variance. In doing so we

will sometime slightly underestimate the actual variance (when the observed aduλ turns

out to be smaller than ADUλ) and sometime slightly overestimate it (when the observed

aduλ turns out to be larger than ADUλ). Since we are going to combine many such

approximations, we expect–and we will substantiate this claim in Sec. 4–that overall the

under-estimations will be compensated for by the over-estimations.

3.4. Variance estimate for Ĉa

Now that we have a σ̂2ADUλ we can work with–that is, an estimate from the data alone–, we

want to get σ̂2r (Eq. 2) and σ̂2
Ĉa

. We can either use the propagation of uncertainty (also

referred to as error propagation, compounding of errors or delta method) [9, 12] together

with Eq. 2 and 3, or a ’quick’ Monte Carlo approach. We drop any explicit time index in

the sequel in order to keep the equations more readable, but it should be clear that such

variance estimates have to be obtained for each sampled point.

3.4.1. Propagation of uncertainty

This method requires, in the general case, an assumption of ’small enough’ standard error

since it is based on a first order Taylor expansion (see Sec. A for details). It leads first to

the following expression for the variance, σ̂2fλ , of fλ in Eq. 1:

σ̂2fλ ≈
1

T 2λ

(
σ̂2ADUλ
P 2

+
σ̂2ADUλB

P 2B

)
. (11)

The variance σ̂2r of r in Eq. 2 is then:

σ̂2r ≈
1

f 2380
(σ̂2f340 + r2 σ̂2f380) (12)

and the variance σ̂2
Ĉa

of Ĉa in Eq. 3 is:

σ̂2
Ĉa
≈
(

Kef f
Rmax − r

)2
(1 + Ĉa)2 σ̂2r . (13)

A remark on σ̂2
Ĉa

behavior

The last three equations 11, 12 and 13 can be used together with Eq. 8 and 9 to understand

why σ̂2
Ĉa

will increase with the calcium concentration and therefore why a weighted nonlinear

least-square procedure is required [1, 10, 6] in order to get proper confidence intervals on

calcium dynamics model parameters. Eq. 9 tells us that the variance of the raw signals is

an increasing linear function of their means. When the calcium concentration increases,

the recorded signal at 340 nm increases while the one at 380 nm decreases (Fig. 1). So

8



according to Eq. 11, σ̂2f340 increases while σ̂2f380 decreases in proportion to [Ca2+]. From

Eq. 12 we see that σ̂2r also increases since σ̂2f340 does increase and r2 σ̂2f380 is roughly

proportional to f 2340/f380 and increases. Then from Eq. 13 we see that r is getting closer

to Rmax , therefore the denominator is decreasing, while we just argued that σ̂2r increases.

The two together imply that σ̂2
Ĉa

is an increasing function of [Ca2+]. This can be seen on

the bottom panel of Fig. 2 where the error bars on the left side (corresponding to larger

[Ca2+]) are about twice as large as the ones on the right side (corresponding to smaller

[Ca2+]).

3.4.2. Monte-Carlo method

Here we draw, k quadruple of vectors(
adu

[j ]
340, adu

[j ]
340B, adu

[j ]
380, adu

[j ]
380B

)
, j = 1, . . . , k ,

from four independent Gaussian distributions of the general form:

adu
[j ]
λ = aduλ + z

[j ]
λ σ̂ADUλ , (14)

where aduλ is the observed value and z
[j ]
λ is drawn from a standard normal distribution.

We then plug-in these quadruples into Eq. 1 leading to k couples:

f
[j ]
340 =

1

T340

(
adu

[j ]
340

P
−
adu

[j ]
340B

PB

)
,

f
[j ]
380 =

1

T380

(
adu

[j ]
380

P
−
adu

[j ]
380B

PB

)
, j = 1, . . . , k .

These k couples are ’plugged-in Eq. 2’ leading to k r [j ]:

r [j ] =
f
[j ]
340

f
[j ]
380

j = 1, . . . , k ,

before plugging in the latter into Eq. 3 to get k Ĉa
[j ]

:

Ĉa
[j ]

= Kef f
r [j ] − Rmin
Rmax − r [j ]

j = 1, . . . , k .

The empirical variance of these simulated observations will be our σ̂2
Ĉa

:

σ̂2
Ĉa

=
1

k − 1

k∑
j=1

(Ĉa
[j ]
− Ĉa•)2 , where Ĉa• =

1

k

k∑
j=1

Ĉa
[j ]
. (15)

Since the Monte-Carlo method requires milder assumptions (the variances do not have to

be small) and is easy to adapt, we tend to favor it; to be on the safe side, users can use

both methods and, if they disagree, plot a histogram of the Ĉa
[j ]

to make sure that the

discrepancy source is the non-normality of the latter.
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3.5. Comment

The present approach based on a σ̂2
Ĉa

estimation is slightly less rigorous than the ’direct

approach’ of [4] but it is far more flexible since it does not require an independent estimation

/ measurement of [Fura]total . In line with the discussion following Eq. 3, in the companion

paper [3] we chose to consider the calibrated parameters Kef f , Rmin and Rmax as fixed.

4. Empirical validation

4.1. Rational

Equations 4, 5, 6, 7, together with Eq. 8 and 9 can be viewed as a data generation model.

This means that if we choose model parameters values as well as an arbitrary [Ca2+] time

course, we can simulate measurements (adu) at both wavelengths in the ROI as well as in

the BMR. We can then use these simulated adu exactly as we used the actual data, namely

get r(ti) (Eq. 2) and Ĉa(ti) (Eq. 3) as well as the (squared) standard errors σ̂2
Ĉa

(ti) (Sec.

3.4).

Now if the σ̂2
Ĉa

(ti) are good approximations for the actual but unknown σ2Ca(ti), the

distribution of the normalized residuals:

Ĉa(ti)− Ca(ti)

σ̂
Ĉa

(ti)
,

should be very close to a standard normal distribution. This is precisely what we are going

to check.

4.2. Simulated data

We are going to use the first transient of dataset DA 121219 E1 of the companion paper

[3]. The ’static’ parameters–that is the parameters not link to the calcium dynamics–used

for the simulation are the actual experimental parameters rounded to the third decimal

(Table 1).

10



Parameter Value

Rmin 0.147

Rmax 1.599

Kef f 1.093 (µM)

KFura 0.225 (µM)

[Fura]totalφ 1.89e+05 (s−1)

T340 0.01 (s)

T380 0.003 (s)

P 3

PB 448

G 0.146

σ2read−out 268.96

F340B 189512 (s−1)

F380B 711589 (s−1)

Table 1: ’Static’ parameters used for the simulation.

The simulated calcium dynamics is a monoexponential decay mimicking the tail of the

transient:

Ca(t) = Ca0 +

{
0 if t < t0
δ exp(−(t − t0)/τ) if t ≥ t0

and the parameter values (Table 2) are just a rounded version of the fitting procedure

output (see companion paper [3]).

Parameter Value

t0 2283.415 (s)

Ca0 0.059 (µM)

δ 0.114 (µM)

τ 2.339 (s)

Table 2: Calcium dynamics parameters used for the simulation. Time 0 is when seal is

obtained.

The simulated data obtained in that way are shown on Fig. 1 (blue traces) together

with the actual data (red curves) they are supposed to mimic. At a qualitative level at

least, our data generation model is able to produce realistic looking simulations.

4.3. Software and simulation details

The methodological details of the measurements to which the analysis presented in the

present manuscript was applied are described in the companion paper [3].

The simulations, computations and figures of the present manuscript were done with

Python 3 (https://www.python.org/), numpy (https://numpy.org/), scipy and matplotlib
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(https://matplotlib.org/). The Python codes and the data required to reproduce

the simulations and figures presented in this manuscript can be downloaded from GitLab

(https://gitlab.com/c˙pouzat/getting-se-on-ratiometric-ca-estimator).

The use of scipy was kept to a bar minimum to maximize code lifeduration (scipy tends

to evolve too fast with minimal concern for backward compatibility). The random number

generators used were therefore the ones of numpy: the uniform random number gener-

ator derives from the Permuted Congruential Generator (64-bit, PCG64) (https:

//www.pcg-random.org/) [7] while the normal random number generator is an adaptation

of the Ziggurat method [5] of Julia (https://docs.julialang.org/en/v1/); unfortu-

nately one has to check the source code of both numpy and Julia to find that out.

4.4. Are the standard errors of ratiometric estimator accurate?

Since the two σ̂2
Ĉa

estimation methods, propagation of uncertainty and Monte-Carlo, agree

at each time point within 2%, we illustrate in this section the results obtained with the

Monte-Carlo method.

We take next the simulated data (blue curves on Fig. 1) together with the simulated

background signals (not shown) as if they were actual data and we compute the ratiometric

estimator and its standard error as described in Sec. 3.4, using k = 104 replicates. Figure

2 shows the standardized residuals as well as the simulated data together with the true

[Ca2+], we know it since we used it to simulate the data!

The upper part of Fig. 2 is only a qualitative way of checking that the normalized

residuals follow a standard normal distribution. A quantitative assessment is provided by

the Shapiro-Wilk W statistic, that is here: 0.987; giving a p-value of 0.128. There is

therefore no ground for rejecting the null hypothesis that the normalized residuals are IID

draws from a standard normal distribution.

As an additional, visual but less powerful test, we plot the empirical cumulative distri-

bution function (ECDF) of the normalized residuals together with the theoretical (normal)

one and with Kolmogorov’s confidence bands (Fig. 3). If the empirical ECDF arises from

a normally distributed sample with mean 0 and SD 1, it should be completely contained in

the 95% confidence band 95% of the time and in the 99% band, 99% of the time (these

are confidence bands not collections of pointwise confidence intervals).

We conclude from these visual representations and formal tests that our normalized

residuals follow the expected standard normal distribution, implying that our proposed

method for getting the standard errors of the ratiometric estimator is fundamentally correct.

5. Discussion

We have presented a new and simple method for getting standard errors on calcium con-

centration estimates from ratiometric measurements. This method does not require any

more data than what experimentalists using ratiometric dyes like Fura-2 are usually col-

lecting: measurements at 340 and 380 nm both within a region of interest and within

a background measurement region. Once the errors bars have been obtained, arbitrary
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models can be fitted to the calcium transients–by weighted nonlinear least-squares [6]–and

meaningful confidence intervals for the parameters of these models will follow as illustrated

in the companion paper [3]. The present contribution is therefore best viewed a major

simplification of the ’direct approach’ of [4]. In contrast to the latter, the new method

does not require a ’3 wavelengths protocol’, it does not require either a precise fit of the

autofluorescence dynamics at the three wavelengths and is therefore much easier to imple-

ment. We provide moreover two independent implementations, one in C and one in Python,

they are open source and freely available. The rather verbose Python implementation of

the heart of the method (Sec. 3.4) requires 25 lines of code and nothing beyond basic

numpy functions. We are therefore confident that this method could help experimental

physiologists getting much more quantitative results at a very modest extra cost.
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A. Propagation of uncertainty

We outline in this section how to reach Eq. 11, 12 and 13 of Sec. 3.4.1. We first need to

remember that is X and Y are two independent random variables with mean EX = µX and

EY = µY and variance VX = σ2X and VY = σ2Y , then if Z = a+ bX + cY (a, b, c ∈ R) we

have:

EZ = a + b µX + c µY ,

VZ = b2 σ2X + c2 σ2Y .

Eq. 11 is a direct consequence of the last equality. If X is (approximately) normally

distributed with (X ∼ N (µX , σ
2
X)) as well as Y , we can write: X ≈ µX + Z1σX and

Y ≈ µY +Z2σY , where Z1 and Z2 are independent and follow a standard normal distribution,

N (0, 1). If now Z = f (X, Y ) and the partial derivatives of f at (µX , µY ) exist then:

Z = f (µX + Z1σX , µY + Z2σY )

≈ f (µX , µY ) + Z1σX
∂f (µX , µY )

∂X
+ Z2σY

∂f (µX , µY )

∂Y
.

This is just a first order Taylor expansion and that is where the ’small enough standard

error’ assumption is necessary. Z is then (approximately) a linear combination of two

independent standard normal random variables and we immediately get:

EZ = f (µX , µY ) ,

VZ =

(
∂f (µX , µY )

∂X

)2
σ2X +

(
∂f (µX , µY )

∂Y

)2
σ2Y .

Eq. 12 follows directly by computing the necessary partial derivatives, while Eq. 13 requires

the computation of a single derivative.

B. Auto-fluorescence dynamics

B.1. General features

The evolution of the aduλB is shown on Fig. 4. We see that the autofluorescence runs

down when high frequency flashes are applied during the 3 transients, with a partial recovery

between transients.

B.2. Within transient dynamics

The ’direct method’ of [4] requires the knowledge of the autofluorescence value at each

time point during a transient at both 340, 360 and 380 nm, since Eq. 4 and 6 are fitted

directly to the recorded adu340 and adu380 and they depend on the total Fura concentration

at transient time that is estimated from the difference of the 360 nm measurements in the

14



ROI and the BMR. We therefore take a closer look a the autfluorescence dyanmics during

the first transient (Fig. 5).

At that stage we can fit a straight line plus a cosine function whose period is the

duration of a transient. That’s a good way to capture the main structure in the transient,

but is still does not account for the full signal variability (Fig. 6). As can be seen from

the normalized residuals–the residuals divided by the standard deviation–that should be

very nearly independent random draws from a standard normal distribution if the model

is correct, there are finer structures left (like the double valley on the 380 nm residuals)

meaning that those fits won’t pass formal goodness of fit tests. Indeed if we apply Pearson’s

χ2 tests to these stabilized residuals we get:

• at 340 nm a residual sum of squares (RSS) 326, leading to a P(χ2197 > 326) = 0.0,

• at 360 nm a RSS of 288, leading to a P(χ2197 > 288) = 2.6e-05,

• at 380 nm a RSS of 275, leading to a P(χ2197 > 275) = 0.000203.

We are then left with three possibilities:

1. try to refine the ’straight line plus cosine function’ empirical model in order to get

acceptable fits,

2. try to get a better understanding of the autofluorescence dynamics,

3. find another way to get error bars on our estimates.

Since we wanted to propose an ’as general and easy as possible’ method we chose the third

approach in the present manuscript.
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Figures

Graphical abstract

How to get error bars on the ratiometric calcium estimator? The two measurements areas

(region of interest, ROI, on the cell body and background measurement region, BMR,

outside of the cell) are displayed on the frame corresponding to one actual experiment.

Two measurements, one following an excitation at 340 nm and the other following an

excitation at 380 nm are performed (at each ’time point’) from each region. The result

is a set of four measures: adu340 (from the ROI), adu340,B (from the BMR), adu380 and

adu380,B. . The fact that the measurements as well as the subsequent quantities derived

from them are random variable realization is conveyed throughout the figure by the use of

Gaussian probability densities. The densities from the BMR are ’tighter’ because there are

much more pixels in the BMR than in the ROI (the standard deviations of the densities

shown on this figure have been enlarged for clarity, but their relative size has been preserved,

the horizontal axis in black always starts at 0). The key result of the paper is that the

standard deviation of the four Gaussian densities corresponding to the raw data (bottom

of the figure) can be reliably estimated from the data alone, eg σ380 ≈
√
G adu380 + V ,

where V is the product of the CCD chip gain squared by the number of pixels in the ROI

by the CCD chip read-out variance. The paper explains how to compute the standard

deviation of the derived distributions obtained at each step of the calcium concentration

estimation.
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Figure 1

Figure 1

Observed (red) and simulated (blue) ADU at 340 (left) and 380 nm (right) for the first

transient (only the late phase of the transient was simulated).
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Figure 2

Figure 2

Top: Simulated ratiometric estimator - ’actual’ [Ca2+] divided by ratiometric estimator

standard error (if everything goes well we should see draws from a standard normal distri-

bution); bottom: Simulated ratiometric estimator (with error bars given by the standard

error) in black and ’actual’ [Ca2+] in red.
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Figure 3

Figure 3

Empirical cumulative distribution function (ECDF) of the normalized residuals (red)

together with 95% (grey) and 99% (blue) Kolomogorov confidence bands.
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Figure 4 (Appendix)

Figure 4

Autofluorescence at 3 excitation wavelengths, 340 nm (red), 360 (blue), 380 (brown).

Both during low frequency stimaltions (four portions made of dots) and during the tran-

sients where a higher frequency stimulation was applied (3 groups with almost vertical

lines).
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Figure 5 (Appendix)

Figure 5

Normalized autofluorescence at 3 excitation wavelengths, 340 nm (red), 360 nm (blue)

and 380 (brown) during the first transient. At each wavelength, the normalization is

performed by dividing each value by the maximal one.
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Figure 6 (Appendix)

Figure 6

Bottom: Autofluorescence (red) at 340 nm (left), 360 nm (middle) and 380 nm (right)

together with a straight line plus cosine function fit (blue). Top, the normalized residuals:

(adu− fit)/
√
G fit + PB G2 σ

2
read−out .
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