
HAL Id: hal-03370462
https://hal.science/hal-03370462v1

Submitted on 8 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Recurrent Neural Network Based Approach for
Coordinating Radio and Computing Resources

Allocation in Cloud-RAN
Mahdi Sharara, Sahar Hoteit, Véronique Vèque

To cite this version:
Mahdi Sharara, Sahar Hoteit, Véronique Vèque. A Recurrent Neural Network Based Approach for
Coordinating Radio and Computing Resources Allocation in Cloud-RAN. 2021 IEEE 22nd Interna-
tional Conference on High Performance Switching and Routing (HPSR), Jun 2021, Paris, France.
�10.1109/HPSR52026.2021.9481812�. �hal-03370462�

https://hal.science/hal-03370462v1
https://hal.archives-ouvertes.fr

A Recurrent Neural Network Based Approach for
Coordinating Radio and Computing Resources

Allocation in Cloud-RAN
Mahdi Sharara∗, Sahar Hoteit∗, and Véronique Vèque∗

∗Université Paris Saclay-CNRS-CentraleSupélec,
Laboratoire des Signaux et Systèmes, 91190, Gif-sur-Yvette, France

Emails: {mahdi.sharara, sahar.hoteit, veronique.veque}@universite-paris-saclay.fr

Abstract—Cloud Radio Access Network (Cloud-RAN) is a
novel architecture that aims at centralizing the baseband pro-
cessing of base stations. This architecture opens paths for
joint, flexible, and optimal management of radio and comput-
ing resources. To increase the benefit from this architecture,
efficient resource management algorithms need to be devised.
In this paper, we consider a coordinated allocation of radio
and computing resources to mobile users. Optimal resource
allocation that respects the Hybrid-Automatic-Repeat-Request
deadline may require formulating high-complexity and resource-
heavy algorithms. We consider two Integer Linear Programming
problems (ILP) that implement a coordinated allocation of radio
and computing resources with the objectives of maximizing
throughput and maximizing users’ satisfaction, respectively. Since
solving these highly-complex problems requires a high execution
time, we investigate low-complexity alternatives based on machine
learning models; more precisely on Recurrent Neural Networks
(RNN). These RNN models aim to depict the performance of the
ILP problems with a much lower execution time. Our simulation
results demonstrate the great ability of RNN models to perform
very closely to the ILP problems while being able to reduce the
execution time by up to 99.65%.

Index Terms—Cloud-RAN, 5G, Integer-Linear-Programming,
Recurrent Neural Networks, Resource Allocation

I. INTRODUCTION

Throughout the last decade, mobile data traffic has experi-
enced massive growth. This growth is driven by the increasing
demand for different services such as the Internet of Things,
vehicular networks, smart cities, and industry automation,
among others. The 5th generation of mobile networks presents
new enhanced features to respond to the enormous demand
for data. One of these key-enabling features is Cloud Radio
Access Networks (Cloud-RAN) [1] [2].

In traditional mobile networks, a base station mainly con-
sists of decentralized modules; a Radio Remote Head (RRH)
and a Base Band Unit (BBU). While an RRH is responsible
only for radio frequency functions, a BBU is responsible for
all the other baseband functions of the PHY/MAC/RRC layers.
Cloud-RAN, by contrast, allows for centralizing and virtual-
izing the baseband processing of the distributed RRHs [1].
Hence, some or all baseband functions of these RRHs will
be executed on a powerful, centralized, and shared hardware
known as a BBU pool. Unlike traditional RAN, the central-

ization and joint processing provides higher flexibility, which
in turn paves the way for improved interference-mitigation,
reduced power consumption, and reduced CAPEX and OPEX
[2].

It is impossible to exploit Cloud-RAN’s full advantages
without designing efficient algorithms that can optimally and
jointly allocate radio and computing resources to the connected
RRHs. Different objectives can drive such algorithms to serve
different Quality of Service (QoS) requirements. Depending
on the operator strategies, these objectives can range from
maximizing throughput to minimizing latency or power con-
sumption.

In our previous works, we have focused on coordinating
the allocation of radio and computing resources in Cloud-
RAN. We have studied how to manage the limited computing
resources when they are insufficient for processing all user
data [3]. Two Integer-Linear-Programming (ILP) problems
have been formed to achieve optimal resources allocation
while considering the objectives of maximizing users’ through-
put and satisfaction rate, respectively. These ILP problems
permit coordination between radio and computing resource
schedulers; requiring not only the availability of computing
resources at the BBU pool, but also the availability of radio
resources. This coordination specifically allows for adjusting
the Modulation and Coding Scheme (MCS) index, which
controls the modulation order and the coding rate of the data
to be transmitted. While, the throughput of a user increases
with the MCS index, the time required to process this user’s
data also increases. In the event of an overload in the BBU
pool, resulting in a lack of resources to process all users’
date, the coordination allows to reduce users’ MCS indexes
and hence admitting them in the BBU pool. If coordination is
not considered, users would transmit, but their data will not
be processed in the BBU pool due to computing resources
scarcity; hence the data would be lost and would need to be
re-transmitted. By adopting the coordination, the reduction of
the MCS index will allow for scheduling these users in the
BBU pool, despite the throughput being less than what was
demanded initially.

The ILP problems are known to be NP-Hard problems
having exponential time-complexity. In fact, it could be im-
practical for mobile operators to implement them, given that978-1-6654-4005-9/21/$31.00 ©2021 IEEE

scheduling decisions should be made in a limited amount of
time. Machine Learning (ML) has recently shown many poten-
tials for resource allocation in Mobile Networks [4]. Machine
learning, precisely Deep Learning (DL), has demonstrated its
ability to provide solutions to various problems. Several papers
have investigated the ability of DL to provide low-complexity
alternatives to high-complexity optimal algorithms as in [5]
and [6]. Not only are DL networks able to closely imitate the
performance, they can also have much lower execution time,
making them suitable for practical implementation.

In this paper, we investigate the ability of Recurrent Neural
Networks, a branch of deep learning, to sub-optimally depict
the performance of two ILP-based algorithms. This depiction
should provide a practical alternative to these algorithms,
where the first aims at maximizing the total throughput, and
the second maximizes the total users’ satisfaction.

The rest of the paper is organized as follows: Section
II surveys the related work. Section III presents the ILP
models, followed by the Deep Learning model in section IV.
Afterwards, the performance evaluation is presented in section
V, and finally, the work is concluded in VI.

II. RELATED WORK

Resource Allocation, namely computing resource allocation,
in Cloud-RAN has been considered in various works. [7]
considers the required processing time of different uplink
BBU functions; with the authors demonstrating the decoding
function as the highest consumer of computing resources given
that its processing time increases with the increase of either
the MCS index or the number of Resource Blocks (RB).
Additionally, different processing time prediction models, as a
function of the MCS index, have been proposed. These models
are based on linear interpolation, polynomial interpolation, and
deep-learning, respectively. These models take only the MCS
index into consideration. A more generalized processing-time
model was introduced in [8], it does not only consider the
MCS index as in [7], but also the number of Resource Blocks
and the CPU frequency. In the context of Cloud-RAN, the
effect of paralleling decoding functions has been considered
in [9]; the authors demonstrated the ability of parallelism to
reduce the run-time.

In [10], two Integer-Linear-Programming (ILP) problems
have been formulated to achieve optimal computing resource
allocation, maximizing the throughput and the number of
admitted users respectively. These two ILP problems were
improved in [3]; in the latter, they gained an extra degree of
freedom allowing them to modify the MCS index of users to
better adapt the transmission parameters (i.e., MCS index) with
the availability of computing resources. Unlike [10] where
the performance is measured at the PHY layer, [11] takes
into consideration the performance at the MAC layer. The
different ILP algorithms have been compared with respect to
different MAC layer metrics including goodput, bit-error-rate,
and average delay.

The role of Machine learning techniques in mobile networks
has attracted a lot of attention. The authors in [5] discussed

two applications of deep learning in the physical layer. One
of these applications is the approximation of highly-complex
functions using a deep neural network. Using Graphical
Processor Units (GPU), it could be possible to significantly
reduce the function run-time, making it possible to respect
the different stringent run-time requirements. Deep Neural
Networks have been used in Reinforcement Learning (RL)
to learn an approximation of the Q-function. In the same
context, [6] targets optimally allocating resources to D2D users
and formulates a Mixed Integer Linear Programming Problem
(MILP). [6] exploits machine learning to solve the Branch
and Bound resource algorithm quicker, which MILP-solvers
use to find solutions for MILP problems. In [12] and [13],
resource block allocation has been considered for mission-
critical services and micro-grid communication, where the
goal is to minimize delay. The base stations are agents that
interact with the environment by selecting an action given their
state and receiving a reward plus their new state. Based on
the rewards, the agents will learn the quality of the action
they take. Instead of storing the value of actions given each
state, which may require a gigantic amount of memory, the
authors used a Long-Short-Term-Memory (LSTM) network
that approximates the Q-value of each state-action pair and
also takes into consideration the effect of actions done in
previous time steps.

Inspired by these works, we investigate the ability of RNN-
based algorithms to optimally allocate computing resources in
Cloud-RAN.

III. PROBLEM FORMULATION

In our study, we consider a Cloud-RAN system that consists
of a centralized BBU-Pool connected to a set of RRHs R.
We consider the uplink direction since the most resource-
heavy operation in the BBU pool is the decoding function;
it has an execution time seven times higher than the encoding
function’s execution time. Hence, the demand for comput-
ing resources overwhelmingly comes from uplink traffic [7].
When the computing resources are insufficient to process the
data from all users, a group of users will have their data
processed, while others will be dismissed. Hence, operators
should adopt the selection strategy they want depending on
the service agreements. Excluding some users is unavoidable,
and it comes with negative consequences for these excluded
users. First, these users will have wasted transmission power.
Second, the Hybrid Automatic Repeat Request (HARQ) mech-
anism will be triggered where each transmission should be
acknowledged within 8 ms. According to [9], this leaves only
2ms to process uplink data. Otherwise, the BBU pool, by
dismissing users’ data, will trigger an HARQ re-transmission.
If this transmission is successfully processed, the delay in
the system will be increased. If it isn’t, the transmission
power will be again wasted. This has driven the authors in
[3] to propose a coordination scheme between the radio and
computing schedulers that allow for adjusting the MCS index
of users. Initially, the MCS index is selected depending on
the channel condition while ensuring that the error probability

TABLE I
SUMMARY OF THE GENERAL NOTATIONS

Parameters Definition
R Set of RRHs
Ur Set of users for each RRH r ∈ R

M Set of MCS indexes that can be used in the system
C Set of CPU cores in the shared BBU pool (muti-core

data center).
Mr,u,max Maximum MCS index user u ∈ Ur may use
tr,u,m Data processing time of user u ∈ Ur having an MCS

index m ∈M
br,u,m Data length (in bits) of user u ∈ Ur using an MCS

index m ∈M during one TTI
br,u,max Data length (in bits) of user u ∈ Ur using its

maximum MCS index Mr,u,max during one TTI
d Processing time deadline
xc
r,u,m Binary variable that assigns the data of user u ∈ Ur

having an MCS index m to the core c ∈ C
sr,u The satisfaction ratio of user u ∈ Ur

should be no more than 0.1 [11]. However, adjusting the
MCS index to a lower one allows for decreasing the required
processing time at the expense of reducing throughput. This
would grant an additional degree of freedom for the operator
and can help exploit the computing resources better. Regarding
users whom the BBU pool will not admit, they will be notified
to not send data so that they do not waste their transmission
power.

The system under study consists of: a set of R RRHs,
sets of users Ur per each RRH r, and a set of homogeneous
CPU cores C available in the BBU pool. The set of possible
MCS indexes used for the radio transmission is M. For each
RRH r, the coordination policy attributes to user u ∈ Ur
an MCS index m ∈ M lower or equal to the maximum
allowed one Mr,u,max; the one initially chosen by the radio
scheduler considering only the radio conditions. We note that
the coordination policy does not adjust the MCS index to a
higher index to avoid a probability of error higher than 0.1.
Based on the chosen index m, user u transmits an amount of
data equal to br,u,m which is determined according to [14].
The latter maps the MCS index and the number of RBs
to the transport block size (TBS). The TBS is the payload
that is carried over the physical layer. When a user uses,
Mr,u,max index, br,u,m is denoted as br,u,max. Additionally,
the processing time model from [8] is used to approximate
tr,u,m, which is the time required for processing user’s u data
on the BBU pool. A summary of general notations is presented
in Table I.

Two coordination policies are considered, the first aims
to maximize the total system throughput, and the second
aims to maximize the users’ satisfaction. We define the user
satisfaction ratio as the ratio of the throughput achieved
when the user operates using the adjusted MCS index to
the maximum throughput obtained when operating using the
maximum allowed MCS index (i.e., the one that depends
solely on the channel conditions). The two ILP Problems are:

1) Maximize Total Throughput (MTT): One possible policy
for the operator is to admit users that can maximize
the total system throughput. This comes inline with a
5G objective of maximizing the overall throughput. The
following ILP problem ensures this objective:

maximize
∑
r∈R

∑
u∈Ur

∑
m∈M

∑
c∈C

xc
r,u,mbr,u,m (1)

subject to xc
r,u,m ∈ {0, 1}, ∀r ∈ R, u ∈ Ur ,

m ∈M, c ∈ C (2)∑
c∈C

∑
m∈M

xc
r,u,m ≤ 1,∀r ∈ R, u ∈ Ur (3)

xc
r,u,m = 0, ∀r ∈ R, u ∈ Ur, c ∈ C,

m > Mr,u,max, (4)∑
r∈R

∑
u∈Ur

∑
m∈M

xc
r,u,mtr,u,m ≤ d, ∀c ∈ C

(5)

xc
r,u,m is a binary decision variable; it is equal to 1 if

the data of user u ∈ Ur is coded using MCS m ∈ M
and is processed on CPU core c ∈ C. It is equal to 0
otherwise. The objective function (1) maximizes the
overall system’s throughput. MTT solution has the
following constraints: (2) guarantees that xc

r,u,m is a
binary decision variable; (3) ensures the data of user
u ∈ Ur are encoded using at most one MCS index
m and are processed on at most one CPU core c; (4)
ensures a user cannot get an MCS index higher than its
maximum allowed one, and (5) ensures that the data,
processed on core c, should have been processed before
the deadline d. To maximize throughput, MTT tends to
prioritize users with high MCS indexes.

2) Maximize total Users’ Satisfaction (MUS): This ILP
problem aims to maximize the total users’ satisfaction
defined earlier. In comparison with the previous ILP,
only the objective function is modified, while the same
constraints are used. The objective function of MUS is:∑

r∈R

∑
u∈Ur

∑
m∈M

∑
c∈C

xc
r,u,m ×

br,u,m
br,u,max

(6)

To maximize the total users’ satisfaction, MUS tends to
assign for each user an MCS index that does not deviate
much from the maximum allowed MCS index.

Given that Integer Linear Programming is known to have an
NP-Hard complexity, we propose to replace these algorithms
with a Recurrent Neural Network (RNN), which should imitate
the performance of these algorithms with a much more reduced
execution time. In the next section, we discuss the RNN-based
algorithms.

IV. RECURRENT NEURAL NETWORK ALGORITHMS

In supervised Machine Learning, a model is given a set of
inputs and a set of outputs (i.e., labels) and aims to learn

(a) BiLSTM Architecture [15]

(b) Fully Connected and Classification Layer

Fig. 1. RNN Model Architecture

a mapping between the inputs and these desired outputs.
Recurrent Neural Networks are suitable for applications on
data with sequential structures. This makes them a great choice
for naturally sequential data such as texts, speeches, etc...
In such types, the elements in a sequence are more or less
dependent on each other. For example, in English language
translation use cases, the meaning and the role of each word
in the sentence depend on the previous and following elements
in the sequence. Hence, such dependency should be taken
into consideration by the ML model for it to be able to
give accurate results. RNN can process sequential input data
of a variable sequence length and can detect dependencies
between the elements of the sequence. A very famous layer
used in RNN is known as Long-Short-Term-Memory (LSTM).
This model is designed to counter the phenomenon of the
vanishing gradient problem [4] that slows the learning speed
and can hinder the model from improving. While an LSTM
can memorize dependencies in one direction, a Bi-Directional
LSTM (BiLSTM) uses two LSTM layers instead to traverse
the sequence in two directions: a forward direction and a
backward direction. Thus, it can capture more dependencies
and have a wider scope when making predictions. A BiLSTM-
based RNN suits our resource allocation problem presented
in the previous section. Given a sequence of users from all
RRHs, each user may or may not be admitted. If admitted,
the RNN should decide what MCS should be used. Besides,
users’ selections are dependent because computing resources

are limited and shared among them; hence, the decision for
a user can affect the decision for another. The RNN model
should exploit such dependencies to make decisions that align
with the objectives presented in section III. Precisely, this task
is handled by the BiLSTM layer.

Fig. 1(a) shows the basic architecture of BiLSTM where
it−1, it, it+1, ..., iT is the input sequence. Each element in
this sequence is a feature vector that carries information
about the corresponding item (i.e., a user in our case). This
element is input to the two LSTM layers that correspond to
the forward and backward directions. The output vectors from
each LSTM layer are concatenated and fed into an activation
layer; a layer used to increase the ability of the network to
learn non-linear dependencies. Finally the output is a vector
of length L = 2H , where H is a hyperparameter that defines
the number of hidden layers in an LSTM. Because of space
limitations, the detailed architecture of an LSTM is omitted;
it can be found in [15].

In our model, we use a sequence-to-sequence classification.
This means that each element (i.e., that represents a user) in the
sequence should have an output (i.e., a decision on the MCS
index). Each element in the input sequence is in fact a vector of
features. The feature vector contains these features: the MCS
indexes that can be used, the corresponding throughput and
processing time for each MCS index, the number of RBs, and
the total demanded throughput, and total demanded processing
time. The feature vector is input to the two LSTM layers. The
outputs of the two LSTM are input to the activation layer;
hyperbolic tangent function, tanh, which produces an output
vector of L elements. Each element in this vector has a value
between -1 and 1. Our proposed RNN model consists of a
BiLSTM layer with H=25 hidden layers and L=50; the value
of the hyperparameter H is determined by trial and error. These
outputs are input to the fully-connected network shown in 1(b).
The Fully connected layer has an activation function known as
softmax, and it is used for multi-class classification [4]. The
classification layer contains M + 1 neurons where M = |M|
(i.e., the possible labels of the classifier are the MCS indexes
in the system plus another label to indicate a user is dismissed.
Among the M+1 neurons, the one with the highest activation
value gives the label (i.e., the decision).

To train the RRN model, we use a large data set labeled
according to the ILP solver results. Our RNN model uses the
training dataset to learn how to imitate the performance of the
ILP problems as accurately as possible.

V. PERFORMANCE EVALUATION

A. Environment Setup

In our simulation, we consider a BBU pool that has 4
available CPU cores. The number of RRHs connected to
the BBU pool varies from 15 to 35. Each RRH operates
on 20 MHz bandwidth, thus it has 100 RBs available for
allocation. The 100 RBs are allocated to the users of each
RRH. Each user is assigned a uniformly random number of
RBs between 10 and 30. To assign the maximum allowed MCS

Fig. 2. Probability distribution function of MCS indexes as in [10]

indexes for users, [10] provides an MCS-distribution of data,
collected from real users, from which we sample the MCS
indexes. The curve of the probability distribution of MCS is
provided in Fig.2. The MCS indexes range from 0 to 26.
We use the processing time model in [8] to determine the
required processing time for users’ data. The model provides
the processing time as a function of the used MCS, the number
of RBs, and the CPU clock speed. We suppose that the 4 CPU
cores have a 4GHz clock speed. To determine the throughput,
we refer to [14] to find the Transport Block Size (TBS).
The TBS is determined as a function of the number of the
allocated RBs and the used MCS index, over the Transmission
Time interval (TTI) that is equal to 1ms. The simulation is
coded using MATLAB, and the ILP problems are solved using
CPLEX for MATLAB.

B. Model Training

To train the RNN model to imitate the ILP-problems perfor-
mance, we generated a dataset by running the simulation 7500
times. For each run, the results of the ILP solvers were added
to the data set. Given a group of users from all RRHs, the ILP
solver provides the allocation decisions when MTT and MUS
problems are solved. To adapt the data to our model, the users
in each run were arranged as a sequence, and the allocation
results for MTT and MUS were used as labels to train the two
RNN models. 67% of the set is used for training, and 33% is
used for testing. The accuracy of the training and testing sets
are provided in table II.

TABLE II
TRAIN/TEST ACCURACY

Model MTT MUS
Training-set Accuracy 97.27% 97.85%
Testing-set Accuracy 97.23% 97.84%

C. ILP vs. RNN Comparison

To compare the performance of the ILP problems and RNN
models, we are interested in four performance metrics:

1) Average Throughput: The average user’s throughput.

2) Admitted Users: The percentage of admitted users with
respect to all users in the system.

3) Fairness: Jain’s Fairness index [16] is used to compare
the fairness among the algorithms. It is defined by:

JI =

(∑
r∈R

∑
u∈Ur sr,u

)2
(N ×

∑
r∈R

∑
u∈Ur s

2
r,u)

(7)

For each user u ∈ Ur, sr,u is its satisfaction ratio (i.e.,
the ratio of the attained throughput to the maximum
achievable throughput achieved when using the maxi-
mum allowed MCS index

4) Execution Time: The percentage of reduction of exe-
cution time for RNN models with respect to the ILP
models.

We consider the allocation for only one TTI, and we ran
the simulation 1000 times. We provide the 95% confidence
intervals.

Fig. 3 shows the performance of the ILP algorithms and
their RNN counterparts as a function of the number of RRHs
connected to the BBU pool. We note that the BBU becomes
fully-loaded when the number of RRHs is equal to 17, after
which the algorithms start behaving differently. Before this
point, the algorithms perform equally as there would be
enough computation resources to admit all users using their
maximum MCS index.

The MTT algorithms achieve higher average throughput
per user in comparison to MUS algorithms. However, the
latter achieves better performance concerning the metrics of
Admitted Users and Fairness. From the real MSC-distribution
provided in [10], the bulk of users have MCS indexes between
4 and 10. The users would request less processing time than
users with high MCS indexes would. Hence, maximizing the
sum of users’ satisfaction will lead to favoring the allocation
of the bulk of users with low MCS indexes; this justifies the
better performance of MUS algorithms with respect to the
Admitted Users and Fairness metrics.

More importantly, the figures show that the RNN networks
were able to learn MTT and MUS’s objectives, respectively.
Fig. 3(a) shows that RNN-MTT performs very closely to its
ILP counterpart with respect to the average throughput metric.
The highest difference between the graphs is minimal and is
equal to 0.02 Mbps. Concerning the other metrics in Fig. 3(b)
and Fig. 3(c), the margin of difference between ILP-MTT and
RNN-MTT increases. RNN-MTT dismisses up to 6.2926%
more than the MTT-ILP does and may lose up to 0.062 points
in the fairness index, in comparison with MTT-ILP. On the
other hand, RNN-MUS captures the performance of ILP-MUS,
especially with respect to the fairness metric. The margin of
difference between the graphs ILP-MUS and RNN-MUS is not
more than 0.0385 Mbps, 0.696%, and 0.0084 concerning the
metrics of average throughput, admitted users, and fairness,
respectively.

Fig. 3(d) shows the reduction of execution time for the RNN
models with respect to the ILP problems. The simulation was
done in a MATLAB environment running on an Octa-core

(a) Average user’s throughput (in Mbps) as a function of N. of RRHs (b) Admitted Users (in %) as a function of N. of RRHs

(c) Jain’s Fairness Index as a function of N. of RRHs (d) Reduction in Execution time (in %) with respect to the ILP counterparts
as a function of N. of RRHs

Fig. 3. Performance evaluation of the different scheduling solutions

intel CPU core i9-9880H. Compared to ILP-MTT, RNN-MTT
reduces the execution time by more than 94% and can reach
up to 99.49% of reduction. Similarly, RNN-MUS reduces the
execution time by more than 94.7% and can reach up to
99.65% of reduction.

In conclusion, while the performance of RNN models, in
comparison to the ILP models, slightly degrades with respect
to the throughput, admitted users, and fairness metrics, the
significant reduction of the execution time of RNN models
makes them more practical for real-time implementation.

VI. CONCLUSION

In this paper, we have investigated the usage of Recurrent
Neural Networks for resource allocation in Cloud-RAN as
an alternative to Integer Linear Programming. We considered
two ILP problems to allocate computing resources to process
users’ data and to select their transmission MCS indexes. As
solving the NP-Hard ILP problems requires a lot of computing
resources, ILP is a bad choice for real-time scheduling. The
RNN models have demonstrated their ability to closely depict
the performance of the ILP problems with a significant lower

execution time. While we have considered in this paper a real-
traffic distribution and trained the RNN model based on it, our
study will be developed to include different traffic distributions
that take into consideration the coexistance of different hetero-
geneous services in 5G, including enhanced Mobile Broadband
(eMBB), Ultra-Reliable Low Latency (URLLC), and massive-
Machine-Type-Communication (mMTC). We will also study
the performance of the algorithms at the MAC layer level
considering multiple TTIs.

REFERENCES

[1] C. Mobile, “C-RAN: the road towards green RAN,” White Paper, ver,
vol. 2, pp. 1–10, 2011.

[2] M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A Comprehen-
sive Survey of RAN Architectures Toward 5G Mobile Communication
System,” IEEE Access, vol. 7, pp. 70 371–70 421, 2019.

[3] M. Sharara, S. Hoteit, P. Brown, and V. Veque, “Coordination between
radio and computing schedulers in Cloud-RAN,” in 17th IFIP/IEEE In-
ternational Symposium on Integrated Network Management, Bordeaux,
France, 2021.

[4] A. Ly and Y. D. Yao, “A Review of Deep Learning in 5G Research:
Channel Coding, Massive MIMO, Multiple Access, Resource Alloca-
tion, and Network Security,” IEEE Open Journal of the Communications
Society, vol. 2, pp. 396–408, 2021.

[5] E. Bjornson and P. Giselsson, “Two Applications of Deep Learning in
the Physical Layer of Communication Systems [Lecture Notes],” IEEE
Signal Processing Magazine, vol. 37, no. 5, pp. 134–140, 2020.

[6] M. Lee, G. Yu, and G. Y. Li, “Accelerating Resource Allocation for
D2D Communications Using Imitation Learning,” in 2019 IEEE 90th
Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–5.

[7] H. Khedher, S. Hoteit, P. Brown, R. Krishnaswamy, W. Diego, and
V. Veque, “Processing Time Evaluation and Prediction in Cloud-RAN,”
in ICC 2019 - 2019 IEEE International Conference on Communications
(ICC), 2019, pp. 1–6.

[8] S. Khatibi, K. Shah, and M. Roshdi, “Modelling of Computational
Resources for 5G RAN,” in 2018 European Conference on Networks
and Communications (EuCNC), 2018, pp. 1–5.

[9] V. Q. Rodriguez and F. Guillemin, “Towards the deployment of a
fully centralized Cloud-RAN architecture,” in 2017 13th International
Wireless Communications and Mobile Computing Conference (IWCMC),
2017, pp. 1055–1060.

[10] H. Khedher, S. Hoteit, P. Brown, V. Veque, R. Krishnaswamy, W. Diego,
and M. Hadji, “Real Traffic-Aware Scheduling of Computing Resources
in Cloud-RAN,” in 2020 International Conference on Computing, Net-
working and Communications, ICNC 2020, 2020, pp. 422–427.

[11] F. Bassi and H. I. Khedher, “HARQ-aware allocation of computing
resources in C-RAN,” in 2020 IEEE Symposium on Computers and
Communications (ISCC), 2020, pp. 1–6.

[12] M. Elsayed and M. Erol-Kantarci, “Deep Reinforcement Learning for
Reducing Latency in Mission Critical Services,” in 2018 IEEE Global
Communications Conference (GLOBECOM), 2018, pp. 1–6.

[13] M. Elsayed and M. Erol-Kantarci, “Deep Q-Learning for Low-Latency
Tactile Applications: Microgrid Communications,” in 2018 IEEE In-
ternational Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), 2018, pp. 1–6.

[14] ETSI-LTE, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical layer procedures 3GPP TS 36.213 v.12.3.0 Rel.12,” October
2014.

[15] R. Dhumal Deshmukh and A. Kiwelekar, “Deep Learning Techniques
for Part of Speech Tagging by Natural Language Processing,” in 2020
2nd International Conference on Innovative Mechanisms for Industry
Applications (ICIMIA), 2020, pp. 76–81.

[16] R. Jain, D. Chiu, and W. Hawe, A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems.
DEC Research Report TR-301, Sep 1984.

