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Based on the concept of geometric duality, we argue that uniform synchrony provides non-causal
time by symmetric extension. Galilean particle aberration and Doppler effect c → ∞ coexists with
conventional time and wave aberration in the Carrollian limit c → 0. Linear canonical dispersion
implies internal energy E0 = mc2, where antiparticles are space-time inversions and mass/energy
conversion is prevented by infinite barrier. The Landé paradox is resolved and de Broglie waves are
conceptually demystified as elsewhere time zones. Finally, we derive electric-magnetic duality from
pseudoscalar charge symmetry.

PACS numbers: 03.30.+p, 03.65.-w, 03.50.De

I. INTRODUCTION

Concepts of time usually involve some kind of change
or motion [1–3] such as light pulses bouncing between
parallel mirrors with isotropic two-way velocity accord-
ing to the Michelson-Morley experiment. Given the fre-
quency/time standard fCs ≡ 9 192 631 770 Hz intrin-
sic to matter, household devices conveniently provide
radar length in light seconds 2l = cτ using a single clock
and the assigned value c ≡ 299 792 458 m/s. One-way
velocities, on the other hand, are linked to clock syn-
chrony by a vicious circle [4–6] and the timing of each leg
l = c+t+ = c−t− remains a priori undefined constrained
only by the harmonic mean 2/c = 1/c++1/c−. Uniform
time is the simplest choice motivated by isotropic space
c± = c as “stipulated” by Einstein in the introduction to
special relativity [7]. Nevertheless, wrist-watch time may
well disagree with local coordinate time as every traveller
exposed to jet-lag will testify.
The subtleties of distributed time keeping were antic-

ipated before 1905 as shown by the writings of Poincaré
and Cohn [8]. Voigt had introduced non-uniform coor-
dinate time in 1887 seeking a covariant wave equation
[9] and group structure were provided by Larmor [10]
and Lorentz [11] the following decade. While relativity
was conceived prior to the idea of gravity as space-time
curvature [12, 13], the four-dimensional continuum sub-
sequently introduced by Minkowski [14] led to a shift
of focus towards metric structure and coordinate based
tensor calculus. The metric is, however, a second-order
construct. The Lorentz transformation were derived by
Furry invoking first-order generators [15] including “local
time” in the so-called Carrollian limit c→ 0 identified by
Lévy-Leblond [16]. In the following, we sall be concerned
with pre-metric and coordinate-free kinematics.
Navigation in smooth manifolds relies on causal signals
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propagating along geodesics. Assuming isotropic one-
way velocity [17, 18], uniform synchrony is distributed
among fixed clocks by converting radar length to light
travel-time

s↔ ct, (1)

introducing a basic space-time symmetry [19] eventually
leading to relativistic kinematics. Particle motion in pre-
set time define instant velocities

ds(t) = vdt, (2)

while light-time permutation

cdt = (v/c)ds (3)

introduces the inverse function

dt(s) = V −1ds (4)

with characteristic velocity V = c2/v. In this sense,
linear elsewhere time set by “through-the-looking-glass”
symmetry coexist with inertial motion through the geo-
metric mean c =

√
vV and the dimensionless ratio

β = v/c = c/V =
√

v/V . (5)

We emphasize that no tachyon motion [20] suggested
by relativistic conundrums such as the “scissor” pseudo-
paradox is involved.
In tangent space, Galilean relativity in absolute time

t′ = t must be accompanied by Carrollian resetting in
absolute space x′ = x according to the symmetry

x′ = x− vGt, ↔ t′ = t− x/vC , (6)

where parameters satisfy vGvC = c2 and modified veloc-
ity shifts

v′ =
dx′

dt′
=

v − vG
1− v/vC

, (7)
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allow the speed of light v = c as a true invariant. The
transformations differ from Lorentz kinematics only by
rescaling

x′ = γ(x− vGt), t′ = γ(t− x/vC) (8)

to second order

γ = 1/
√

1− β2 ∼ 1 +
1

2
β2, (9)

where time dilation dt = γdτ and length contraction is
easily demonstrated using light clocks.
The kinematics defined by (6) does not represent a

group at finite c. Symmetric domains x ≪ ct ↔ x ≫ ct
extend globally only in singular limits β → 0 and γ → 1,
where Galilean relativity is contracted by instant sig-
nalling in absolute time

c→ ∞, vC → ∞2 (10)

while time conventionality is introduced in the Carrollian
limit

c→ 0, vG → 02 (11)

involving stationary frames with free parameter vC .
Euclidean geometry is augmented by causal structure

in Sec. II and dual vector spaces are treated in Sec. III.
Based on geometric optics and linear wave structure, a
dynamical principle of maximum aging is introduced in
Sec. IV. Classical mechanics is augmented by wave aber-
ration and Doppler effect in Sec. V. Kinetic and canon-
ical momentum coexists identifying the celebrated term
E0 = mc2, where mass/energy conversion based on clas-
sical antiparticles is prevented by infinite barrier. Mat-
ter waves are identified as elsewhere time zones and the
Landé paradox is resolved in Sec. VI. Electric-magnetic
duality is derived in Sec. VII, while Sec. VIII states our
conclusions.

II. EUCLIDEAN AND PREMETRIC

KINEMATICS

Locally, geodesics are Euclidean straight lines, where
the (0,2) metric tensor converts infinitesimal displace-
ments to distance dl2 = gijdx

idxj in arbitrary coordi-
nates. A tangent basis is defined at every point

gij = ei · ej (12)

keeping all but one variable fixed ei = ∂P/∂xi [12]. The
(2,0) inverse given by tensor contraction gijgjk = δik
introduces a Laplacian gij∂i∂j and a measure of smooth-
ness [21, 22]. The metric is diagonal in Cartesian co-
ordinates and surface normals ei = ǫijkej × ek given
by the antisymmetric Levi-Civita symbol coincide with
tangents. More generally, directions of steepest ascent

ej = ∂xj/∂xi represent transverse surface elements de-
fined by the (1,1) basis

ei · ej = δ j
i (13)

independent of metric. Bearing in mind that neither ge-
ometry nor physical law can depend on coordinate book-
keeping [12], dual structure naturally introduces vector
reciprocals 1/v = v/v2 allowing arbitrary rescaling. As
an example, independent tangent displacements and dis-
tributed time

dx(t) = vdt, dt(x) = v−1
s · dx, (14)

is related by the chain rule

1 = v−1
s · v = (∂t/∂x) · (dx/dt), (15)

where reciprocal phase velocities are referred to as slow-
ness vectors by seismologists.

A. Causal structure

Although space-time navigation require four coordi-
nates, a separate time dimension is not mandatory. Par-
ticles are mass points carrying proper de Broglie clocks
[23] with associated light-spheres in Euclidean geometry
rather than Minkowski light-cones. The traditional dis-
tinction between kinematics and dynamics can hardly be
maintained [24], because synchrony itself requires a vac-
uum physics.
Local, coordinate-free foliations relative to a given ref-

erence clock provide causal structure of indefinite signa-
ture

∓r2 = x2 − c2t2 (16)

where x2 = x · x = xx and metric structure need not be
specified. Linear foliations

∓rdr = x · dx− c2tdt, (17)

introduce time zones at constant parameter dr = 0,

t(x) = x · v/c2, (18)

where dual rays x = vpt intersecting (phase) fronts im-
plies v · vp = c2. Provided velocities are parallel, dot
products are replaced by algebra, Sec. III, introducing
reciprocity

c/vp = v/c. (19)

In this case, space-time permutation along isotropic di-
rections interchanges causal and elsewhere intervals

x ↔ ct, (20)

with no distinction between vector positions and light-
time distance. Signature reversal invariance [25] appears
as a byproduct.
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The austerity principle “the boundary of a boundary
is zero” coined by Wheeler [26] also known as Poincaré’s
lemma implies d(dr) = 0. The resulting quadratic form

∓ds2 = dx2 − c2dt2, (21)

suggests a pseudo-Riemannian continuum, where Eu-
clidean distance is defined instantly meaning dt = 0 and
proper time intervals ds2/c2 = dτ2 are defined at coinci-
dence dx = 0.

B. Vector kinematics

A simple argument demonstrates that Galilean shifts
to a new inertial frame

x′ = x− vGt, t′ = t, (22)

must be accompanied by distributed elsewhere time.
Completing the square using the algebra defined by the
first Eq. (31) below [27],

x′2 = x2 + v2
Gt

2 − 2x · vGt, (23)

implies that isotropic light spheres c2t2 = x2 are trans-
formed as

t′ = t
√

1 + v2
G/c

2 − 2vG · x/c2t, (24)

assuming positive time with off-set t0 = 0 at the common
origin x = 0. The expansion

t′(x′) ∼ t
(

1 + v2
G/2c

2
)

− vG · x/c2. (25)

shows that time remains first-order uniform along the
Galilean trajectory x = vGt≪ ct, where both terms con-
tribute to second-order time dilation t′ ∼ t/γ. Symmet-
ric events ct≪ x, on the other hand, allow inertial shifts
to be neglected to second order introducing Carrollian
resetting

x′ = x, t′ = t− vG · x/c2, (26)

and the combination

x′ = x− vGt, t′ = t− x · v−1
C , (27)

holds to first order, where the algebraic product

vGvC = c2, (28)

defines reciprocal parameters. Euclidean tangent space
need not be assumed, while global symmetries are defined
in singular limits according to Eqs. (10) and (11).
Dilated clocks passing a stationary ruler or contracted

lengths passing a fixed clock introduces comoving veloc-
ities γv = dx/dτ . The transformation

v′ =
v − vG

1− v · v−1

C

, (29)

is consistent with Lorentz kinematics at γG ∼ 1,

γ′v′ = γ(v − vG), γ′ = γ(1− v · v−1

C ), (30)

as can be seen by eliminating Lorentz factors. First-order
rescaling of γ-factors for v ≫ c follows from the expan-
sion (9) when exposed to a Galilean shift. Most impor-
tantly, Carrollian invariance γ′v′ ∼ γv allows Doppler-
like energy-momentum, Sec. V.

III. DUAL VECTOR SPACES

The concept of geometric duality is most easily devel-
oped in generalized vector spaces. Symmetric contraction
is augmented by anti-symmetric Grassmann extension as
envisioned by Clifford [28–30]

2a · b = ab+ ba, 2a ∧ b = ab− ba, (31)

introducing 2-blade parallelograms as geometric primi-
tives. The resulting algebra

ab = a · b+ a ∧ b, (32)

compounds scalar projections and simple bivectors into
objects of even or axial symmetry under sign reversal
aP = −a. In contrast, polar vectors and 3-blade volumes
must be odd under parity. As an example, Euclidean
trigonometry in the plane

a · b = |a||b| cos θ, a ∧ b = |a||b|ι sin θ, (33)

is spanned by non-parallel vectors providing unit squares
ι = e1e2 in Cartesian coordinates, where non-simple
bivectors are denoted in boldface italic. It is easily seen
that rectangular 2-blades must be pseudovectors with
negative square

(a ∧ b)2 = abab = −a2b2, (34)

implying ι
2 = −1. The complex-like product

ab/|a||b| = cos θ + i sin θ = eiθ (35)

rotates clockwise as generated by the algebra ie1 = −e2
and ie2 = e1, while coordinate positions x = xe1 + ye2
define spinors z = e1x = x + iy providing a geometric
interpretation of imaginary numbers [31].
The concept of parallelism a∧b = 0 and transversality

a ·b = 0 is independent of second-order metric structure
allowing a nonmetric dual basis (13). Without a meas-
sure of length and angle, transverse 2-blades have indef-
inite shape insensitive to Galilean shear deformations of
the form (22), but well-defined area, since the product
ab remains well-defined. Given a tangent direction, the
identity

x = xvv−1 = (x · v)v−1 + (x ∧ v)v−1, (36)
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defines projection and rejection x = x‖ + x⊥ according
to symmetric expressions

2x‖ = x+ vxv−1, 2x⊥ = x− vxv−1, (37)

where x‖ ·x⊥ = 0 is readily verified and vxv−1 = x‖−x⊥

is the second diagonal. Parallel transport may be defined
by premetric constructions such as Schild’s ladder [32].
Symmetric and anti-symmetric vector products gener-

alizes to arbitrary grade. Scalar multiplication is even
a · b = ab without extension a ∧ b = 0, while

2a · b = ab− ba = 0, a ∧ b = ab, (38)

shows that there is no scalar-vector contraction. Bivector
mutiplication is even a · S = aS and a ∧ S = 0, whereas

2a · S = aS − Sa, 2a ∧ S = aS + Sa, (39)

define contracted vectors and extended volumes propor-
tional to the pseudoscalar unit ι2 = −1 as shown below.
As a result, the object

aS = a · S + a ∧ S, (40)

is odd under parity supplementing (32).

A. Geometric duality

The distinction between polar and axial vectors is su-
perseded by Hodge duality relating elements of grade
n − k and k in n spatial dimensions. Volumes k = 3
are dual to geometric points k = 0 in three dimensions,
where the unit cube ι = e1e2e3 reverses handedness un-
der parity ιP = −ι. Scalar rescaling is possible a∧ ι = aι
and a · ι = 0, there is no vector extension in three dimen-
sions a ∧ ι = 0, while contraction

s · ι = ιs = S (41)

introduce bivector surface elements superseding normal
vectors advocated by Gibbs and Heaviside. Extension
provides volume

a ∧ S = ι(a · s), (42)

unless the vector lies within the surface a∧S = a · s = 0
and transverse to s. Contracted vectors are dual 2-blades

a · S = ι(a ∧ s), (43)

replacing cross products −a× s. Transverse surfaces are
specified by the dual condition a · S = a ∧ s = 0.

B. Multivectors

Following Eqs. (32) and (40), multigrade primitives in
three spatial dimensions can be written [33–35],

M = a+ v + ιw + ιb, (44)

with pre-metric contraction of even grade

M ·M = a2 + v2 −w2 − b2 + 2ι(aw+ bv). (45)

The set of quaterions {1, i, j,k} introduced by Hamilton
[36] must be viewed as even bivectors providing surface
basis elements.
Geometric primitives required by particle motion are

point events and tangent vectors

X = ct+ x, V = c+ v, (46)

where comoving derivation dX/dτ = γV introduces time
dilation and individual components are extracted by con-
jugation (X ± XP )/2. We notice that light-time con-
version (20) inevitably links spatial inversion xP = −x

to time reversal. Dual fronts of equal time ιX trans-
verse to tangent directions [37] are intersected by rays
Xp = (c+ vp)t defined by v ∧ vp = 0, while contraction
V · XP = 0 supersedes Lorentz orthogonality. Isotropic
foliations (16) can be written ∓XXP and causal motion
is restricted by the norm γ2V V P = c2.

IV. LINEAR WAVES

The geometric optics approximation [12] to complex
fields ψ(x, t) ∼ eiϕ is based on scalar phase

ϕ = k · x− ωt, (47)

where the absence of a reference value allow local gauge
transformations ϕ → ϕ + ϕ0(x, t). Instant wave vector
assumed constant over the domain of interest and proper
frequency

k = ∂ϕ/∂x, ω = −∂ϕ/∂t, (48)

serve as conjugate variables. Wave length λ = 2π/k and
oscillation period T = 2π/ω introduce phase velocities
unrelated to transport

vp = λ/T = ω/k, (49)

ranging from the stationary limit ω → 0 to uniform waves
k → 0 propagating instantly. The ratio vp/c is reversed
under conversion ω ↔ ck and parallelism k ∧ vp = 0
implies algebraic dispersion

kvp = k · vp = ω, (50)

with constant phase along rays. Dual volumes ιt and
wave-fronts ιx are suggested by complex phasors invoking
extension (42).
The space-time derivative ∂X = ∂ct + ∂x define conju-

gates

K = ∂Xϕ = −ω/c+ k, (51)

with scalar contraction ϕ = K · X independent of the
speed of light observing gauge freedom K → K + ∂Xϕ0.
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The expression K = (1 − vp/c)k represent linear rays,
while second-order wave propagation is ensured by the
premetric Lorenz condition

−∂PX · ∂Xϕ = (−∂2t /c2 + ∂2
x
)ϕ = 0, (52)

rather than Lorentz orthogonality in Minkowski space.

A. Symplectic structure

Displacements may represent dual surface elements ac-
cording to the exact 1-form

dϕ = k · dx− ωdt+ x · dk− tdω, (53)

where the projection K · dX vanishes along rays and the
second part X · dK vanish at wave packets x = vgt con-
structed by Fourier superposition according to group dis-
persion

dk · vg = dω, (54)

that follows from Poincaré’s lemma and the closed 2-form

d(dϕ) = 2dk · dx− 2dωdt = 0, (55)

introducing symplectic structure dK · dX = 0. Tan-
gent velocities vg = ∂ω/∂k are defined by frequency
dispersion ω(k) and reciprocal slowness dk/dω are given
by the inverse function k(ω), where dispersion relations
ω = Ω(x,k, t) may be viewed as Hamiltonian functions
providing a link between optics and mechanics with fre-
quency and wave vector as canonical variables [38].

B. Causal structure

While symplectic structure is fundamentally a geomet-
ric constraint, causal structure is tied to the propagation
of physical signals. Second-order vacuum dispersion

∓κ2 = k2 − ω2/c2 = KKP , (56)

introduces light shells κ2 = 0 separating disjunct do-
mains, where linear foliations

∓κdκ = k · dk− ωdω/c2, (57)

are transverseK ·dKP = 0 at constant parameter dκ = 0.
Equivalently,

(c2/vp) · dk/dω = 1, (58)

shows that group dispersion (54) is consistent with dual
structure (15) identifying vg = v as well as the relation
vg = c2/vp.

C. Canonical dynamics

Conjugate or proper frequency defined by (48) intro-
duces a Hamilton-Jacobi type equation in phase space

∂ϕ/∂t+Ω(x,k, t) = 0, (59)

showing that global phase plays the role of action in ge-
ometric optics [12]. Analytical mechanics is anticipated
by the exact 1-form

dΩ = −dx · f + dk · v + dt∂Ω/∂t, (60)

equivalent to a Legendre transformation in thermody-
namics, where the first term is equivalent of work based
on local gradients f = −∂Ω/∂x and the second term de-
fines group motion at fixed event setting vg = v. Group
dispersion (54) reveals that only the last term is nonzero
in conservative systems allowing geometric points to act
as sources or sinks of energy.
Second-order group dynamics is introduced by the

principle of maximum aging valid also in general rela-
tivity [39]. A twin embarking on a non-inertial round
trip will return younger than its sibling that stays at
home as a consequence time dilation dt = γdτ . However
surprising this result may appear, there is nothing para-
doxically about the situation, since the two journeys are
non-equivalent. Hamiltonian optics introduces a set of
first-order equations

dk/dt = −∂Ω/∂x, dx/dt = ∂Ω/∂k, (61)

compatible with Newton’s second law dk/dt = f and the
comoving derivative

dϕ/dt = k · vp − ω + (x− vt) · f , (62)

plays the role of Lagrangian in configuration space. Wave
propagation in least time according to Fermat’s Principle
[40] complements group dynamics, since reciprocal group
and phase velocities also define inverse refractive indices
1/ng = np, where n = c/v.

D. Doppler effect versus aberration

Partial derivatives transforming as

∂x′ = ∂x + v−1

C ∂t, ∂t′ = ∂t + vG · ∂x, (63)

under temporal resetting and relative motion, respec-
tively, are responsible for conjugate kinematics

k′ = k− ω/vC , ω′ = ω − vG · k, (64)

introducing wave aberration and Doppler effect [41] com-
patible with first-order special relativity γG ∼ 1. Factor-
ization

k′ = k(1− vp/vC), ω′ = ω(1− vG · v−1
p ), (65)
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shows that uniform waves vC = vp are accompanied by
stationary groups vG = vg of infinite slowness dω′ = 0
according to group dispersion (54). Stationary waves at
relative velocity vG = vp are accompanied by elsewhere
groups vC = vg of vanishing slowness dk′ = 0 using the
differential dk′/dω′ = dk/dω − 1/vC.
The number wave crests passing a given event is pro-

portional to phase which must be invariant. it is easily
seen that Galilean point aberration is compensated by
Doppler effect, while Carrollian wave aberration is com-
pensated by relative time.

V. CLASSICAL MECHANICS

Newton’s first law ensures that local inertial frames
exists. The second law and the definition of work

dp = Fdt, dE = F · dx (66)

relates differential energy-momentum of a single particle
to space-time displacements. Forces may be eliminated
in favor of group dispersion

dE = v · dp, (67)

relaxing the assumption of singular mass points, where
v = ∂E/∂p is a generalized tangent velocity along canon-
ical momentum. Inverse phase velocities directed along
the force are projected using (37),

dp/dE = F/F · v = 1/vp, (68)

allowing local field propagation rather than action at a
distance. Rejection v ∧ dp = dx ∧ F introduces axial
torsion and exterior derivatives.

A. Canonical dynamics

Newtonian dispersion (67) can just as well be written
as a closed 2-form

d(dS) = dp · dx− dEdt = 0 (69)

introducing symplectic structure [42], where the 1-form
dS = Ldt defines a Lagrangian and the action itself

S = p · x− Et (70)

plays the role of wave phase subject to gauge freedom
adding a total derivative to the Lagrangian. Premetric
dispersion (50) is algebraic,

E = vp · p = vpp, (71)

with rays along canonical momentum

v ∧ vp = 0 (72)

introducing wave-like mechanics with reciprocal parame-
ters (19). The term “momenergy” coined by Taylor and
Wheeler is adequately represented by (51),

P = ∂XS = −E/c+ p, (73)

with scalar contraction S = P ·X and symplectic struc-
ture dP · dX = 0. Factorization P = (1− vp/c)p applies
also to differentials using (68).
Conjugate energy is responsible for the Hamilton-

Jacobi equation

∂S/∂t+H(x,p, t) = 0, (74)

introducing wave mechanics [43–45], while Lagrangian
physics is set in configuration space

L = p · v − E + F · (x− vt), (75)

by Legendre transformation p = ∂L/∂v, where the force
F = ∂L/∂x′ evaluated at the particle position introduces
the Euler-Lagrange equation. In terms of multivectors,
contraction P ·V vanishes at the phase velocity and work
dP/dt ·X is defined relative to wave packets [46]. Hamil-
tonian dynamics

dp/dt = −∂H/∂x, dx/dt = ∂H/∂p, (76)

is based on the 1-form

dH(x,p, t) = −dx ·F+ dp · v + dt∂H/∂t, (77)

consistent with the principle of maximal aging valid also
in general relativity.

B. Constitutive relations

As pointed out by van Dantzig [47], constitutive rela-
tions are required to link energy-momentum to matter.
The familiar expressions

p = mv, E = E0 +
1

2
mv2, (78)

are compatible with group dispersion (67) including an
arbitrary constant, while canonical dispersion (71),

p = E/vp = Ev/c2, (79)

allows mass to be identified as zero-order energy

m = E0/c
2, (80)

observing that wave packets carry internal energy. While
avoiding relativistic dynamics, this simple argument does
rely on wave/particle duality. Energy dilation E ∼ γE0

defines kinetic energy, whereas expressions ignoring in-
ternal energy H ∼ p2/2m and L ∼ 1

2
mv2 based on the

symplectic constant γL = −E0 are only apparently non-
relativistic, because factors of c2 cancel.
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Energy exchange in geometric points is allowed by the
1-form (77) based on classical antiparticle production and
annihilation implying that conversion will take place un-
less prevented by infinite barrier E0 → ∞2. In this sense,
Galilean physics enforces mass conservation by conceal-
ing infinite amounts of energy within matter never to be
released.
Photons may be viewed as massless particles with finite

product mγ in the limit m → 0 and γ → ∞ subject to
light-like dispersion E0 = cp0 with Compton momentum
p0 = mc. Massless dispersion also define Galilean pho-
tons with finite momentum and infinite, but conserved
energy.

C. Aberration versus Doppler effect

Particle aberration and Doppler effect must be com-
plemented by Carrollian time conventionality E0 → 02

in order for kinetic and canonical descriptions to coex-
ist in disjunct domains. A Galilean boost applied to the
Newtonian expressions (78) implies

p′ = p−mvG, E′ = E − vG · p+
1

2
mv2G, (81)

and replacing mass by energy

p′ ∼ p− EvG/c
2, E′ ∼ γGE − vG · p, (82)

allows canonical transformations of the form (64),

p′ = p− E/vC , E′ = E − vG · p, (83)

valid to first order γG ∼ 1. Dual kinematics allows point
aberration v ≪ c at constant energy cp ≪ E to coexist
with elsewhere wave aberration vp ≫ c, while Doppler
shifted waves vp ≪ c at constant momentum cp≫ E are
consistent with elsewhere rays v ≫ c. Factorization

p′ = p(1 − vp/vC), E′ = E(1− vG · v−1
p ), (84)

shows that momentum vanish in the time frame vC = vp

and propagating waves become stationary in the inertial
frame vG = vp carrying no energy.

D. Charged particles

Electric charges in units of coulomb interact with ex-
ternal fields. Additional momenergy is provided by mag-
netic vector and scalar potentials

p = γmv + qeAm, E = γmc2 + qeφm, (85)

observing that voltage V=J/C induced by non-stationary
magnetic flux in weber V=Wb/s imply products of ac-
tion CWb=Js in SI-units [48]. Canonical transport (79)
follows by eliminating scaling factors

p− qeAm = (E − qeφm)v/c2 (86)

where momentum behaves like velocity given that energy
in minimal coupling is scalar. The action must be a global
function

S = γE0(v · x/c2 − t) + qeΦm, (87)

including scalar flux Φ = A · x − φt subject to gauge
freedom Φ → Φ+Φ0, where the contribution of a moving
particle

S(x = vt) = −mc2t/γ − qeφ
′
mt. (88)

can be written in terms of the Doppler shifted scalar
potential as given by (83),

A′ = A− φ/vp, φ′ = φ− v ·A, (89)

identifying vG = v and vC = vp.
Symmetric contraction Φs = As ·X may be defined for

charges of both species s = e,m introducing conjugate
variables

As = ∂XΦs = −φs/c+As, (90)

in units of Wb/m and C/m, respectively. As a result,
total momenergy can be written

P = mγV ∓ qsA
P
s̃ , (91)

where symmetric potentials are denoted by tilded indices,
A change of sign is induced by pseudosalar magnetic
charge ιqm and electric potential ιAe, Sec. VII.
Newton’s equation of motion based on gradient forces

in a comoving frame

d(γmv + qsAs̃)/dt = −qs∇(φs̃ − v ·As̃), (92)

includes convection in potential fields with corresponding
derivative (v · ∇)A = ∇(v · A) − v × ∇ × A. Doppler
shifts cancel

d(γmv)/dt = qs(−∇φs̃ − ∂tAs̃ + v ×∇×As̃), (93)

introducing E + v × B as the electric Lorentz force per
unit charge with axial flux density playing the role of
vorticity

E = −∇φm − ∂tAm, B = ∇×Am. (94)

The magnetic case involves a change of sign

H = ∇φe + ∂tAe, D = −∇×Ae, (95)

when reduced to axial vector calculus. The correspond-
ing Lorentz field H− v ×D acting on magnetic charges
is compatible with reverse electric and magnetic handed-
ness. In both cases, point charges are simply flux singu-
larities [49].
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E. Antiparticles

Leaving symmetry breaking aside [50] the idea of clas-
sical pair production and annihilation is not new. Fol-
lowing Dirac [51], work by Stückelberg [52] and Feynman
[53] within special relativity [54–56] were based on time
reversal tT = −t introducing anti-symmetry XPT = −X
represented by the Klein four-group {1,−1, ι,−ι}. The
sign of the positron first observed in cloud chambers must
be opposite to that of the electron in order to satisfy
charge conservation and the full CPT -theorem of quan-
tum field theory includes charge conjugation qC = −q
stating that the distinction between ordinary and anti-
matter must be conventional [57]. Neutral particles are
symmetric under space-time inversion, while separate P
and T violations are believed to be rare.
While magnetic dipoles are abundant, it is less appreci-

ated that permanent electric dipoles along spin directions
have remained unobserved [58]. Scalar dipoles d = qr
violate P and T symmetry, while the possibility of pseu-
doscalar charge restores inversion symmetry at the same
time classifying magnetic dipoles as classical mesons com-
posed of antiparticle pairs.

VI. MATTER WAVES

Wave-particle duality follows from the identification of
mechanical action with wave phase

S = ~ϕ, (96)

where h = 2π~ ≡ 6.62607015× 10−34 Js is Planck’s con-
stant. Term by term comparison P = ~K implies

E = ~ω, p = ~k. (97)

implying that symplectic structure, algebraic dispersion,
and geometric duality is all inherited as classical frag-
ments existing within quantum theory [59]. It may be
argued that the dichotomy is dissolved rather than re-
solved by being placed in a proper context [60]. Wave
functions ψ(x, t) =

√
ρeiS/~ introduce conserved proba-

bility distributions

∂tρ+∇ · j = 0, (98)

where Fourier transformation

−ωρ+ k · j = 0 (99)

introduces the inverse phase velocity v−1
p = k/ω. Dual

projection then follows by defining a characteristic ve-
locity j = ρv implying (15). Using J = ρV , conti-
nuity may also be written ∂X · J = 0. The single-
particle Schrödinger equation i~∂tψ = Hψ follows from
the Hamilton-Jacobi equation [44] with

H = (p− qA)2/2m+ qφ, (100)

while the Klein-Gordon equation based on relativistic or
quadratic dispersion E2 = p2c2+m2c2 including internal
energy introduces negative energies and uncontrolled pair
production leading to the concept of a quantum field.

A. de Broglie on relativity

The arguments presented in the 1924 thesis relied heav-
ily on special relativity [61, 62]. Particles were modelled
as localized wave packets moving in uniform time with
Fourier components interpreted as phase waves. Guided
by a principle of “phase harmony” [63] de Broglie ex-
tended the proper oscillations of a point particle defined
by the Planck-Einstein relation

mc2 = ~ω′, (101)

to uniform phase oscillations accompanying uniform time
in the rest frame. Particle motion introduces relativistic
Doppler effect

ω′ = γ(ω − v · k), (102)

showing that the frequency scales as ω′ = ω/γ to second
order compatible with energy dilation, when the phase
velocity v−1

p = k/ω and light-time reciprocity is invoked.
Conjugate momentum is proportional to spatial varia-
tions in the dual frame

p = h/λ, (103)

where apparent superluminal motion that worried de
Broglie disappears is replaced by elsewhere time zones.
Slow groups λ/λ0 ≫ 1 with λ0 = h/mc the Compton
wave length reproduce the geometric optics approxima-
tion in classical physics [12]. Inverse velocities imply in-
verse refractive indices.

B. Landé paradox

Neglect of Carrollian symmetry leads to the so-called
Landé paradox [64], when particle kinematics is con-
fronted by wave kinematics

mv = ~k, (104)

since invariant wave vector is incompatible with Galilean
velocity shifts. To avoid a logical paradox both sides
must transform the same way. As we have seen, the
left-hand-side represents a wave packet with individual
Fourier components propagating at the phase velocity.
Galilean particle momentum v ≪ c is accompanied by
Carrollian phase waves vp ≫ c and the right-hand side
must therefore be reset according to Carrollian kinemat-
ics allowing wave aberration. The apparent paradox is
thus resolved by dual kinematics.
A complementary pseudo-paradox would ask, how

both sides of (104) can possibly be invariant for slowly
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propagating wave components. In this case, Galilean
wave kinematics must be accompanied by Carrollian
point kinematics leaving the relativistic velocity γv in-
variant even for γ ∼ 1. Once again, kinetic and canoni-
cal momentum coexists peacefully. Non-relativistic wave
propagation simply require dual group kinematics.

C. EPR correlations

Relative or frame-dependent simultaneity is a signa-
ture of special relativity. Whether non-local quantum
correlations could be influenced by time reversal has been
investigated in space-like separated, EPR-type experi-
ments with one detector moving. Very accurate timing
allowed nearly simultaneous measurements in a frame
moving at vG ∼ 100 m/s relative to the laboratory
[65, 66]. Since, β ≪ 1 and γG ∼ 1, first-order dual
kinematics applies, where the dual velocity parameter is
of the order vC = c2/vG ∼ 1015 m/s. No difference com-
pared to an identical experiment having both detectors
at rest in the laboratory frame could be detected. Al-
though Carrollian kinematics reverses time ordering, a
null result is to be anticipated, since physical processes
including wave function collapse can not depend on a
particular choice of time coordinate.

D. Phase shifts

The simple-minded transformation (81) introduces a
Galilean shift S′ = S − SG of unbalanced terms

SG = mvG · x− 1

2
mv2Gt, (105)

where the additional phase ψ′ = e−iSG/~ψ [67–69] gen-
erated in the Schrödinger equation should be detectable
by interferometer experiments. Bargmann argued that
a back and forth trip suddenly reversing velocities com-
bined with spatial translations lead to similar effects [70]
prompting a spurious selection rule forbidding superpo-
sition of different mass states [71, 72]. Active transfor-
mations are restricted by physical laws and non-causal
translations must involve elsewhere kinematics. Single-
particle actions are indeed invariant when first-order gen-
erators (64) are properly identified.

VII. ELECTROMAGNETISM

Intuitively, the physics of conducting wires, coils, and
parallel plates must involve aspects of dual geometry.
Point charges define isotropic flux densities

D = qer̂/4πr
2, B = qmr̂/4πr2, (106)

in units of C/m2 and Wb/m2 or tesla, respectively, where
r̂ is a radial unit vector and 4πr2 is the area of a sphere.

Although isolated magnetic monopoles have never been
observed [73], Maxwell’s equations allow sources of both
specimen, where linear combinations introduce contin-
uous U(1) symmetry responsible for helicity conserva-
tion [74, 75]. Galilean transport define orthogonal field
strengths in A/m and V/m, respectively,

H = v ×D, E = −v ×B, (107)

where the minus sign conforms with Lenz’ rule and
Maxwell’s equations introduced below.
As we have seen, the product of electric and magnetic

charge provides action and must be quantized as shown
by Dirac considering a semi-infinite string of magnetic
dipoles [76],

qeqm = nh, (108)

where n is integer. Given the elementary electric unit
e ≡ 1.602176634× 10−19 C as measured by the Joseph-
son effect with KJ = 2e/h the relevant constant, the
magnetic unit or flux quantum obtained for n = 1 takes
the value Φ0 = h/e ≃ 2.07×10−15 Wb. The ratio known
as von Klitzing’s constant

RK = Φ0/e = h/e2 ≃ 25.8 kΩ, (109)

defines a quantum of resistance unrelated to particle
transport, but compatible with internal de Broglie os-
cillations.
Empty space is assigned linear response by generaliz-

ing the phenomenology of displaced charge qe = CU with
capacitance in farad F=C/V and induced flux Φm = LI
with inductance in henry H=Wb/A. Closed circuits in-

troduce time constants τ =
√
CL and the impedance

Z =
√

L/C. By analogy, flux densities are related to
field strengths by vector constitutive relations

D = ǫ0E, B = µ0H, (110)

based on electric permittivity ǫ0 ∼ 8.85 pF/m and mag-
netic permeability µ0 ∼ 4π · 10−7 H/m formerly a de-
fined constant. Virtual charge and current fluctuations
allowed by classical pair production have been suggested
as a possible mechanism [77], where the product

ǫ0µ0 = 1/c2 (111)

defines a characteristic velocity, while the impedance

Z0 =
1

ǫ0c
= µ0c =

√

µ0/ǫ0 ∼ 377 Ω, (112)

measures the relative strength of electric and magnetic
interactions. The fine-structure constant in SI-units

α =
e2

(4πǫ0)~c
=

Z0

2RK
∼ 1/137 (113)

is the ratio of medium to matter impedance in a vacuum
populated by virtual particles,
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A. Electric-magnetic duality

Dirac quantization is charge symmetric qe ↔ qm re-
versing the constant (109) and the role of electric and
magnetic quantities. Symmetric response ǫ0 ↔ µ0 re-
verses the impedance (112) introducing a dual vacuum
α↔ 1/4α [78] with symmetric Coulomb potentials

4πφe/c = Z0qe/r ↔ 4πφm/c = Z−1
0 qm/r, (114)

and vector potentials As = φs/vp. Ordinary wave prop-
agation is ensured by the Lorenz constraint

χ = −∂X ·AP = ∂tφ/c
2 + ∂x ·A = 0 (115)

with Fourier transform K · AP = 0 which may be inter-
preted as “grounding” the particle at φ′ = 0 using (19).
The capacitive limit ǫ0 → ∞ and µ0 → 0 implies perfect
conductivity Z0 → 0, while the inductive limit ǫ0 → 0
and µ0 → ∞ defines a perfect insulator Z0 → ∞.
At the field level, cross products (107) are replaced by

2-blades and vector contraction using (43)

H = v ∧D, E = ι(v ∧B) = v ·B, (116)

where flux lines intersect transverse surface elements
B · B = 0. A choice of spatial orientation need not be
specified. Geometric derivation ∂xA = ∂x · A + ∂x ∧ A
introduces multivectors reminiscent of complex Riemann-
Silberstein fields

F = −∂XAP
m = χm +E/c+B, (117)

superseding Faraday tensors as well as the combination
due to Minkowski

G = −∂XAP
e = χe +H/c+D, (118)

where scalar terms vanish in the Lorenz gauge (115).
Scalar electric charge [79] is compatible with polar

electrics, while dual magnetics implies pseudoscalar mag-
netic charge [80]. The terms qmAe and qmφe then pick up
minus signs ... The combination of complementary geom-
etry and charge symmetry is known as electric-magnetic
duality

E ↔ H, D ↔ B, qe ↔ ιqm, (119)

implying F ↔ G exchange symmetry.
Symmetric Lorentz forces per unit charge acting on

monopoles of both species [81–83] are defined by Galilean
relativity [84, 85] allowing zero forces

E′ = E− vG ·B, H
′ = H − vG ∧D, (120)

assuming quasi-stationary fields E ≪ cB and H ≪ cD.
Quasi-uniform flux densities E ≫ cB and H ≫ cD in-
troduce Carrollian kinematics

D′ = D− v−1

C ·H, B
′ = B − v−1

C ∧E, (121)

as follows by invoking vacuum relations (110) and (111)
as well as reciprocal parameters (28).

B. Maxwell equations

The vector formulation of Gibbs and Heaviside [86] in
Euclidean geometry [87] is easily modified to accommo-
date magnetic monopoles [48]. The laws of Gauss are
independent of time

∇ ·D = ρe, ∇×H = ∂tD+ je, (122)

∇ ·B = ρm, −∇×E = ∂tB+ jm, (123)

while non-stationary flux densities and macroscopic cur-
rents js = ρsws constituting individual transport veloc-
ities induce circulating Ampere and Faraday fields. The
equations are linear, uncoupled, and symmetric except
for a sign responsible for Lenz’ rule. Nowhere does the
speed of light appear and properties of the vacuum must
be specified by additional constitutive relations such as
(110) and (111).
In the absence of source terms, Fourier transformation

reveals that flux densities must be orthogonal to phase
velocities and field strengths

v−1
p ×H = −D, v−1

p ×E = B, (124)

introducing linear wave structure. Eliminating cross
products is consistent with Carrollian kinematics (121),
where flux densities vanish in uniform time k = 0 at
vG = v and vC = vp. Eliminating either fluxes or fields
using the particle solutions (107) leads to vector relations
of the form

E = −v × (v−1
p ×E), (125)

where the identity a × (b × c) = (a · c)b − (a · b)c and
orthogonality v · E = 0 implies

E = (v · v−1
p )E (126)

showing that inverse projection (15) define linear disper-
sion with phase velocity identified as slowness.

1. Charge and energy conservation

Macroscopic sources must satisfy charge conservation
(98) independent of field dynamics and metric, since only
counting operations are involved. Kinematical symme-
tries separate into Galilean relativity ws ≪ c leaving vol-
umes and densities invariant in absolute time

ρ′s = ρs, j′s = js − ρsvG, (127)

and Carrollian kinematics ws ≫ c in absolute space

ρ′s = ρs − v−1

C · js, j′s = js, (128)

allowing absolute currents, where the product ρsws is
first-order invariant, while densities are shifted in rela-
tive time and vanish at vC = vp regardless of optional
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charge cancellations. Charge-current exchange symme-
try applies along tangent directions in accordance with
the multisource J = cρs + js.
Field energy S = cu + S symmetric under light-time

exchange is conserved ∂X · S = 0 according to Poynting’s
theorem

∂tu+∇ · S = −E · je −H · jm, (129)

where the right-hand side is the power density supplied
by source currents,

∂tu = E · ∂tD+H · ∂tB, (130)

is the energy density rate of change, and the power flux
through a surface

∇ · S = −E · (∇×H) +H · (∇×E), (131)

defines the Poynting vector S = E×H = −E ·H . In a
linear medium such as (110), the energy density is dipole-
like and symmetric

u =
1

2
(E ·D+H ·B), (132)

where H · B = −H · B and electric-magnetic symme-
try suggests a corresponding momentum density due to
Minkowski that agrees with that of Abraham D × B =
S/c2 in vacuum [48].

2. Dual equations

Algebraic expressions replace coordinate based vector
calculus ∇A = ∇ ·A+∇∧A introducing dual relations
equivalent to Eqs. (42) and (43) interchanging contrac-
tion and extension

∇·A = −ι∇∧A, ∇×A = −ι∇∧A = −∇·A, (133)

where A = ιA is a dual vector. Applied to Maxwell’s
equations, Ampere contraction separates from Faraday
extension [88–90],

∇ ·D = ρe, −∇ ·H = ∂tD+ je, (134)

∇∧B = ιρm, −∇∧E = ∂tB + ιjm, (135)

driven by pseudoscalar magnetic sources. Invoking mul-
tivectors (117) and (118) in the Lorenz gauge, only two
equations are needed

∇ ·G = ∂ctD+ Je/c, ∇ ∧ F = ∂ctB + ιJm/c, (136)

where electric-magnetic duality is the equivalence be-
tween Ampere and Faraday parts F ↔ G.

C. Macroscopic constitutive relations

Separate electric and magnetic relations are unaffected
by dual magnetics. Macroscopic polarization and magne-
tization is specified by homogeneous and isotropic linear
response at rest [91], where permittivity ǫ(ω,k) and per-
meability µ(ω,k) relative to the vacuum are local func-
tions in Fourier space and n2 = ǫµ is the refractive index
[92]. Vector relations in a medium moving at velocity vG

were obtained by Minkowski

D+ v−1

C ×H = ǫǫ0(E+ vG ×B), (137)

B− v−1

C ×E = µµ0(H− vG ×D), (138)

where scaling factors cancel [93, 94]. Dual kinematics
(120) and (121) thus adequately describe linear electro-
dynamics. Galilean symmetry eliminates cross products
on the left-hand side, where perfect vacuum conductiv-
ity is possible at finite permittivity without induction
B → 02 known as the electric limit, while finite perme-
ability defines a perfect insulator without displacement
in the magnetic limit D → 02. Likewise, Carrollian sym-
metry eliminates cross products on the right-hand side,
where finite permeability defines perfect conductivity in
the magnetic limit E → 02, while finite permittivity de-
fines a perfect insulator in the electric limit H → 02 [95].
Singular contraction in reciprocal limits is ultimately a
consequence of the speed of light (111) being factorized.

VIII. CONCLUSIONS

Perceived by our senses everyday phenomena seem to
be connected by instantly propagating light signals as ar-
gued by Descartes. Rømer’s observation that the speed of
light is finite eventually led to the idea of causal structure,
where only two-way velocities measured by a single clock
are physically meaningful. One-way propagation is linked
to synchrony by a vicious circle introducing kinematical
redundancy comparable to gauge freedom. We have ar-
gued that uniform synchrony set by light-time conversion
must coexist with equal-time zones transverse to tangent
directions. The question raised by Dyson [96] as to how
special relativity seemingly arises out of thin air starting
from Galilean symmetry c→ ∞ has thus been answered:
Relative time defined by non-causal extension at finite c
may ultimately be traced to kinematical gauge freedom
introducing Carrollian time conventionality in the global
limit c→ 0.
Fundamental insights are highlighted by the following

simple facts: Geometry and physical laws transcend co-
ordinate bookkeeping, kinematics and dynamics can not
be sharply distinguished, and metric structure is second
order. Massive particles carry internal de Broglie clocks
and dynamics is provided by the principle of maximum
aging circumventing action at a distance. As demon-
strated, dual geometric structure is implied by macro-
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scopic continuity involving only counting operations. Re-
lying on dual vector spaces, we have shown that light-
time permutation introduces first-order relativity and
wave-particle duality in classical mechanics, where the
celebrated contribution E0 = mc2 provides internal en-
ergy to localized wave packets. As a result canonical and
kinetic particle momenergy coexists resolving the Landé
paradox by wave aberration. Remarkably, the concept of
de Broglie matter waves reduces to elsewhere time zones
in ordinary space whether Euclidean or premetric with
no extra time dimension required.

The awkward distinction between polar electrics and
axial magnetics required by vector calculus is superseded
by electric-magnetic duality based on charge symme-
try and geometric duality. Galilean kinematics provides
symmetric Lorentz forces acting on point charges, while
Carrollian kinematics applies to linear flux propagation.
Macroscopic Maxwell equations augmented by the sim-
plest possible constitutive relations define dual vacuum

limits that are either perfectly conducting with no elec-
tric field or magnetic induction or perfectly insulating
lacking either magnetic field or electric displacement.
Pair production and annihilation is predicted at fi-

nite c with antiparticles simply defined as classical CPT -
inversions linked by light-time conversion. Save rare ex-
ceptions, separate inversion symmetries are expected to
hold separately [97] as suggested by the absence of per-
manent electric dipoles. Most interestingly, pseudoscalar
magnetic dipoles then qualify as classical antiparticle
pairs or mesons explaining the observed elusiveness of
free monopoles.
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