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Co-clustering of time-dependent data
via the Shape Invariant Model

Charles Bouveyron, Alessandro Casa, Elena Erosheva & Giovanna Menardi

Abstract

Multivariate time-dependent data, where multiple features are observed over time for
a set of individuals, are increasingly widespread in many application domains. To model
these data we need to account for relations among both time instants and variables and,
at the same time, for subject heterogeneity. We propose a new co-clustering methodology
for grouping individuals and variables simultaneously, designed to handle both functional
and longitudinal data. Our approach borrows some concepts from the curve registration
framework by embedding the Shape Invariant Model in the Latent Block Model, estimated
via a suitable modification of the SEM-Gibbs algorithm. The resulting procedure allows
for several user-defined specifications of the notion of cluster that can be chosen on sub-
stantive grounds and provides parsimonious summaries of complex time-dependent data by
partitioning data matrices into homogeneous blocks. Along with the explicit modelling of
time evolution, these aspects allow for an easy interpretation of the clusters, from which also
low-dimensional settings may benefit.

Keywords: co-clustering, curve registration, latent block model, stochastic EM

1 Introduction
Time-dependent data, arising when measurements are taken on a set of units at different time
occasions, are pervasive in a plethora of different fields. Examples include, but are not limited
to, time evolution of asset prices and volatility in finance, growth of countries as measured
by economic indices, heart or brain activities as monitored by medical instruments, disease
evolution evaluated by suitable bio-markers in epidemiology. In this heterogeneous landscape,
we may distinguish, from a modelling perspective, between functional and longitudinal settings.
In the former case a large number of regularly sampled observations is usually available, allowing
to treat each element of the sample as a function. In longitudinal studies, conversely, only
a few observations over time are typically available with sparse and irregular measurements.
Readers may refer to Rice [2004] for a thorough comparison and discussion about differences
and similarities between functional and longitudinal data analysis.

Early developments in these areas mainly aim to describe individual-specific curves by prop-
erly accounting for the correlation between measurements for each subject [see e.g. Diggle et al.,
2002, Ramsay and Silverman, 2005, and references therein] with the subjects themselves often
considered to be independent. This is not always the case, hence more recently, there has been
increasing interest in clustering methodologies aimed at describing heterogeneity among time-
dependent observed trajectories; see Erosheva et al. [2014] for a recent review of related methods
used in criminology and developmental psychology. From a functional standpoint, different ap-
proaches have been studied and readers may refer to the works by Bouveyron and Jacques [2011],
Bouveyron et al. [2015] and Bouveyron et al. [2020] or to Jacques and Preda [2014] for a review.
On the other hand, from a longitudinal point of view, De la Cruz-Mesía et al. [2008], McNicholas
and Murphy [2010] proposed model-based clustering approaches. Lastly a review from a more
general time-series perspective may be found in Liao [2005] and Frühwirth-Schnatter [2011].
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Figure 1: Example of multivariate time-dependent data: d = 4 variables are measured for n = 8 individ-
uals over T = 15 time instants, giving rise to the displayed curves.

The methods cited so far usually deal with situations where a single feature is measured over
time for a number of subjects, where the data are represented by a n×T matrix, with n being the
number of subjects and T being the number of observed time occasions. In fact, it is increasingly
common to encounter multivariate time-dependent data, with several variables measured over
time for different individuals. These data may be represented according to three-way n× d× T
matrices, with d being the number of time-dependent features; a graphical illustration of such
structure is displayed in Figure 1. The introduction of an additional layer entails new challenges
that have to be faced by clustering tools. As noted by Anderlucci and Viroli [2015], models have
to account for three different aspects, being the correlation across different time observations,
the relationships between the variables and the heterogeneity among the units, each one of them
arising from a different layer of the three-way data structure.

To extract useful information and to unveil patterns from such complex structured and
high-dimensional data, standard clustering strategies would require specification and estimation
of highly parameterized models. In this situation, parsimony is often induced by neglecting
the correlation structure among variables. An alternative approach, specifically proposed in a
parametric setting, is represented by the contributions of Viroli [2011a,b] which exploit mixtures
of Gaussian matrix-variate distributions, in order to handle three-way data.

In the present work, we take a different direction, by pursuing a co-clustering strategy to
address the mentioned issues. The term co-clustering refers to those methods finding row and
column clusters of a data matrix simultaneously. These techniques are particularly useful in
high-dimensional settings where standard clustering methods may fall short in uncovering mean-
ingful and interpretable row groups because of the high number of variables. By searching for
homogeneous blocks in large matrices, co-clustering tools produce parsimonious summaries that
could provide useful lower dimensional representations of the data. These techniques are par-
ticularly appropriate when relations among the observed variables are of interest. Note that,
even in the co-clustering context, the usual dualism between distance-based and density-based
strategies can be found. We pursue the latter approach, which embeds co-clustering in a prob-
abilistic framework, builds a common setting to handle different types of data, and reflects the
idea of a density resulting from a mixture model. Specifically, we propose a parametric model
for time-dependent data and a new estimation strategy to handle the distinctive characteristics
of the model. Parametric co-clustering of time-dependent data has been pursued by Ben Sli-
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men et al. [2018] and Bouveyron et al. [2018] in a functional setting, by mapping the original
curves to the space spanned by the coefficients of a basis expansion. By modelling explicitly
the observed data, instead of basis expansion coefficients, we provide a natural description of
the time evolution and facilitate cluster interpretation. The proposed model builds on the idea
that individual curves within a cluster arise as transformations of a common shape function,
which is in turn modeled to handle both functional and longitudinal data, regardless of their
dimensionality. Lastly, the framework we develop allows for a flexible specification of different
notions of clusters, possibly depending on subject matter considerations.

The rest of the paper is organized as follows. In Section 2, we provide the background
needed for the specification of the proposed model which is described in Section 3, along with
the estimation procedure. In Section 4, the model performances are illustrated both on simulated
and real examples. In Section 5, we conclude the paper by summarizing our contributions and
pointing to some future research directions.

2 Modelling time-dependent data
In the heterogeneous time-dependent data landscape outlined in the previous section, it is sensi-
ble to pursue a variety of modelling approaches. The route we follow borrows its rationale from
the curve registration framework [Ramsay and Li, 1998], according to which observed curves
often exhibit common patterns but with some variations. Methods for curve registration, also
known as curve alignment or time warping, are based on the idea of aligning prominent features
in a set of curves via either an amplitude variation, a phase variation or a combination of the
two. The first one concerns vertical variations while the latter regards horizontal, hence time
related, ones. As an example, it is possible to think about modelling the evolution of a specific
disease. Here the observable heterogeneity of the raw curves can often be disentangled in two
distinct sources: on the one hand, it could depend on differences in the intensities of the disease
among subjects whereas, on the other hand, there could be different ages of onset, i.e. the age
at which an individual experiences the first symptoms. After properly taking into account these
causes of variation, the curves result to be more homogeneously behaving, with a so called warp-
ing function, which synchronizes the observed curves and allows for visualization and estimation
of a common mean shape curve.

Similarly, in this work we account for time-dependency via a self-modelling regression ap-
proach [Lawton et al., 1972] and, more specifically, via an extension of the so called Shape
Invariant Model [SIM, Lindstrom, 1995], based on the idea that an individual curve arises as a
simple transformation of a common shape function.
Let X = {xi(ti)}1≤i≤n be the set of curves, observed on n individuals, with xi(t) being the level
of the i-th curve at time t and t ∈ ti = (ti,1, . . . , Ti,ni), hence with the time points and their
number allowed to be subject-specific. Stemming from the SIM, xi(t) is modelled as

xi(t) = αi,1 + eαi,2m(t− αi,3) + εi(t) (1)

where

• m(·) denotes a general common shape function whose specification is arbitrary. In the
following we consider B-spline basis functions [De Boor, 1978], i.e. lettingm(t) = m(t;β) =
B(t)β, where B(t) and β are respectively a vector of B-spline basis evaluated at time t and
a vector of basis coefficients whose dimensions allow for different degrees of flexibility;

• αi = (αi,1, αi,2, αi,3) ∼ N3(µα,Σα) for i = 1, . . . , n is a vector of subject-specific normally
distributed random effects. These random effects are responsible for the individual specific
transformations of the mean shape curve m(·) assumed to generate the observed ones.
In particular αi,1 and αi,3 govern respectively amplitude and phase variations while αi,2
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describes possible scale transformations. Random effects also account for the correlation
among observations on the same subject measured at different time points;

• εi(t) ∼ N (0, σ2
ε ) is a Gaussian distributed error term.

Due to its flexibility, Telesca and Inoue [2008] and Telesca et al. [2012] have already considered
the SIM as a stepping stone to model both functional and longitudinal time-dependent data.
Indeed, on the one hand, the smoothing involved in the specification of m(·;β) allows to handle
function-like data. On the other hand, random effects, which borrow information across curves,
make this approach fruitful even with short, irregular and sparsely sampled time series; readers
may refer to Erosheva et al. [2014] for an illustration in the context of behavioral trajectories.
Therefore, we find model (1) particularly suitable for our aims, potentially being able to handle
time-dependent data in a comprehensive way.

3 Time-dependent Latent Block Model

3.1 Latent Block Model

In the parametric, or model-based, co-clustering framework, the Latent Block Model [LBM,
Govaert and Nadif, 2013] is the most popular approach. Data are represented in a matrix form
X = {xij}1≤i≤n,1≤j≤d, where by now we should intend xij as a generic random variable. To
aid the definition of the model, and in accordance with the parametric approach to clustering
[Fraley and Raftery, 2002, Bouveyron et al., 2019], two latent random vectors z = {zi}1≤i≤n,
and w = {wj}1≤j≤d, with zi = (zi1, . . . , ziK), wj = (wj1, . . . , wjL), are introduced, indicating
respectively the row and column memberships, with K and L the number of row and column
clusters. A standard binary notation is used for the latent variables, i.e. zik = 1 if the i-th
observation belongs to the k-th row cluster and 0 otherwise and, likewise, wjl = 1 if the j-th
variable belongs to the l-th column cluster and 0 otherwise. The model formulation relies on a
local independence assumption, with the n×d random variables {xij}1≤i≤n,1≤j≤d being therefore
assumed to be independent conditionally on z and w, in turn supposed to be independent. The
LBM can be thus written as

p(X ; Θ) =
∑
z∈Z

∑
w∈W

p(z; Θ)p(w; Θ)p(X|z,w; Θ) , (2)

where

• Z and W are the sets of all the possible partitions of rows and columns respectively in K
and L groups;

• the latent vectors z,w follow a multinomial distribution, with p(z; Θ) = ∏
ik π

zik
k , p(w; Θ) =∏

jl ρ
wjl

l and πk, ρl > 0 are the row and column mixture proportions, ∑
k πk = ∑

l ρl = 1;

• as a consequence of the local independence assumption, p(X|z,w; Θ) = ∏
ijkl p(xij ; θkl)zikwjl

where θkl is the vector of parameters specific to block (k, l);

• Θ = (πk, ρl, θkl)1≤k≤K,1≤l≤L is the full parameter vector of the model.

The LBM is particularly flexible in modelling different data types, as handled by a proper
specification of the marginal density p(xij ; θkl) for binary [Govaert and Nadif, 2003], count
[Govaert and Nadif, 2010], continuous [Lomet, 2012], categorical [Keribin et al., 2015], ordinal
[Jacques and Biernacki, 2018, Corneli et al., 2020], and even mixed-type data [Selosse et al.,
2020].
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3.2 Model specification

Once the LBM structure has been properly defined, extending its rationale to handle time-
dependent data in a co-clustering framework boils down to a suitable specification of p(xij ; θkl).
Note that this reveals one of the main advantages of such a highly-structured model, consisting in
the chance to search for patterns in multivariate and complex data by specifying only the model
for the variable xij . As introduced in Section 1, multidimensional time-dependent data may
be represented according to a three-way structure where the third mode accounts for the time
evolution. The observed data hence assume an array configuration X = {xij(ti)}1≤i≤n,1≤j≤d
with ti = (ti,1, . . . , Ti,ni) as outlined in Section 2; from a practical standpoint, subject dependent
time instants, sparsely sampled curves and different observational lengths can be handled by a
suitable use of missing entries. Consistently with (1), we consider as a generative model for the
curve in the (i, j)-th entry, belonging to the generic block (k, l), the following

xij(t)|zik=1,wjl=1 = αklij,1 + eα
kl
ij,2m(t− αklij,3;βkl) + εij(t) (3)

with t ∈ ti a generic time instant. A relevant difference with respect to the original SIM consists,
coherently with the co-clustering setting, in the parameters being block-specific since the gen-
erative model is specified conditionally to the block membership of the cell. As a consequence:

• m(t;βkl) = B(t)βkl where the quantities are defined as in Section 2, with the only difference
that βkl is a vector of block-specific basis coefficients, hence allowing different mean shape
curves across different blocks;

• αklij = (αklij,1, αklij,2, αklij,3) ∼ N3(µαkl,Σα
kl) is a vector of cell-specific random effects distributed

according to a block-specific Gaussian distribution;

• εij(t) ∼ N (0, σ2
ε,kl) is the error term distributed as a block-specific Gaussian;

• θkl = (µαkl,Σα
kl, σ

2
ε,kl, βkl).

Note that here we embed the ideas borrowed from the curve registration framework in a
clustering setting. Therefore, while curve alignment aims to synchronize the curves to estimate
a common mean shape, in our setting the SIM works as a suitable tool to model the heterogeneity
inside a block and to introduce a flexible notion of cluster. The rationale behind considering
the SIM in a co-clustering framework consists in looking for blocks characterized by a different
mean shape function m(·;βkl). Curves within the same block arise as random shifts and scale
transformations of m(·;βkl), driven by the block-specifically distributed random effects. Let
consider the small panels on the left side of Figure 2, displaying a number of curves which
arise as transformations induced by non-zero values of αij,1, αij,2, or αij,3. Beyond the sample
variability, the curves differ for a (phase) random shift on the x−axes, an amplitude shift on the
y− axes, and a scale factor. According to model (3), all those curves belong to the same cluster,
since they share the same mean shape function (Figure 2, right panel).

Further flexibility can be naturally introduced within the model by “switching off” one or
more random effects depending on subject-matter considerations and on the user’s cluster defi-
nition. For example, if there are reasons to support that similar, yet shifted in time, evolutions
are expression of different clusters, it makes sense to switch off αij,3. As a consequence, the
model specification in (3) would no longer include the corresponding random effect αij,3

xij(t)|zik=1,wjl=1 = αklij,1 + eα
kl
ij,2m(t;βkl) + εij(t) .

In the following, we refer to this model as TTF, to highlight that the third random effect is
switched off. In the example illustrated in Figure 2 this situation ideally leads to a two-cluster
structure (Figure 3, right panels). Similarly, if comparable time evolution curves associated to
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Figure 2: In the left panels, curves in dotted line arise as random fluctuations of the superimposed red
curve, but they are all time, amplitude or scale transformations of the same mean-shape function on the
right panel.

different intensities are seen as expression of distinct groups, the random intercept αij,1 can
be switched off, and we refer to this class of models as FTT. Lastly, removing αij,2 results in
TFT models which would determine different blocks varying for a scale factor (Figure 3, middle
panels). From a practical standpoint, switching off a random effect amounts to constrain it to
follow a degenerate distribution centered at zero in the estimation scheme outlined in the next
section.

3.3 Model estimation

To estimate the LBM several approaches have been proposed, as for example Bayesian [Wyse
and Friel, 2012], greedy search [Wyse et al., 2017] and likelihood-based ones [Govaert and Nadif,
2008]. In this work we focus on the latter class of methods. In principle, the estimation strategy
would aim to maximize the log-likelihood `(Θ) = log p(X ; Θ) with p(X ; θ) defined as in (2);
nonetheless, the missing structure of the data makes this maximization impractical. For this
reason the complete data log-likelihood is usually considered as the objective function to optimize,
defined as

`c(Θ, z,w) =
∑
ik

zik log πk +
∑
jl

wjl log ρl +
∑
ijkl

zikwjl log p(xij ; θkl), (4)

where the first two terms account for the proportions of row and column clusters while the third
one depends on the probability density function of each block.

As a general solution, to maximize (4) and obtain an estimate of Θ̂ when dealing with
situations where latent variables are involved, one would in principle resort to the Expectation-
Maximization algorithm [EM, Dempster et al., 1977]. The basic idea underlying the EM algo-
rithm consists in finding a lower bound of the log-likelihood and optimizing it via an iterative
scheme in order to create a converging series of Θ̂(h). In the co-clustering framework, this lower
bound can be easily exhibited by rewriting the log-likelihood as follows

`(Θ) = L(q; Θ) + ζ

where L(q; Θ) = ∑
z,w q(z,w) log(p(X , z,w|θ)/q(z,w)), q(z,w) is a generic probability mass

function on the support of (z,w) while ζ is a positive constant not depending on Θ.
The E step of the algorithm maximizes the lower bound L over q for a given value of Θ.

Straightforward calculations show that L is maximized for q∗(z,w) = p(z,w|X , θ). Unfortu-
nately, in a co-clustering scenario, the joint posterior distribution p(z,w|X ,Θ) is not tractable,
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Figure 3: Pairs of plots in each column represent the two-cluster configurations arising from switching
off, from left to right αij,1, αij,2, αij,3. In the names of the models, as used in the rest of the paper, T
indicates a switched on random effect while F a switched off one.

as it involves terms that cannot be factorized as it conversely happens in a standard mixture
model framework. As a consequence, several modifications have been explored, searching for
viable solutions when performing the E step [see Govaert and Nadif, 2013, for a more detailed
tractation]; examples are the Classification EM (CEM) and the Variational EM (VEM). Here
we propose to make use of a Gibbs sampler within the E step to approximate the posterior
distribution p(z,w|X ,Θ). This results in a stochastic version of the EM algorithm, which will
be called SEM-Gibbs in the following. Given an initial column partition w(0) and an initial
value for the parameters Θ(0), at the h-th iteration the algorithm proceeds as follows:

• SE step: q∗(z,w) ' p(z,w|X ,Θ(h−1)) is approximated with a Gibbs sampler. The Gibbs
sampler consists in sampling alternatively z and w from their conditional distributions a
certain number of times before to retain new values for z(h) and w(h),

• M step: L(q∗(z(h),w(h)),Θ(h−1)) is then maximized over Θ, where

L(q∗(z(h),w(h)),Θ(h−1)) '
∑
z,w

p(z,w|X ,Θ(h−1)) log(p(X , z,w|Θ)/p(z,w|X ,Θ(h−1)))

' E[`c(Θ, z(h),w(h))|Θ(h−1)] + ξ,

ξ not depending on Θ. This step therefore reduces to the maximization of the conditional
expectation of the complete data log-likelihood (4) given z(h) and w(h).

In the proposed framework, due to the presence of the random effects, some additional
challenges have to be faced. In fact, the maximization of the conditional expectation of (4)
associated to model (3) requires a cumbersome multidimensional integration in order to compute
the marginal density defined as

p(xij ; θkl) =
∫
p(xij |αklij ; θkl)p(αklij ; θkl) dαklij . (5)

Note that, with a slight abuse of notation, we suppress the dependency on the time t, i.e. xij has
to be intended as xij(ti). In the SE step, on the other hand, the evaluation of (5) is needed for all
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the possible configurations of {zi}i=1,...,n and {wj}j=1,...,d. These quantities are straightforwardly
obtained when the SEM-Gibbs is used to estimate models without any random effect involved,
while their computation is more troublesome in our scenario.

We propose a modification of the SEM-Gibbs algorithm, called Marginalized SEM-Gibbs
(M-SEM), where an additional Marginalization step is introduced to account for the random
effects. Given an initial value for the parameters Θ(0) and an initial column partition w(0), the
h-th iteration of the M-SEM algorithm alternates the following steps:

• Marginalization step: The single cell contributions in (5) to the complete data log-
likelihood are computed by means of a Monte Carlo integration scheme as

p(xij ; θ(h−1)
kl ) ' 1

M

M∑
m=1

p(xij ;αkl,(m)
ij , θ

(h−1)
kl ) (6)

for i = 1, . . . , n, j = 1, . . . , d, k = 1, . . . ,K and l = 1, . . . , L and being M the number
of Monte Carlo samples. The values of the vectors αkl,(1)

ij , . . . , α
kl,(M)
ij are drawn from

a Gaussian distribution N3(µα,(h−1)
kl ,Σα,(h−1)

kl ) with this choice amounting to a random
version of the Gaussian quadrature rule [Pinheiro and Bates, 2006]. Whenever one or more
random effects are not included in the model (i.e. they are switched off), the corresponding
draws come from degenerate random variables, and hence set to zero in the estimation
process.

• SE step: p(z,w|X ,Θ(h−1)) is approximated by repeating, for a number of iterations, the
following Gibbs sampling steps

1. generate the row partition z(h)
i = (z(h)

i1 , . . . , z
(h)
iK ), i = 1, . . . , n according to a multi-

nomial distribution z(h)
i ∼M(1, z̃i1, . . . , z̃iK), with

z̃ik = p(zik = 1|X ,w(h−1); Θ(h−1))

= π
(h−1)
k pk(xi|w(h−1); Θ(h−1))∑

k′ π
(h−1)
k′ pk′(xi|w(h−1); Θ(h−1))

,

for k = 1, . . . ,K, with xi = {xij}1≤j≤d the i-th row of X and pk(xi|w(h−1); Θ(h−1)) =∏
jl p(xij ; θ

(h−1)
kl )w

(h−1)
jl .

2. generate the column partition w
(h)
j = (w(h)

j1 , . . . , w
(h)
jL ), j = 1, . . . , d according to a

multinomial distribution w(h)
j ∼M(1, w̃j1, . . . , w̃jL), with

w̃jl = p(wjl = 1|X , z(h); Θ(h−1))

= ρ
(h−1)
l pl(xj |z(h); Θ(h−1))∑
l′ ρ

(h−1)
l′ pl′(xj |z(h); Θ(h−1))

,

for l = 1, . . . , L, with xj = {xij}1≤i≤n the j-th column of X and pl(xj |z(h); Θ(h−1)) =∏
ik p(xij ; θ

(h−1)
kl )z

(h)
ik .

• M step: Estimate Θ(h) by maximizing E[`c(Θ, z(h),w(h))|Θ(h−1)].
Update mixture proportions as π(h)

k = 1
n

∑
i z

(h)
ik and ρ

(h)
l = 1

d

∑
j w

(h)
jl . The estimate of

θkl = (µαkl,Σα
kl, σ

2
ε,kl, βkl) is obtained by exploiting the non-linear mixed effect model speci-

fication in (3) and considering the approximate maximum likelihood formulation proposed
in Lindstrom and Bates [1990]; the variance and the mean components are estimated by
approximating and maximizing the marginal density of the latter near the mode of the
posterior distribution of the random effects. Conditional or shrinkage estimates are then
used for the estimation of the random effects.
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The M-SEM algorithm is run for a certain number of iterations until a convergence criterion
is met. The convergence for the proposed procedure is assessed by monitoring the evolution of
the complete data log-likelihood: more specifically the algorithm reaches convergence when the
sum of the changes in `c(Θ, z,w) in the last three iterations are smaller than a given threshold
δ > 0. Since a burn-in period is considered, the final estimate for Θ, denoted as Θ̂, is given by
the mean of the sample distribution. A sample of (z,w) is then generated according to the SE
step as illustrated above with Θ = Θ̂. The final block-partition (ẑ, ŵ) is then obtained as the
mode of their sample distribution.

The approach considered in this work represents an extension to the likelihood maximization
strategies, usually adopted in the LBM framework. Note that other choices could be alternatively
explored, such as fully Bayesian estimation schemes possibly allowing for statistical inference on
the parameter estimates [van Dijk et al., 2009] and for the automatic selection of the number of
blocks [Wyse and Friel, 2012].

3.4 Model selection

The choice of the number of groups is considered here as a model selection problem. Opera-
tionally we estimate several models, corresponding to different combinations of K and L and, in
our case, to different configurations of the random effects, and we select the best one according to
an information criterion. Note that the model selection step is more troublesome in this setting
with respect to a standard clustering one, since we need to select not only the number of row
clusters K but also the number of column ones L. Standard choices, such as the AIC and the
BIC, are not directly available in the co-clustering framework where, as noted by Keribin et al.
[2015], the computation of the likelihood of the LBM is challenging, even when the parameters
are properly estimated. A viable alternative is to consider an approximated version of the ICL
[Biernacki et al., 2000] that, relying on the complete data log-likelihood, does not suffer from the
same issues:

ICL = `c(Θ̂, ẑ, ŵ)− K − 1
2 logn− L− 1

2 log d− KLν

2 lognd , (7)

where ν denotes number of specific parameters for each block while `c(Θ̂, ẑ, ŵ) is defined as in
(4) with Θ, z and w being replaced by their estimates. The model associated with the highest
value of the ICL is then selected.

Even if the use of this criterion is a well-established practice in co-clustering applications,
Keribin et al. [2015] noted that its consistency has not been proved yet to estimate the number
of blocks of a LBM. Additionally, Nagin [2009] and Corneli and Erosheva [2020] point out a
bias of the ICL towards overestimation of the number of clusters in the longitudinal context.
The validity of the ICL could be additionally undermined by the presence of random effects. As
noted by Delattre et al. [2014], standard information criteria have unclear definitions in a mixed
effect model framework, since the definition of the actual sample size is not trivial. Given that,
common asymptotic approximations are not valid anymore. Even if a proper exploration of the
problem from a co-clustering perspective is still missing, we believe that the mentioned issues
might have an impact also on the derivation of the criterion in (7). The development of valid
model selection tools for LBM when random effects are involved is out of scope of this work,
therefore, operationally, we consider the ICL. Nonetheless, the analyses in Section 4 have to be
interpreted with full awareness of the limitations described above.

Additionally note that, to practically evaluate (7), the complete data log-likelihood is re-
quired. As outlined in the previous section, marginalization procedures are needed to compute
the marginal densities involved in (4). As a consequence, the first term (7) is approximated,
thus possibly depending on the considered marginalization scheme. Nonetheless, different ap-
proximation strategies have been proposed and their accuracy have been thoroughly tested [see
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e.g. Pinheiro and Bates, 1995], showing that the choice of a specific procedure is not strongly
influential.

Lastly, since the ICL would serve to the selection of both the number of row and column
clusters and the random effect configuration, note that the involved computational time might
be rather demanding, also depending on the sample size, the data dimension and the number of
observed time occasions. In such situations, resorting to some greedy search strategy, where not
all models under evaluations have to be estimated, could be helpful. See, for instance, Keribin
et al. [2017] and Corneli et al. [2020].

3.5 Remarks

The model introduced so far inherits the advantages of both its building ingredients, namely the
LBM and the SIM. Thanks to the local independence assumption of the LBM, it allows handling
multivariate, possibly high-dimensional complex data structures in a relatively parsimonious
way. On the other hand, the characteristics of the model introduce some relevant advantages,
in terms of interpretability of the time evolutions of the variables, even in low dimensional
settings. The random effects capture differences among the subjects, while curve summaries can
be expressed as a function of the mean shape curve. Additionally, resorting to a smoother when
modelling the mean shape function, allows for a flexible handling of functional data whereas the
presence of random effects make the model effective also in a longitudinal setting. In fact, the
borrowing strength mechanism induced by the random effects allows to deal with sparsely and
irregularly sampled longitudinal data [James and Sugar, 2003]. Finally, we pursue clustering
directly on the observed curves, without resorting to intermediate transformation steps, as it is
done for example in Bouveyron et al. [2018] where clustering is performed on an intermediate
space, spanned by the basis expansion coefficients used to transform the original data, thus
possibly endangering the interpretation in terms of the evolution in time. The model, despite its
attractive features, introduces some difficulties that require caution, as in the following discussed.

• Initialization The M-SEM algorithm encloses different numerical steps which require the
suitable specification of starting values. First, the convergence of EM-type algorithms
towards a global maximum is not guaranteed; as a consequence they are known to be
sensitive to the initialization with a proper one being crucial to avoid local solutions.
Assuming K and L to be known, the M-SEM algorithm requires starting values for z
and w in order to implement the first M step. A standard strategy resorts to multiple
random initializations: the row and column partitions are sampled independently from
multinomial distributions with uniform weights and the one eventually leading to the
highest value of the complete data log-likelihood is retained. An alternative approach,
possibly accelerating the convergence, is given by a k-means initialization, where two
k-means algorithms are independently run for the rows and the columns of X and the M-
SEM algorithm is initialized with the obtained partitions. It has been pointed out [see e.g.
Govaert and Nadif, 2013] that the SEM-Gibbs, being a stochastic algorithm, can attenuate
in practice the impact of the initialization on the resulting estimates. Finally, note that
a further initialization is required, to estimate the nonlinear mean shape function within
the M step.

• Convergence and other numerical problems. Although the benefits of including random
effects in the considered framework are undeniable, parameters estimation is known not
to be straightforward in mixed effect models, especially in the nonlinear setting [Harring
and Liu, 2016]. As noted above the nonlinear dependence of the conditional mean of
the response on the random effects requires multidimensional integration to derive the
marginal distribution of the data. While several methods have been proposed to compute
the integral, convergence issues are often encountered. In such situations, some strategies
can be employed to help with convergence of the estimation algorithm. Examples are
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to try different sets of starting values, to scale the data prior to the modelling step, or
to simplify the structure of the model (e.g. by reducing the number of knots of the B-
splines). Addressing these issues often results in considerable computational times even
when convergence is eventually achieved. Depending on the specific data at hand, it is also
possible to consider alternative mean shape formulations, such as polynomial functions,
which result in easier estimation procedures. Lastly note that, if available, prior knowledge
about the time evolution of the observed phenomenon may be incorporated in the models
to introduce some constraints possibly simplifying the estimation process [see e.g. Telesca
et al., 2012].

• Identifiability. The model proposed might inherits some of the identifiability issues of its
building blocks, i.e. the Latent Block Model and the Shape Invariant Model. The first one
shares the same issues of a standard mixture model. As noted by Keribin et al. [2015], LBM
is not identifiable due its invariance to blocks relabelling; this might be a problem when
Bayesian estimation procedures are adopted but it is less of an issue when, as in this paper,
maximum likelihood estimation is considered. A further source of possible identifiability
problems arises in the SIM, as discussed by Lindstrom [1995] and, for a more general but
related class of models, by Kneip and Gasser [1988]. In this work, to limit the potential
issues, we optimize αi,2 on the log-scale by replacing it with eαi,2 in (1), thus forcing the
scale parameters to be positive. This might alleviate the identifiability problems possibly
induced by the specific characteristics of the shape function m(·), such as its closeness
under multiplication by -1, which implies that m(·) = −m(·) [see Lindstrom, 1995, for
further details].

• Curse of flexibility. Including random effects for both phase and amplitude shifts and
scale transformations might allow for a virtually excellent fitting of various arbitrarily
shaped curve. This flexibility, albeit desirable, sometimes achieve excessive extents, possi-
bly leading to estimation troubles. This is especially true in a clustering framework, where
data are expected to exhibit a remarkable heterogeneity. From a practical point of view,
our experience suggests that the estimation of the parameters αij,2 turns out to be the
most troublesome, sometimes leading to convergence issues and instability in the resulting
estimates.

4 Numerical experiments

4.1 Synthetic data

This section examines the main features of the proposed approach on some synthetic data. The
aim of the simulation study is twofold. The first goal of the analyses consists in exploring the
capability of the proposed method to properly partition the data into blocks, also in comparison
with some competitors such as the one proposed by Bouveyron et al. [2018] (funLBM in the
following) and a double k-means approach, where row and column partitions are obtained sep-
arately and subsequently merged to produce blocks. With this regard, we evaluate the results
by means of the Co-clustering Adjusted Rand Index [CARI, Robert et al., 2020]. This criterion
generalizes the Adjusted Rand Index [Hubert and Arabie, 1985] to the co-clustering framework,
and takes the value 1 when the blocks partitions perfectly agree up to a permutation. In order
to have a fair comparison with the double k-means approach, for which selecting the number of
blocks is not straightforward, and to separate the uncertainty due to model selection from the
one due to cluster detection, we compared models by considering the number of blocks as known
and equal to (Ktrue, Ltrue). Consistently, we estimate our model only for the true random effects
configuration, being the one considered to generate the data.

As for the second aim of the simulations, we evaluate the performances of the ICL in the
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Figure 4: Subsample of simulated curves (black dashed lines) with over-imposed block specific mean shape
curves (colored continue lines) employed in the numerical study

developed framework to select both the number of blocks (K,L) and the random effects config-
uration.

All the analyses have been conducted in the R environment [R Core Team, 2019] with the
aid of nlme package [Pinheiro et al., 2019] to estimate the parameters in the M-step, and the
splines package to handle the B-spline involved in the common shape function. The code
implementing the proposed procedure is available upon request.

The main examined simulation setup is defined as follows. We generated B = 100 Monte
Carlo samples of curves according to the general specification (3), with block-specific mean shape
function mkl(·) and both the parameters involved in the error term and the ones describing
the random effects distribution being constant across the blocks. In fact, in the light of the
considerations made in Section 3.5, the random scale parameter is switched off in the data
generative mechanism, i.e. αij,2 is constrained to be degenerate in zero. We fixed the number of
row and column clusters toKtrue = 4 and Ltrue = 3. The mean shape functionsmkl(·) are chosen
among four different curves, namely m11 = m13 = m33 = m1, m12 = m32 = m31 = m41 = m2,
m21 = m32 = m42 = m3 and m22 = m43 = m4, as illustrated in Figure 4 with different color
lines, and specified as follows:

m1(t) ∝ 6t2 − 7t+ 1 m2(t) ∝ φ(t; 0.2, 0.008)

m3(t) ∝ 0.75− 0.81{t∈(0.4,0.6)} m4(t) ∝ 1
(1 + exp(−10t+ 5))

We set the other involved parameters to σε,kl = 0.3, µαkl = (0, 0, 0) and Σα
kl = diag(1, 0, 0.1)

∀k = 1, . . . ,Ktrue, l = 1, . . . , Ltrue. Three different scenarios are considered with generated curves
consisting of T = 15 equi-spaced observations ranging in [0, 1]. As a first baseline scenario, we
set the number of rows to n = 100 and the number of columns to d = 20. The other scenarios
are considered in order to obtain insights and indications on the performances of the proposed
method when dealing with larger matrices. Coherently in the second scenario n = 500 and
d = 20 while in the third one n = 100 and d = 50 thus increasing respectively the number of
samples and features.

Results are reported in Table 1. The proposed method claims excellent performances in all
the considered settings, with results notably featured by a very limited variability and sensitivity
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Table 1: Mean (and std error) of the CARI computed over the simulated samples in the three scenarios.
Partitions are obtained using the proposed approach (tdLBM), funLBM and a double k-means approach.

n = 100, d = 20 n = 100, d = 50 n = 500, d = 20
CARItdLBM 0.972 (0.044) 0.988 (0.051) 0.981 (0.020)
CARIfunLBM 0.950 (0.099) 0.847 (0.183) 0.865 (0.177)
CARIkmeans 0.761 (0.158) 0.842 (0.182) 0.809 (0.169)

to changes in n or d. No clear-cut indications arise from the comparison with funLBM in the
baseline scenario, but the latter method shows a larger sensitivity to an increase of data size and
dimension, where its performances get worse. The use of an approach which is not specifically
conceived for co-clustering, like the the double k-means, leads to a stronger degradation of the
quality of the partitions. However, not considering jointly the variables and the observations,
k-means behaves better with increasing dimensions.

As for the performances of the ICL, Table 2 shows the fractions of samples where the criterion
has led to the selection of each of the considered configurations of (K,L), with K,L = 2, . . . , 5,
for models estimated with the proposed method and with funLBM. In all the considered settings,
the actual number of co-clusters is the most frequently selected by the ICL criterion, yet a
non-negligible tendency to favor overparameterized models, especially for larger sample size, is
witnessed, consistently with the comments in Corneli et al. [2020]. Conversely, when considering
funLBM, the ICL selects the pair (Ktrue, Ltrue) in the very large majority of the Monte Carlo
simulations.

In addition, the simulations described above have been run on a slightly different setup,
where

m3,2(t) = m3(t) ∝ 0.75− 0.81{t∈(0.7,0.9)} m4,3(t) = m1(t) ∝ 6t2 − 7t+ 1.5.

While the column partition remains unchanged with respect to the previous setting, in the row
partition curves in cluster 3 and 4 differ with respect to either a time shift or a vertical shift
only, hence the configuration gets consistent with KTRUE = 3 and a TFT layout. The reduced

Table 2: Rate of selection of (K,L) configurations for the different simulation setups when (Ktrue =
4, Ltrue = 3).
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Table 3: Rate of selection of (K,L) configurations for the different simulation setups when (Ktrue =
3, Ltrue = 3).
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heterogeneity among curves in the new setting simplify the co-cluster detection for both the
models, so that results in terms of CARI (not reported for brevity) are almost perfect when
they are forced to partition data in the actual number of blocks. However, when the ICL is
used to select (K,L), the different notion of group targeted by funLBM and the proposed model
is strongly influencing: on one hand, for our proposal, an overall good behaviour is confirmed
when the ICL is used to detect the number of blocks; on the other hand, the same does not
apply to funLBM, whose likelihood does not support the designed cluster notion, and the ICL
systematically does not select the actual cluster configuration (Table 3).

With respect to the exploration of the performances of the ICL when used to select the
random effect configuration (Table 4), we may draw similar considerations to the selection of
the number of co-clusters. Here, the ICL selects the true configuration for the majority of the
samples in two scenarios while, in the third one, the true model is selected approximately one
out of two samples. Nonetheless, also in this case, a tendency to overestimation is visible, with
the TTT configuration frequently selected in all the scenarios. In general, the penalization term in
(7) seems to be too weak and overall not completely able to account for the presence of random
effects. These results, along with the remarks at the end of Section 3.3, provide a suggestion
about a possibly fruitful research direction to provide some suitable adjustments.

In fact, it is worth noting that when the selection of the number of clusters is the aim, the
observed behavior is preferable with respect to underestimation since it does not undermine
the homogeneity within a block; this has been confirmed by further analyses suggesting that
the additional groups are usually small and arising because of the presence of outliers. As for
the random effect configuration, we believe that since the choice impacts the notion of cluster
one aims to identify, it should be driven by subject-matter knowledge rather than by automatic
criteria. Additionally, the reported analyses are exploratory in nature, aiming to provide general
insights on the characteristics of the proposed approach. To limit computational time required
to run the large number of models involved in Tables 2-4, we did not use multiple initializations
and we have pre-selected the number of knots for the block-specific mean functions. In practice,
we recommend using multiple starting values and carrying out sensitivity analyses on the number
of knots to ensure that the conclusions are not affected.
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Table 4: Rate of selection for each random effects configuration in the considered scenarios. Bold cells
represents the true data generative model (TFT), blank ones represent percentages equal to zero.

FFF TFF FTF FFT TTF TFT FTT TTT
n = 100, d = 20 1% 58% 41%

% of selection n = 100, d = 50 2% 1% 62% 35%
n = 500, d = 20 1% 5% 47% 47%

4.2 Applications to real world problems

4.2.1 French Pollen Data

The data we consider in this section are provided by the Réseau National de Surveillance Aéro-
biologique (RNSA), the French institute which analyzes the biological particles content of the air
and studies their impact on the human health. RNSA collects data on concentration of pollens
and moulds in the air, along with some clinical data, in more than 70 municipalities in France.

The analyzed dataset contains daily observations of the concentration of 21 pollens for 71
cities in France in 2016. Concentration is measured as the number of pollens detected over
a cubic meter of air and carried on by means of some pollen traps located in central urban
positions over the roof of buildings, in order to be representative of the trend air quality.

The aim of the analysis is to identify homogeneous trends in the pollen concentration over
the year and across different geographic areas. For this reason, we focus on finding groups of
pollens differentiating one from the others for either the period of maximum exhibition or the
time span they are present. Consistently with this choice, we estimate only models with the
y-axis shift parameter αij,1 (i.e. αij,2 and αij,3 are switched off), for varying number of row and
column clusters, and we select the best one via ICL. We consider monthly data by averaging
the observed daily concentrations over each month. The resulting dataset may be represented
as a matrix with n = 71 rows (cities), p = 21 columns (pollens) where each entry is a sequence
of T = 12 time-indexed measurements. Moreover, to practically apply our proposed procedure,
we carried out a preprocessing step as we standardized and log-transformed the data, in order
to improve the stability of the estimation procedure.

Results are graphically displayed in Figure 5. The ICL selects a model with K = 3 row
clusters and L = 5 column ones. A first visual inspection of the time evolutions reveals that
the procedure is able to discriminate the pollens according to their seasonality. Pollens in
the first two column groups are mainly present during the summer, with a difference in the
intensity of the concentration. In the remaining three groups pollens are more active during
winter and spring months but with a different time persistence and evolution. Column clusters
are roughly grouping together trees pollens, distinguishing them from weeds and grass (right
panel of Table 5). Results align with the usually considered typical seasons, with groups of
pollens from trees mostly present in winter and spring while the ones from grass spreading in
the air mainly during the summer months. With respect to the row partition, displayed in
the left panel of Table 5, three clusters have been detected, with one roughly corresponding to
the Mediterranean region (in blue). The situation, for what it concerns the other two clusters,
appears to be more heterogeneous. One of these groups (in red) tends to gather cities in the
northern region and on the Atlantic coast, mostly featured by oceanic climate, while the other
(in green) mainly covers the central part of the country, including Paris and its surrounding area,
where climate gradually move to continental characteristics. Digging deeper substantially in the
cluster configuration obtained is beyond the scope of this work and may benefit from insights
from experts of botanical and geographical disciplines since other factors, as for example the
type of environment, with areas being more rural than others, can be strongly influencing.
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Figure 5: French Pollen Data results. Curves belonging to each single block with superimposed the corre-
sponding block specific mean curve (in light blue).

4.2.2 COVID-19 evolution across countries

At the time of writing this paper, an outbreak of infection with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has severely harmed the whole world. Countries all over the world
have undertaken measures to reduce the spread of the virus: quarantine and social distancing
practices have been implemented, collective events have been canceled or postponed, business
and educational activities have been either interrupted or moved online.

While the outbreak has led to a global social and economic disruption, its spreading and
evolution, also in relation to the aforementioned non pharmaceutical interventions, have not been
the same all over the world [see Flaxman et al., 2020, Brauner et al., 2021, for an account of this
in the first months of the pandemic]. With this regard, the goal of the analysis is to evaluate
differences and similarities among the countries and for different aspects of the pandemic.

Since the overall situation is still evolving, and given that testing strategies have significantly
changed across waves, we refer to the first wave of infection, considering the data from the 1st of
March to the 4th of July 2020, in order to guarantee the consistency of the disease metrics used
in the co-clustering. Moreover we restrict the analysis to the European countries. Data have
been collected by the Oxford COVID-19 Government Response Tracker [OxCGRT, Hale et al.,
2020] and originally refer to daily observations of the number of confirmed cases and deaths
for COVID-19 in each country. We also select two indicators tracking the individual country
intervention in response to the pandemic: the Stringency index and the Government response
index. Both indicators are recorded on a 0-100 ordinal scale that represents the level of strictness
of the policy and accounts for containment and closure policies. The latter indicator also reflects
Health system policies such as information campaigns, testing strategies and contact tracing.

Data have been pre-processed as follows: daily values have been converted into weekly
averages in order to reduce the impact of short term fluctuations and the number of time
observations. Rates per 1000 inhabitants have been evaluated from the number of confirmed
cases and deaths, and the logarithms applied to reduce the data skewness. All the variables
have been standardized.

The resulting dataset is a matrix with n = 38 rows (countries), d= 4 columns (variables
describing the pandemic evolution and containment), observed over a period of T = 18 weeks.
Unlike the French Pollen data, here there is no strong reason to favour one random effect
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Table 5: French map with superimposed the points indicating the cities colored according to their row
cluster memberships (left) and Pollens organized by the column cluster memberships (right).

Row groups (Cities) Column groups (Pollens)
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Figure 6: COVID-19 outgrowth results of the best model, with K = 2, L = 3 and the three random effects
on. Curves belonging to each single block with superimposed the associated block specific mean curve (in
light blue).

configuration over the others. Conversely, different configurations of random effects would entail
different ideas of similarity of virus evolution. Thus, while the presence of random effects would
allow to cluster together similar trends associated to different intensities, speed of evolution and
time of onset, switching the random effects off could result in enhancing such differences via the
separation of the trends.

Models have been run for K = 1, . . . , 6 row clusters and L = 1, 2, 3 column clusters, and
all the 8 possible configurations of random effects. The behaviour of the resulting ICL values
supports the remark in Section 4.1, as the criterion favours highly parameterized models. This
holds particularly true with regard to the random effects configuration where the larger the
number of random effects switched on, the higher the corresponding ICL. Thus, models with all
the random effects switched on stand out among the others, with a preference for K = 2 and
L = 3 whose results are displayed in Figure 6. The obtained partition is easily interpretable: in
the column partition, reported on the right panel of Table 6, the containment indexes are grouped
together into the same cluster whereas the log-rate of positiveness and death are singleton
clusters. Consistently with the random effect configuration, row clusters exhibit a different
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Table 6: Europe map with countries colored according to their row cluster memberships (left) and variables
organized by the column cluster membership (right) for the best ICL model.

Row groups (Countries) Column groups (COVID-19 spreading
and containment)

1 log % of cases per 1000 inhabi-
tants

2 log % of deaths per 1000 inhabi-
tants

3 Stringency index, Government
response index

evolution in terms of cases, deaths and undertaken containment measures: one cluster (in orange
in the left panel in Table 6) gathers countries where the virus has spread earlier and caused more
losses; here, more severe control measures have been adopted, whose effect is likely seen in a
general decreasing of cases and deaths after achieving a peak. The second row cluster (in blue in
the map) collects countries for which the death toll of the pandemic seems to be more contained.
The virus outbreak generally shows a delayed onset and a slower growth, which does not show a
steep decline after reaching the peak, although the containment policies remain high for a long
period. Notably, the row partition is also geographical, with the countries with higher mortality
all belonging to the Western Europe.

To properly show the benefits of considering different random effects configurations in terms
of notion and interpretation of the clusters, we also illustrate the partition produced by another
model estimated having the three random effects switched off (Figure 7). Here we consider
K = L = 3: the column partition remains unchanged with respect to the best model, and
the row partition still separates countries by the severity of the impact, yet with the third
additional cluster having intermediate characteristics. According to this model, two row clusters
feature countries with a similar right-skewed bell-shaped trend of cases and similar policies of
containment, yet with a notable difference in the virus lethality. Indeed, the effect of switching
α2 off is clearly noted in the log-rate of death fitting, with two mean curves having similar
shapes but different scales. The additional intermediate cluster, less impacted in terms of death
rate, is populated by countries from the central-east Europe. The apparent smaller impact
of the first wave of the pandemic on the eastern European countries could be explained by
several factors ranging from demographic characteristic and more timely closure policies to a
different international mobility pattern. Additionally, other factors such as the general economic
and health conditions might have prevented accurate testing and tracking policies, so that the
actual spreading of the pandemic might have been underestimated.

5 Conclusions
Modelling multivariate time-dependent data requires accounting for heterogeneity among sub-
jects, capturing similarities and differences among variables, as well as correlations between
repeated measures. In this work we tackled these challenges by proposing a new parametric
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Figure 7: COVID-19 outgrowth results of the model with K = 3, L = 3 and the three random effects off.

co-clustering methodology, recasting the widely known Latent Block Model [Govaert and Nadif,
2013] in a time-dependent fashion. The co-clustering model, by simultaneously searching for
row and column clusters, partitions three-way matrices in blocks of homogeneous curves. Such
approach takes into account the mentioned features of the data while building parsimonious and
meaningful summaries. As a data generative mechanism for a single curve, we have considered
the Shape Invariant Model that has turned out to be particularly flexible when embedded in
a co-clustering context. The model allows to describe arbitrary time-evolution patterns while
adequately capturing dependencies among repeated measures over time. The proposed method
compares favorably with the few existing competitors, producing co-partitions with similar qual-
ity as measured by objective criteria, while enjoying some relevant advantages in terms of inter-
pretability and applicability to both functional and longitudinal data. The option of “switching
off” some of the random effects, although in principle simplifying the model structure, increases
its flexibility, as it allows to encompass different notions of cluster possibly depending on the
specific applications and on subject-matter considerations.

While further analyses are required to increase our understanding about the general per-
formance of the proposed model, its application to both simulated and real data has provided
overall good results and highlighted some aspects which are worth further investigation. One
interesting direction for future research is studying possible alternatives to the ICL to be used
in model selection when the model specification in the LBM framework involves random effects.
In addition, alternative choices, for example, for specifying the block mean curves, could be con-
sidered and compared with the choices adopted here. Finally, a further direction for future work
would be exploring a fully Bayesian approach. This may allow to incorporate prior knowledge,
when available, within the model and it can lessen the impact of the model selection step, by
embedding it automatically within the estimation procedure.
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