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Abstract

The Lighthill’s wave equation provides an accurate characterization of the hydrodynamic noise due
to the interaction between a turbulent flow and an obstacle, that is needed to get in many industrial
applications. In the present study, to solve the Lighthill’s equation expressed as a boundary integral
equation, we develop an efficient numerical method to determine the three-dimensional Green’s function
of the Helmholtz equation in presence of an obstacle of arbitrary shape, satisfying a Neumann boundary
condition. This so-called tailored Green’s function is useful to reduce the computational costs to solve
the Lighthill’s equation. The first step consists in deriving an integral equation to express the tailored
Green’s function thanks to the free space Green’s function. Then a Boundary Element Method (BEM) is
used to compute tailored Green’s functions. Furthermore, an efficient method is performed to compute
the second derivatives needed for accurate flow noise determinations. The proposed approach is first
tested on simple geometries for which analytical solutions can be determined (sphere, cylinder, half
plane). In order to consider realistic geometries in a reasonable amount of time, fast BEMs are used:
fast multipole accelerated BEM and hierarchical matrix based BEM. A discussion on the numerical
efficiency and accuracy of these approaches in an industrial context is finally proposed.

Keywords: Tailored Green’s functions; Fast BEMs; Helmholtz problems; Lighthill’s equation

1 Introduction

An accurate characterization of the noise radiation that appears when an obstacle is placed in a turbulent
flow is necessary in many industrial applications. Depending mainly on the operating Mach number, dif-
ferent strategies have been developed. Naval applications we are primary interested in generally involve a
low Mach number and a high Reynolds number which makes unsuitable direct noise computation meth-
ods. In this case, the most popular alternatives are acoustic analogies as introduced by Lighthill [1]. It
consists in separating noise generation and noise propagation mechanisms. Lighthill’s idea was to rewrite
the fundamental equations of the fluid mechanics as a wave equation. It can then be solved either by using
a finite element method or a boundary integral method for example. The finite element method would
require to mesh a large computational domain and to introduce well-adapted boundary conditions on the
artificial boundary introduced to truncate the computational domain. Since the boundary integral equation
formalism satisfies intrinsically the Sommerfeld radiation condition at infinity, it should be the most suitable
approach for far-field noise predictions in unbounded domains.

For any partial differential equation, various boundary integral equations can be derived. Among the
possibilities, the choice of the boundary conditions satisfied by the Green’s function is important since it
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enables to reduce the cost to evaluate the boundary integral representation. In our case, it can be mainly
formulated by using the free-space Green’s function or a tailored Green’s function, which means that it
satisfies the boundary condition over the obstacle, rigid for our case. The first use of a tailored Green’s
function in aeroacoustics was achieved by Doak [2] who showed that the computation of the total radiated
field requires almost exclusively the knowledge of the Green’s function satisfying the appropriate condition
over the obstacle. In the solution using the tailored Green’s function, two contributions to the total radiated
field can be distinguished: a vibro-acoustic contribution and an aeroacoustic contribution. The former
appears to be defined by the value of the tailored Green’s function over the obstacle surface and the latter
by the second derivatives of the tailored Green function inside the turbulence volume see forthcoming Eq.(6).
These second derivatives are characteristic of the noise amplification due to the nearfield flow scattering by
the obstacle geometry [3]. Since then, most applications involving tailored Green’s functions are dimensional
analysis [4]. However, during the last decade analytical tailored Green’s functions have been successfully
applied to roughness noise prediction [5]. However they are derived for the particular geometries, step [5] or
hemispheres [6] and they cannot be extended to a finite size more general geometry or a curved geometry
for instance.

The determination of the tailored Green’s function can be achieved analytically for canonical geometries
but must be done numerically for geometries of arbitrary shapes. Boley [7] initially proposed in 1956 to
compute the exact Green’s function, defined as a solution of the Helmholtz equation, with a boundary
integral equation. The only applications in aeroacoustics of a numerical three-dimensional Green’s function
dates to the work of Ostertag et. al. [8] in 2000, of Hu [9] in 2005 and of Takaishi [10] 2007. In these
works, the numerical method is not thoroughly described and a standard BEM (not accelerated) is used. In
this work, we propose to take advantage of the recent improvements of the capabilities of BEMs to propose
an efficient procedure for the computation of the tailored Green’s function in the context of aeroacoustic
prediction models at low Mach number.

This paper is organised as follows. In Section 2, we recall classical works on the resolution of Lighthill’s
equation and show the advantages obtained by using the tailored Green’s function. In Section 3, we derive
the tailored Green’s function and its spatial second derivatives with a boundary integral representation.
In particular a semi-analytical strategy is developed to determine accurately the second derivatives. In
Section 4, we discuss the efficient numerical evaluation of these special Green’s functions with two recent
acceleration methods: the fast multipole method and hierarchical matrices. In Section 5 the approach
is validated on simple geometries for which analytical solutions can be determined (sphere, cylinder, half
plane). A discussion on the numerical efficiency and accuracy of the fast approach in an industrial context
is finally proposed in Section 6.

2 Evaluating the integral solution of Lighthill’s pressure

We consider a bounded obstacle O of boundary Γ. We note Ω = R3\O the exterior of the obstacle. The
Lighthill’s wave equation [1] determines the sound emitted by the flow around the obstacle O. In the
time-harmonic regime with frequency ω (e−iωt dependence), the Lighthill’s equation is: −∆p′ − k2

0p
′ =

∂2Tij
∂xi∂xj

in Ω,

where Tij = ρvivj + pij − p′δij ,

where we do not precise for the moment the boundary condition on the obstacle. p′ = p−p∞ is the pressure
perturbation relative to the surrounding medium where p is the fluid pressure and p∞ is the surrounding
ambient pressure. v is the fluid velocity and ρ the density. We have introduced the wavenumber k0 = ω/c∞
with c∞ the sound speed. pij = p′δij−σij is the compressive stress tensor with σij the viscous stress tensor.
Tij is Lighthill’s stress tensor. It is frequently referred to as a source term because it contains all the effects
that generate acoustic waves, including propagations effects (convection and refraction) and we also consider
in this work that we have access to this source term Tij .

A solution to Lighthill’s wave equation can be obtained by using the method of Green’s functions
combined with Curle’s theorem. For an arbitrary Green’s function G̃, the Lighthill pressure p′ satisfies
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∀x ∈ Ω the integral representation [11]

p′(x) =

∫
Ω

Tij(y)
∂2G̃

∂yi∂yj
(x,y)dy +

∫
Γ

[
(pij + ρvivj)(Y)

∂G̃

∂Yi
(x,Y)− iωG̃(x,Y)ρvj(Y)

]
nj(Y)dSY, (1)

with n the normal pointing outward O (thus inward Ω).
To get the second integral in (1), the momentum equation

−iω(ρvi) +
∂

∂xj
(ρvivj + pij) = 0,

has been used. Then, once it is combined with the definition of Tij , it leads to

∂

∂xj
(Tij + p′δij) = iω(ρvi),

and thus to the second integral in (1) since vini = vjnj . From now we use a simple convention to differentiate
points in Ω from points on Γ: small letters for coordinates in Ω and capital letters for coordinates on Γ. We
introduce two simplifications: we consider that the velocity of the boundary Γ is small and thus we neglect
the term vivj in Tij on Γ. Moreover for high Reynolds number flow we can neglect the viscous stress such
that pij = p′δij . With these hypothesis, the boundary integral representation reduces to

p′(x) =

∫
Ω

Tij(y)
∂2G̃

∂yi∂yj
(x,y)dy +

∫
Γ

[
p′(Y)

∂G̃

∂Yj
(x,Y)nj(Y)− iωρvj(Y)nj(Y)G̃(x,Y)

]
dSY. (2)

The simplest choice for G̃ is the free field Green’s function, i.e., G̃ = G0. It is defined for a fixed source
localized at y ∈ Ω by

(∆z + k2
0)G0(y, z) + δ(y − z) = 0 ∀z ∈ R3, (3)

such that

G0(y, z) =
eik0|y−z|

4π|y − z|
. (4)

However, it is not a clever choice because it would require to first determine p′ on the boundary Γ to be able
to apply the boundary integral representation (2). This first step would require to solve a problem similar
to a boundary integral equation for p′ on Γ. But although boundary integral equations are efficient in the
absence of a source term, the solution of this integral equation would be particularly expensive due to the
presence of a volume term (first term in (2)).

An alternative and more suitable choice is to use a special Green’s function to avoid the need of de-
termining p′ on Γ for each source. Such function will be called the tailored Green’s function and it is
denoted GT . This tailored function is independent from the flow, dependent only from surface geometries
and boundary conditions, in our case a rigid boundary condition on Γ. It is thus solution, for a fixed source
localized at x ∈ Ω, of {

(∆z + k2
0)GT (x, z) + δ(x− z) = 0 ∀z ∈ Ω,

∂nZGT (x,Z) = 0 ∀Z ∈ Γ,
(5)

where the normal derivative ∂nZGT (x,Z) stands for n ·∇ZGT (x,Z) =

3∑
i=1

ni
∂GT
∂Zi

(x,Z). With this choice

of Green’s function, the integral representation (1) simplifies for all x ∈ Ω in

p′(x) =

∫
Ω

Tij(y)
∂2GT
∂yi∂yj

(x,y)dy − iω
∫

Γ

GT (x,Y) (ρv · n)(Y)dSY. (6)

This new integral representation highlights two advantages to use the tailored Green’s function. First, once
the source terms Tij and v · n are known, p′ in (6) can be easily computed. There is no integral equation
to solve. Moreover the tailored Green’s function has a physical meaning. It appears that the directivity of
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the tailored Green’s function, obtained by plotting GT (x,y) for a fixed y and a moving x, is similar to the
directivity of the Lighthill’s solution p′. For instance, for a rigid boundary v ·n = 0 by using the mean value
theorem we have

p′(x) =

∫
Ω

Tij(y)
∂2GT
∂yi∂yj

(x,y)dy = |Ω|Tij(y0(x))
∂2GT
∂yi∂yj

(x,y0(x)),

where y0(x) is a particular point in Ω and |Ω| is the volume of Ω. Therefore p′(x) has the same variations
than ∂2GT /∂yi∂yj(x,y0(x)) when x moves, in particular if the support of Tij is small (then y0(x) can be
considered fixed).

3 Procedure to determine the tailored Green’s function

Since no analytical expression ofGT is available in presence of complex geometries, the originality of this work
is to evaluate efficiently GT (x,y) for all x,y ∈ Ω by using existing techniques developed for fast Boundary
Element Methods formulated with G0. The first step is to express the boundary integral equation satisfied
by GT .

3.1 Derivation of the Boundary Integral Representation for the tailored Green’s
function

We start by deriving the integral representation for the tailored Green’s function GT .

Lemma 3.1 For a fixed source localized at y ∈ Ω and for all observation points x ∈ Ω, the integral
representation of the tailored Green’s function GT (x,y) solution of (5) is given by

GT (x,y)−G0(x,y) =

∫
Γ

∂nZG0(y,Z)GT (x,Z)dSZ, (7)

with

∂nZG0(y,Z) = (Z− y) · n(Z)
ik0|Z− y| − 1

|Z− y|3
eik0|Z−y|

4π
. (8)

Proof. For all x,y ∈ Ω, multiplying (3) by GT (x, z) and (5) by G0(y, z), substracting the two terms
and integrating on all z ∈ Ω leads to [11, 12]

GT (x,y)−G0(y,x) +

∫
Ω

GT (x, z)(∆z + k2
0)G0(y, z)dz −

∫
Ω

G0(y, z)(∆z + k2
0)GT (x, z)dz = 0.

Noting m the normal on Γ pointing outward Ω, we get

GT (x,y)−G0(y,x) +

∫
Γ

∂mZG0(y,Z)GT (x,Z)dSZ −
∫

Γ

∂mZGT (x,Z)G0(y,Z)dSZ = 0.

Using the rigid boundary condition on Γ and the reciprocity G0(y,x) = G0(x,y), it leads to

GT (x,y)−G0(x,y) +

∫
Γ

∂mZG0(y,Z)GT (x,Z)dSZ = 0.

Eventually, since n = −m is the natural normal pointing outward O, we get the result, which is also formula
(4.6.1) of [11]. �

The integral representation (7) indicates that the only remaining unknown is GT (x,Z) for all Z ∈ Γ. To
determine GT (x,Z), we introduce some classical integral operators: the single and double layer potentials,
which to a function φ(Z) defined for Z ∈ Γ associate the functions defined for any y ∈ Ω by

(Sφ)(y) =

∫
Γ

G0(y,Z)φ(Z)dSZ, (Dφ)(y) =

∫
Γ

∂nZG0(y,Z)φ(Z)dSZ. (9)
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To simplify the notations, for a fixed x ∈ Ω, we set GxT (y) = GT (x,y) and Gx0 (y) = G0(x,y), we get

(DGxT )(y) =

∫
Γ

∂nZG
y
0 (Z)GxT (Z)dSZ =

∫
Γ

∂nZG0(y,Z)GT (x,Z)dSZ.

Then (7) becomes

GxT (y)−Gx0 (y) = (DGxT )(y), ∀y ∈ Ω and a fixed x ∈ Ω (10)

To determine GxT (y) for all y ∈ Ω thanks to (10), we just need to determine GxT (Y) for Y ∈ Γ and this
is done thanks to an integral equation, derived in the following section.

3.2 Derivation of the Boundary Integral Equation governing the tailored Green’s
function

The Dirichlet trace operator γ+
0 associates to a function ϕ(y) with y ∈ Ω the trace on Γ, i.e., the function

(γ+
0 ϕ)(Y) with Y ∈ Γ, defined by lim

y→Y
ϕ(y). It is known [13] that the traces of the operators in (9) are given

by

γ+
0 S = S, γ+

0 D =
I

2
+D,

where we have introduced the boundary operators defined for Y ∈ Γ by

(Sφ)(Y) =

∫
Γ

GY
0 (Z)φ(Z)dSZ, (11)

(Dφ)(Y) =

∫
Γ

∂nZG
Y
0 (Z)φ(Z)dSZ. (12)

Due to the singularity of GY
0 (Z) at Z = Y, for D the integral on Γ has to be understood as a principal value.

Using these results on the traces, the integral equation is given by the following lemma.

Lemma 3.2 For any x ∈ Ω and all Y ∈ Γ, the tailored Green’s function GxT is solution of the following
boundary integral equation [(

I

2
−D

)
GxT

]
(Y) = Gx0 (Y). (13)

Proof. For a fixed x ∈ Ω, taking the Dirichlet trace γ+
0 of (10), we obtain ∀Y ∈ Γ

GxT (Y)−Gx0 (Y) =

[(
I

2
+D

)
GxT

]
(Y).

(13) is obtained straightforwardly. Note that it is also formula (4.6.3) of [11].
�

4 Numerical determination of the tailored Green’s function

To evaluate p′ for all x ∈ Ω with the boundary integral representation (6), it is first required to determine
GxT (y). We follow the classical steps of the Boundary Element Method (BEM). It is decomposed into two
steps: the trace, i.e., GxT (Y), is determined on the boundary Γ and then the integral representation is
invoked to obtain the values in the volume, i.e., for a fixed x ∈ Ω:

• Step 1: solve the boundary integral equation (13) to obtain GxT (Y) for all Y ∈ Γ,

• Step 2: invoke the boundary integral representation (10) (or equivalently (7)) for all the wanted y ∈ Ω.
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4.1 Cost of the standard (non-accelerated) method

Let us evaluate the cost of the determination of GxT (y) for a fixed point x ∈ Ω. We introduce the following
notations: Nv corresponds to the number of discretization points in the volume Ω. Nb corresponds to the
number of discretization points on the boundary Γ.

Costs to determine GxT (Y) and GxT (y) The main cost in this procedure comes from the first step.
Hence, for a fixed x, the vector GxT (Y) of size Nb (for all the points Y on Γ) is obtained by solving a fully
populated system of size Nb ×Nb. Its cost is thus of the order of O(N2

b ) if an iterative solver is used, e.g.,
GMRES. The second step to compute GxT (y) for all wanted y ∈ Ω reduces to a matrix-vector product in
(10) with a cost of the order of O(NbNv). Therefore the cost of the overall procedure is finally given by
O(Nb(Nb +Nv)).

Cost to determine the pressure p′ Now we determine the cost to evaluate the integral representation (6)
in Ω. It contains two terms. The second term is an integral over the surface Γ. Once the Green’s function
GxT (Y) has been obtained with a cost of O(N2

b ), if we know the velocity on the boundary Γ, the evaluation
of the integral is of order O(Nb). Therefore the total cost for this term is O(Nb(Nb + 1)). The first term
is more complex and requires to evaluate the second derivative of the tailored Green’s function. A naive
method would be to use a finite differences formula: for instance for a cartesian grid and for any small real
∆y, we could use the following four-points approximation

∂2GT
∂yi∂yj

(x,y) ' GT (x+ ∆y(ei + ej),y)−GT (x+ ∆y(ei − ej),y) +GT (x−∆y(ei + ej),y)−GT (x−∆y(ei − ej),y)

(2∆y)2
,

where (e1, e2, e3) is the R3-basis. A drawback of this interpolation approach is that it requires four evalua-
tions of GT (x,y) and that it is valid only for a structured mesh. Since structured meshes are not suitable
for complex geometry, we propose instead to use the capability of boundary integral equations to obtain
this term in a faster and more accurate way. A semi-analytical strategy is developed: by derivating (7):
since GT in the integral is not derived, we directly have access to the derivative by evaluating

∂2GT
∂yi∂yj

(x,y) =
∂2G0

∂yi∂yj
(x,y) +

∫
Γ

∂nZ

∂2G0

∂yi∂yj
(y,Z)GT (x,Z)dSZ. (14)

Since ∂2G0/∂yi∂yj is known explicitly (see C), the cost is the same as for the calculation of GT (x,y), thus
of order O(Nb(Nb +Nv)). Step 1 is not modified to obtain GT (x,Z) for all Z ∈ Γ and in Step 2 the integral
representation (14) is invoked instead of (10). Finally to determine p′, a volume integral where y spans the
volume Ω for a fixed x ∈ Ω, remains to be determined, with a cost of O(Nv). Therefore the evaluation of
this volume integral is of the order of O(Nb(Nb +Nv) +Nv).

We understand at this point the limitation of standard approaches. With a computational cost increasing
quadratically with the number of points on the boundary, it is problematic to use this method in realistic
configurations.

4.2 Speeding up the numerical solution with fast BEM

The main computational cost in our approach is due to the solution of the boundary integral equation with
standard Boundary Element Methods. We refer to [?, ?] discretization process of the BEM transforms (13)
into a square complex-valued linear system of size Nb of the form

AGx = b, (15)

where the (Nb)-vector Gx collects the degrees of freedom (DOFs) while the (Nb)-vector b arises from
the imposed right-hand side. Assembling the full dense matrix A requires the computation of all element
integrals at each collocation point, thus requiring an O(N2

b ) computational time and memory. If an iterative
method is used, each GMRES iteration requires one evaluation of AGx for a given Gx, a task requiring
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a computing time of order O(N2
b ). Obviously it is the most accurate BEM but at the price of prohibitive

computational costs to consider realistic geometries. It will only be used as a numerical reference solution in
the following and it will be called the standard BEM. To lower the O(N2

b ) complexity, prohibitive for large
BEM models, we use the capabilities offered by fast BEMs. The two main approaches to speed-up the BEM
are the Fast Multipole accelerated BEM (FM-BEM) and the Hierarchical matrix based BEM (H-BEMs).
Since these two approaches have complementary advantages and drawbacks, we will consider both of them
to give a clear overview of their domains of interest.

The goal of a FMM (Fast Multipole Method) [14, 17] is to accelerate the evaluation of the matrix-vector
product Aq for a given q, required at each iteration of an iterative solver applied to the BEM-discretized
equations. Another advantage of the method is that the governing BEM matrix is never explicitly formed,
which leads to a storage requirement well below O(N2

b ). In general terms, the FMM exploits an analytical
(plane wave based) expansion of the full-space Green’s function in terms of products of functions of X and of
Y, so that (unlike in the standard BEM) integrations with respect to Y can be reused when the collocation
point X is changed. Since it is based on an analytical expansion, it has been shown numerically and theoret-
ically to be the most efficient accelerated BEM for oscillatory problems with a complexity of O(Nb logNb)
per GMRES iteration. However, this optimal complexity is obtained for a uniform discretization of the
domain boundary, i.e., if the mesh size is tailored to the geometry. To sum up, this approach is expected to
be efficient for mid to high frequency problems for which the mesh is not over-refined with respect to the
frequency of the problem.

An alternative approach to speed-up the BEM is to use a data-sparse representation of the system
matrix. Hierarchical matrices or H-matrices have been introduced by Hackbusch [15]. The principle of H-
matrices is (i) to partition the matrix into blocks and (ii) to perform low-rank approximations of the blocks
of the matrix which are known a priori (by using an admissibility condition) to be accurately approximated
by low-rank decompositions [19]. Using low-rank representations, the memory requirements and costs of
a matrix-vector product are reduced. Contrary to the FMM, it is an algebraic approach only based on
an a priori knowledge on the relation between the matrix entries and the discretization of the geometry.
The configurations where it gives its best results in terms of efficiency thus differ from the FMM. More
precisely, it has been shown in [18] that this method is more efficient in the low frequency regime and when
the discretisation is over-refined; with a complexity of O(Nb logNb) if the number of degrees of freedom
increases while the frequency is fixed.

To the authors’ best knowledge, these considerations have never been checked on the same examples. In
this work, in addition to check the efficiency of these three methods to evaluate tailored Green’s functions,
we will show the most appropriate regime of application of them. All of these methods are available in the
code COFFEE developed at POEMS 1. It will be used in the following numerical illustrations.

5 Numerical validation for geometries with known analytical Green’s
functions

In this Section, we check numerically the performances of the two steps detailed in paragraph 4 to determine
the tailored Green’s function: step 1 to solve (13) and step 2 to evaluate (10). To quantify the accuracy of
these two steps, we compare the numerical results to explicit expressions of the tailored Green’s function.
These solutions are available only for simple geometries: a sphere, an infinite cylinder and a semi-infinite
thin plate. In all the validation tests, we consider a source localized at y = (y1, y2, y3) and an observation
point at x = (x1, x2, x3), i.e., x and y in Ω.

5.1 Validation for a sphere

We consider a sphere of radius R and we introduce the spherical coordinates: x is parametrized by
(rx, θx, ϕx) with r2

x = x2
1 + x2

2 + x2
3 and x = rx(sin θx cosϕx, sin θx sinϕx, cos θx). Similarly, we have

y = ry(sin θy cosϕy, sin θy sinϕy, cos θy) with r2
y = y2

1 + y2
2 + y2

3 .

1https://uma.ensta-paris.fr/soft/COFFEE/
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5.1.1 Exact Green’s function for a sphere

For rx > ry the Green’s function is given by [21]

GT (x,y) =
ik0

4π

∞∑
n=0

(2n+ 1)hn(k0rx) [jn(k0ry)− αn(k0R)hn(k0ry)]×[ ∞∑
m=0

εm
(n−m)!

(n+m)!
cos [m(ϕx − ϕy)]Pmn (cos θx)Pmn (cos θy)

]
,

(16)

where αn(u) =
j′n(u)

h′n(u)
. We have introduced fn(x) =

√
π

2x
Fn+ 1

2
(x) where f = j or h (and F = J or H),

satisfying (2n+ 1)f ′n = nfn−1− (n+ 1)fn+1. j and h are the spherical Bessel and Hankel functions whereas
J and H are the cylindrical Bessel and Hankel functions.

5.1.2 Trace of the Green’s function on the boundary of the sphere

For the numerical results, the H-BEM is used and the problem size is set to 12 620 DOFs with a largest
mesh size of Lmax = 50 mm. In the first step, we solve the boundary integral equation (13) to obtain
the tailored Green’s function GxT (Y) = GT (x,Y) on the sphere R = 1 m for a fixed observation point at
x = (100 m, 0, 0) and a varying source on the sphere in the plane Y3 = 0, thus with rY = 1 m and θY = π/2:
Y = (cosϕY , sinϕY , 0).

In Figure 1 we represent the modulus and argument of the relative Green’s function

GS = GT −G0,

with respect to ϕY for k0 = 2π/3 m−1 and k0 = 6πm−1, and we compare the numerical and analytical
solutions. They are found in very good agreement. Of course the agreement cannot be perfect because of
the numerical truncation.

5.1.3 Green’s function for a fixed observation point and an arc of sources

Now we check the Step 2 by locating the source out of the sphere. From Step 1, we have GT (x,Y) for all Y
on the sphere and we are able to determine GS(x,y) for any y outside of the sphere by using the boundary
integral representation (7):

GS(x,y) =

∫
Γ

∂nZG0(y,Z)GT (x,Z)dSZ.

The source is chosen now to move on the circle of radius ry = 1.1 m in the plane y3 = 0, again with the
fixed observation point at x = (100 m, 0, 0). Therefore we plot f(ϕy) = GS(x, ry(cosϕy, sinϕy, 0)) in Fig.
2. From (16), the exact solution is

f(ϕy) =
ik0

4π

∞∑
n=0

(2n+ 1)hn(k0rx) [jn(k0ry)− αn(k0R)hn(k0ry)]×,[ ∞∑
m=0

εm
(n−m)!

(n+m)!
cos (mϕy)Pmn (0)Pmn (0)

]
.

(17)

The agreement between the numerical and analytical solutions is again good. Importantly, this evaluation
is fast since GT (x,Z) is already stored for all Z on the sphere. It reduces to the evaluation of a matrix-vector
product.

5.1.4 Green’s function for a fixed source point and an arc of observation points

Here we still check the Step 2, the observation point x is again far from the sphere but it is no longer fixed,
it moves on the circle of radius rx = 100 m in the plane x3 = 0. The source is now fixed at y = (1.1 m, 0, 0).
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Figure 1: Relative Green’s function GS(x,Y) for a sphere of radius R = 1 m for a fixed observation point at
x = (100 m, 0, 0) and a varying source on the sphere in the plane Y3 = 0. Comparison between the numerical
and analytical solutions for two wave numbers k0 = 2π/3 m−1 and k0 = 6πm−1.

We consider again the solution of (7) and plot g(ϕx) = GS(rx(cosϕx, sinϕx, 0),y) in Fig. 3. From (16), the
analytical function g is given by

g(ϕx) =
ik0

4π

∞∑
n=0

(2n+ 1)hn(k0rx) [jn(k0ry)− αn(k0R)hn(k0ry)]×[ ∞∑
m=0

εm
(n−m)!

(n+m)!
cos (mϕx)Pmn (0)Pmn (0)

]
.

(18)

The calculation differs from the previous paragraph 5.1.3 in the sense that for all x values, GT (x,Z) must
be determined for all Z ∈ Γ before determining GT (x,y). Therefore the calculations are longer than in the
previous paragraph.

In Fig. 3, the agreement reported between the numerical and analytical solutions is again very good.
We obtain the same far field pattern as in 5.1.3. This cannot be explained by the reciprocity of the Green’s
function because between the two paragraphs, x and y are not simply exchanged, only the choice of the
fixed parameter is changed. It is rather due to the fact that when rx and ry are fixed, the Green’s function

depends only on the angle (̂x,y) = ϕx − ϕy between x and y, as seen in (16). This is why (18) is exactly
(17) with ϕy replaced by ϕx.

Note that the evaluation in Fig. 3 has been performed only to test the numerical scheme. In practice
we could use the reciprocity of the Green’s function to speed up the calculations:

GS(x,y) = GS(y,x) =

∫
Γ

∂nZG0(x,Z)GT (y,Z)dSZ.

9



Figure 2: Relative Green’s function GS(x,y) for a sphere for a fixed observation point at x = (100 m, 0, 0)
and a varying source on the circle of radius ry = 1.1 m in the plane y3 = 0. Comparison between the
numerical function and the exact function for two wave numbers k0 = 2π/3 m−1 and k0 = 6πm−1.

Since y is fixed, as in 5.1.3 we recover the situation with only one costly step, which is to determine GT (y,Z)

for all Z on the surface. Then

∫
Γ

∂nZG0(x,Z)GT (y,Z)dSZ is easily evaluated for varying x by means of a

matrix-vector product.
Note also that since the observation point x is far, a far-field approximation of GT could be used, it is

determined in B. We did not use this far-field approximation because we focus on the validation process in
order to test precisely the accuracy of the numerical results.

Eventually we test the method in Eq. (14) to evaluate derivatives of the Green’s function. In Fig. 4
are represented the directivities of the second derivative ∂2GS/∂y

2
1 . Once again the agreement between the

numerical and analytical solutions is very good.

5.2 Validation for a cylinder

We consider an infinite cylinder of axis x3 and of radius R. We introduce the cylindrical coordinates
(rx, θx, x3) such that x1 = rx cos θx, x2 = rx sin θx with r2

x = x2
1 + x2

2. In a same way we introduce
y1 = ry cos θy, y2 = ry sin θy.

10



Figure 3: Relative Green’s function GS(x,y) for a sphere for the fixed source at y = (1.1 m, 0, 0) and a
varying observation point on the circle of radius rx = 100 m in the plane x3 = 0. Comparison between the
numerical and analytical solutions for two wave numbers k0 = 2π/3 m−1 and k0 = 6πm−1.

5.2.1 Analytical Green’s function for a cylinder

Performing a Fourier transform along the x3 axis, the Green’s function is found of the form [22]

GT (x,y) =

∞∑
m=0

εmGm(x,y) cos [m(θx − θy)] , (19)

with ε0 = 1, εm = 2. For rx > ry, it is found

Gm(x,y) =
i

8π

∫
R
Hm (γrx) [Jm (γry)− αm (γR)Hm (γry)] eiq(x3−y3)dq, (20)

with γ(q) =
√
k2

0 − q2 and αm(u) = J ′m(u)/H ′m(u).
This expression is exact and explicit but requires to perform numerically an inverse Fourier transform,

which is not an easy task in particular because the integrand decreases slowly when |q| → ∞. An approximate
expression of the Green’s function can be derived, easier to evaluate in practice. When considering the far
field rx � ry, using the stationary phase theorem, the integral disappears (see proof in A) and it is found

Gm(x,y) ∼ eik0|x−y3e3|

4π|x− y3e3|

[
Jm

(
k0rxry
|x− y3e3|

)
− αm

(
k0rxR

|x− y3e3|

)
Hm

(
k0rxry
|x− y3e3|

)]
e−iπm/2, (21)

with |x − y3e3|2 = x2
1 + x2

2 + (x3 − y3)2. In particular, if the source and the observation points are in the

11



Figure 4: Relative Green’s function second derivative ∂2GS/∂y
2
1 for a sphere for the fixed source at y =

(1.1 m, 0, 0) and a varying observation point on the circle of radius rx = 100 m in the plane x3 = 0.
Comparison between the numeric analytical solutions for two wave numbers k0 = 2π/3 m−1 and k0 =
6πm−1.

same transverse plane x3 = 0 = y3, we get the extra simplification |x− y3e3| = rx and thus

Gm(x,y) =
eik0rx

4πrx
[Jm (k0ry)− αm (k0R)Hm (k0ry)] e−iπm/2.

Note that an alternative and simpler expression of the Green’s function exists, the compact Green’s
function [23]

Gcompact(x,y) =
eik0rx

4πrx

[
1− ik0

rx
(x1Y1 + x2Y2 + x3Y3)

]
,

with Y1 = y1

(
1 +

R2

y2
1 + y2

2

)
, Y2 = y2

(
1 +

R2

y2
1 + y2

2

)
and Y3 = y3. Compared to the approximation we use,

the compact Green’s function is also valid only if k0rx � 1 but also k0R, k0ry � 1. In practice the validity
domain is rather restricted, it is found to be valid only at low frequencies and for a source in the very close
vicinity of the cylinder. For all these reasons, we cannot use it as a reference solution.

5.2.2 Comparison of analytical and numerical Green’s functions

On the contrary to the analytical Green’s function, the numerical evaluation for an infinite cylinder cannot be
performed with the BEM, as this method requires a mesh and thus a bounded three-dimensional geometry.
Therefore we consider a cylinder of radius R = 1 m and of finite length L = 20 m. The FM-BEM is used
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with 125 852 DOFs with a largest mesh size of Lmax = 50 mm. As for the sphere, we have made three
tests: we have compared the Green’s functions (i) for a fixed observation point and a source on the cylinder
surface or (ii) a source moving around the cylinder and (iii) for a fixed source and a moving observation
point. In the three cases the agreement is good and we only show in Fig. 5 the results for the case (ii):
evaluation of GS(x,y) for a fixed source at y = (1.1 m, 0, 0) and an observation point on the circle in the
plane x3 = 0, at rx = 100 m, thus x = rx(cos θx, sin θx, 0). Note that the agreement between numerical and
theoretical results for a finite size mesh cannot be perfect, since (19) is valid for an infinite cylinder.

Figure 5: Relative Green’s function GS(x,y) for a cylinder of radius R = 1 m for the fixed observation point
at x = (100 m, 0, 0) and a source varying on the circle of radius ry = 1.1 m in the plane y3 = 0. Comparison
between the numerical and analytical solutions for two wave numbers k0 = 2π/3 m−1 and k0 = 6πm−1.

To test the derivatives of the Green’s function, in Fig. 6 are represented the results for ∂2GS(x,y)/∂y2
1

and the agreement between numerical and theoretical results is very satisfactory.

5.3 Validation for a semi-infinite plane

The last validation case for which we have an explicit solution is a semi-infinite plane corresponding to
x1 < 0, x2 = 0. As for the cylinder, we keep the cylindrical coordinates (rx, θx, x3) for the observation point
and (ry, θy, y3) for the source.

5.3.1 Analytical Green’s function for a semi-infinite plane

Performing a Fourier transform along the x3 axis, the Green’s function is found of the form [24]

GT (x,y) =

∞∑
m=0

εmGm(x,y) cos
(m

2
(θx + π)

)
cos
(m

2
(θy + π)

)
,
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Figure 6: Relative Green’s function derivative ∂2GS/∂y
2
1 for a cylinder of radius R = 1 m for the fixed

observation point at x = (100 m, 0, 0) and a source varying on the circle of radius ry = 1.1 m in the plane
y3 = 0. Comparison between the numerical and analytical solutions for two wave numbers k0 = 2π/3 m−1

and k0 = 6πm−1.

with, for rx > ry :

Gm(x,y) =
i

8π

∫
R
Hm

2
(γrx) Jm

2
(γry) eiq(x3−y3)dq,

where γ(q) =
√
k2

0 − q2.
As for the cylinder case, the stationary phase theorem leads to a simplified formula for the far field

rx � ry [24]:

Gm(x,y) =
eik0|x−y3e3|

4π|x− y3e3|
Jm

2

(
k0rxry
|x− y3e3|

)
e−iπm/4,

with |x− y3e3|2 = x2
1 + x2

2 + (x3 − y3)2. In particular if x3 = 0 = y3, |x− y3e3| = rx, leading to

Gm(x,y) =
eik0rx

4πrx
Jm

2
(k0ry)e−iπm/4.

This approximation will be used as a reference solution in the numerical tests. Note that as for the cylin-
der case, a compact Green’s fonction, less precised but easier to evaluate, can be derived using further
simplifications. Indeed restricting the sum to m ≤ 1 and considering k0ry � 1 lead to

Gapprox(x,y) =
eik0rx

4πrx

[
1 + 2

√
2k0ry
π

sin

(
θx
2

)
sin

(
θy
2

)
e−iπ/4

]
,
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and we recover the compact half-plane Green’s function [23]:

GHowe(x,y) =
eik0rx

4πrx

[
1 + 2

√
2k0

πrx
ϕ?(x)ϕ?(y)e−iπ/4

]
,

with

ϕ?(y) =
√
ry sin

(
θy
2

)
, (22)

the velocity potential of the flow around the half-plane edge.

5.3.2 Comparaison of the analytical and numerical Green’s functions

As for the cylinder case, the BEM requires to consider a three-dimensional volume. Therefore we consider
a square finite plate of size 20 m×20 m with a small thickness of 1cm. For this finite plate located at
]− 20 m, 0[×]− 0.5 cm, 0.5 cm[×]− 10 m, 10 m[ to behave similarly to a semi-infinite plane, we focus on the
near vicinity of the plate: we take a source at y = (−1.m, 0.1 m, 0.), thus close to the plate and to the side
x1 = 0 of the plate, a small wavelength λ0 = 0.3 m (k0 = 20 m−1) and a close observation point at rx = 2 m.
The FM-BEM method is used with 1 020 000 DOFs.

In Fig. 7 we compare the Green’s functions for a fixed source and an observation point moving on the
circle rx = 2 m in the plane x3 = 0, thus x = rx(cos θx, sin θx, 0). The agreement is very satisfactory. As for
the cylinder case, the differences between the two solutions are due to a finite size effect as numeric is done
for a finite plate.

Figure 7: Relative Green’s function GS(x,y) for a semi-infinite plate for the fixed source at y =
(−1.0 m, 0.1 m, 0.0) and a varying observation point on the circle of radius rx = 2 m in the plane x3 = 0.
Comparison between the numerical and analytical solutions for the wave number k0 = 20 m−1.

6 Efficiency of the method for complex geometries

Finally to illustrate the potential of the numerical method and to highlight its wide range of applications,
we have considered less academic geometries: a NACA profile and a marine propeller. Contrary to the
previous paragraph, no explicit solutions exist for comparison.

6.1 NACA 0012 profile

The profile has a span of L = 10 m, a chord c = 0.2 m and a thickness h = 0.12c. Calculations have been
performed with the FM-BEM on a mesh with 45 150 DOFs with a largest mesh size of Lmax = 6.7 mm.
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The source is located 1 cm above the leading edge, at y = (0., 0.01 m, 0.). The observation point moves
on a circle of radius rx = 2 m. Comparison is done with the only available explicit formula, the Multiple
Scattering Green function [25], derived for a finite plate of no thickness, not for an airfoil of varying finite
thickness:

GMS(x,y, ω) = G1(x,y, ω) +GLE(x,y, ω) +GTE(x,y, ω),

G1(x,y, ω) =
−eik0|x−y3i3|

4π|x− y3i3|
−
√
k0rx sin(θx/2)

√
ry sin(θy/2)

π
√

2iπ|x− y3i3|3/2
eik0|x−y3i3|,

GLE =

√
k0 sinψxϕ

∗(y)eik0(|x′|+c sinψx)

iπ3/2|x|(1 + e2ik0c sinψx/2πik0c sinψx)
F

(
2

√
k0c sinψx cos2(θx/2)

π

)
,

GTE =
−ϕ∗(y)eik0(|x|+2c sinψx)

π2
√

2ic|x|(1 + e2ik0c sinψx/2πik0c sinψx)
F

2

√
k0c sinψx sin2(θx/2)

π

 ,

F(x) =
1

2 + 4.142x+ 3.492x2 + 6.670x3
+ i

1 + 0.926x

2 + 1.792x+ 3.104x2
.

(23)

GLE and GTE are the leading edge and trailing edge contributions. ϕ∗ is the potential flow defined in
(22). Note that this Multiple Scattering Green’s function is valid under rather drastic conditions: L = ∞,
h� ry � c, k0ry � 1 and k0c� 1. The numerical tests cannot be done in the same conditions and that is
why the comparison will not be perfect. Since we took h = 0.12c, the condition h� c is correctly satisfied
but none of the others since h ∼ ry, L = 10 m and for k0 = 10 m−1, we get k0c = 2 which is not large.

For a fixed source and an observation point moving on the circle x = rx(cos θx, sin θx, 0) with rx = 2 m,
the modulus and argument of the numerical Green’s function are plotted versus θx, for k0 = 10 m−1 in
Fig. 8 and k0 = 50 m−1 in Fig. 9. The agreement with the analytical Green function is not perfect, but
we recall that this formula is far for being exact. The curvature of the NACA profile is found to have a
strong influence on the directivity, as seen very clearly on the argument of the numerical Green’s functions.
Howe’s formula built for a flat plate predicts an argument symmetric when θx → −θx whereas the numerical
Green’s argument is found strongly asymmetric. Of course if the source is placed in a symmetrical way, at
y = (0.01 m, 0, 0) as in Fig. 10, the directivities are found symmetric as expected. Note that in this case
Howe’s formula with θy = 0 predicts 0 and thus the results are not reported.

Figure 8: Relative Green’s function GS(x,y) for a NACA profile for the fixed source at y = (0., 0.01 m, 0.)
and a varying observation point on the circle of radius rx = 2 m in the plane x3 = 0. Comparison between
the numerical and analytical solutions for the wave number k0 = 10 m−1.
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Figure 9: Relative Green’s function GS(x,y) for a NACA profile for the fixed source at y = (0, 0.01 m, 0.)
and a varying observation point on the circle of radius rx = 2 m in the plane x3 = 0. Comparison between
the numerical and analytical solutions for the wave number k0 = 50 m−1.

Figure 10: Relative Green’s function GS(x,y) for a NACA profile for the fixed source at y =
(0.01 m, 0.0, 0.0), a varying observation point on the circle of radius rx = 2 m in the plane x3 = 0 and
for the wave number k0 = 50 m−1. Only the numerical solutions are plotted since the numerical solution is
equal to 0 for this source position.

7 Marine propeller

To finish we consider a complex geometry whose mesh is shown in Fig. 11, for which no approximate formula
is available. The largest mesh size is Lmax = 8 mm leading to 106 074 DOFs. In Fig. 12 is represented
the second derivative of the Green’s function (∂2GS/∂y

2
1)(x,y) versus the position y of the source for two

wave numbers k0 = 10 m−1 (left) and k0 = 100 m−1 (right). The observation point is fixed on the axis of
the propeller at 100 m and the propeller radius is 0.5 m.

For this complex geometry, since we cannot compare the numerical results to some exact results, we have
chosen to test different acceleration methods. We compare in Figure 13 the performances of the standard
and fast BEMs. We report for various wave numbers (from 1 to 130 m−1) the number of iterations, the
memory requirements, the total computational time and the computational time for one iteration. For
each wave number k0 given in m−1 we also indicate the associated numbers of discretization points per
wavelengths λ/Lmax with Lmax = 8 mm the largest mesh size.

As expected, the number of iterations to solve the BEM problem (subplot a) increases with the frequency
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Figure 11: Mesh of a marine propeller

Figure 12: Relative Green’s function second derivative ∂2GS/∂y
2
1(x,y) for a source point near the blade tip

at y = (0.13 m, 0.53 m, 0.0) and a varying observation point on the arc of radius 100 m in the plane (y1, y2)
(top) and (y1, y3) (bottom), for two wave numbers k0 = 10 m−1 and k0 = 100 m−1. The propeller radius is
0.5 m. Mesh with 106074 DOFs.

of the problem and since no preconditioner is used in this example, for large wave numbers, the number
of iterations becomes large. Moving to the memory requirements (subplot b), we observe the expected
constant footprint for the standard BEM. Since the number of DOFs is fixed, the cost does not change from
one frequency to another. Importantly, fast BEMs drastically reduce the memory requirements compared
to standard BEMs. For H-BEM, since the maximum rank along the admissible blocks is known to increase
linearly with the frequency [18], we observe a linear complexity. On the other hand, for a low frequency,
the mesh is over-refined, leading to a suboptimal use of the FM-BEM. In particular, the only part of the
system matrix stored in FM-BEMs is the one related to near contributions. Since the size of the near
contributions is related to the frequency of the problems, for low wave numbers the near contributions
include a lot of discretization points. This explains the fact that memory requirements decrease, for a fixed
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discretization, with respect to the frequency with the expected optimal behavior around the usual parameter
of ten points per wavelength. Concerning the optimal memory requirements, the numerical results are in
agreement with the theory. Subplot c represents the total computational time costs for the three methods.
The standard BEM is seen to be prohibitively expensive with a computational cost increasing due to the
increase of the number of iterations. Fast BEMs are again seen to be very efficient with a drastic reduction
of the computational cost even when the FM-BEM is not used in its optimal frequency range. Since these
computational times also includes the number of iterations, subplot d presents only the most expensive
part of the BEM solution: the evaluation of a matrix-vector product. As expected, this cost is constant
for standard BEM since the number of DOFs is fixed. The cost for H-BEM increases linearly due to the
increase of the maximum rank (already observed in the memory requirements). The cost for the FM-BEM
is decreasing with the frequency similarly to memory requirements. For low wave numbers again, the cost
to perform the matrix-vector product for near contributions is taking more time due to the use of an over-
refined mesh. Importantly, the cost to perform one matrix-vector product with the H-BEM is seen to be
well below the cost with the FM-BEM. Most of the time in H-BEM is spent in the evaluation of the H-
matrix representation of the system but then the matrix-vector product is very fast. These results advocate
in favour of the use of H-BEM. FM-BEM are in theory the most efficient approach for wave propagation
problems with the optimal complexity. But this is true for academic problems with an optimal uniform mesh
refinement of approximately ten points per wavelength and when a small number of iterations is required to
achieve convergence. In industrial applications, these requirements are not always possible to fulfil. Even
though H-BEM are not optimal, they permit with a simple implementation to obtain a very fast BEM
robust in an industrial context.

8 Conclusions and future work

We have developed an efficient numerical method to determine tailored three-dimensional Helmholtz Green’s
functions in presence of an obstacle of arbitrary shape with a Neumann boundary condition. This function
is important to determine the flow noise, like the hydrodynamic noise radiated by a ship for instance, ob-
tained by solving Lighthill’s wave equation. Tailored Green’s functions are known analytically for canonical
geometries. In this work, we have presented a method to compute them numerically and efficiently for
arbitrary shapes. First an integral equation is derived, expressing the rigid Green’s function versus the free
space Green’s function Then a boundary element method is used to compute numerical Green’s functions
or their derivatives which are important to compute the aero or hydroacoustic components. In order to
reduce computational cost, the boundary element method is accelerated by two methods: a fast multipole
method and/or hierarchical matrices. The numerical methods have been tested on simple geometries for
which exact functions can be determined (sphere, cylinder, half plane) and for realistic geometries, rigid
Green’s functions have been computed and associated directivity diagrams have been determined.

Concerning possible extensions, in this work only the case of a rigid boundary has been considered. In
the future, we plan to extend to more general boundary conditions, notably a Robin condition to consider
impedant boundary conditions, possibly absorbing for complex impedances.
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A Far field cylinder Green’s function

We wish to show that the mth component Gm(x,y) given by (20) of the Green function defined in (19),
simplifies in (21) when rx � ry. This is achieved following the approach developed in [24] for the case of
a semi-infinite plate, based on the use of the stationary phase theorem [26]. The first step is to use the
asymptotics for γrx � 1:

Hm(γrx) ∼
√

2

πγrx
eiγrxe−iπ/4e−iπm/2.

From (20) it leads to the expression

Gm(x,y) ∼ i

8π
e−iπ/4e−iπm/2f(x,y),

with

f(x,y) =

∫
R

√
2

πγrx
[Jm (γry)− αm (γR)Hm (γry)] eiγrxeq(x3−y3)dq.

To apply the stationary phase theorem, f is conveniently written

f(x,y) =

∫
R
g(q;x,y)eiϕ(q;x,y)dq,

with

g(q;x,y) =

√
2

πγrx
{Jm [γ(q)ry]− αm [γ(q)R]Hm [γ(q)ry]} ,

and with the phase ϕ(q;x,y) = γ(q)rx+q(x3−y3). The phase is stationary for q = q0 ≡ k(x3−y3)/|x−y3e3|
with |x−y3e3|2 = x2

1 +x2
2 + (x3−y3)2. Then we have ϕ(q0) = k|x−y3e3| and ϕ′′(q0) = −|x−y3e3|3/(kr2

x)
(with of course ϕ′(q0) = 0). Since ϕ′′(q0) 6= 0, the stationary phase theorem indicates that when rx →∞,

f(x,y) ∼ g(q0;x,y)eiϕ(q0;x,y)

√
−2π

iϕ′′(q0)
.

Using γ(q0) = krx/|x− y3e3|, it leads to

Gm(x,y) ∼ eik|x−y3e3|

4π|x− y3e3|
×[

Jm

(
krxry
|x− y3e3|

)
− αm

(
krxR

|x− y3e3|

)
Hm

(
krxry
|x− y3e3|

)]
e−iπm/2.

B Far-field approximation

Another interest of our approach is to easily give access to the far field radiation pattern of any obstacle.
Indeed (7) can be simplified when the observation point is far. Using the Green’s function reciprocity

GT (x,y) = GT (y,x) = G0(y,x) +

∫
Γ

∂nZG0(x,Z)GT (y,Z)dSZ,
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combined with (8) with y replaced by x

∂nZG0(x,Z) = (Z− x) · n(Z)
ik|Z− x| − 1

|Z− x|3
eik|Z−x|

4π
,

it can be deduced that (7) can be written

GT (x,y) =
eik|y−x|

4π|y − x|
+

∫
Γ

(Z− x) · n(Z)
ik|Z− x| − 1

|Z− x|3
eik|Z−x|

4π
GT (y,Z)dSZ. (24)

This expression simplifies in the far field. When |x| → ∞, (24) simplifies in

GT (x,y) =
eik|x|

4π|x|

[
1 +

(
−ik x
|x|

)
·
∫

Γ

n(Z)e−ik
x
|x| ·ZGT (y,Z)dSZ

]
.

Introducing the unit direction vector ξ = x/|x| and defining the Fourier transform of any function f(Z) by

f̂(ξ) = F [f ](ξ) =

∫
Γ

e−ikξ·Zf(Z)dSZ, the simplified expression becomes

GT (x,y) =
eik|x|

4π|x|

[
1− ikξ · F̂ (y, ξ)

]
(25)

where we have noted F̂ (y, ξ) = F [n(·)GT (y, ·)](ξ). The advantage is that (25) does not depend on the
position x but just on the direction ξ = x/|x|. This is in particular useful to plot directivities.

C Evaluation of the third derivatives of the free field Green func-
tion

In order to compute (14), the knowledge of the third derivatives of the free field Green’s function is necessary.
Let us recall that the free field Green’s function is defined by

G0(y,Z) =
eik0|y−Z|

4π|y − Z|
, (26)

The normal derivative is

∂nZG0(y,Z) = (Z− y) · n(Z)
ik0|Z− y| − 1

|Z− y|3
eik0|Z−y|

4π
. (27)

If we define r = y − Z and r = |r| then :

∂r

∂yi
=
ri
r
,

∂r

∂Zi
= −ri

r

∂r2

∂yi
= 2ri,

∂r2

∂Zi
= −2ri

∂r3

∂yi
= 3rri,

∂r3

∂Zi
= −3rri

∂

∂yi
(r · n) = ni,

∂

∂Zi
(r · n) = −ni

∂ri
∂yj

= δij ,
∂ri
∂Zj

= −δij .

(28)

By introducing

f(r) =
1− ik0r

r3
eik0r
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the derivative of (27) with respect to yi yield

∂nZ

∂G0

∂yi
(y,Z) =

1

4π

[
∂f

∂yi
(r · n) + f

∂

∂yi
(r · n)

]
, (29)

where
∂f

∂yi
=
ri
r5

(k2
0r

2 + 3ik0r − 3), (30)

and
∂

∂yi

(
eik0r

)
=
ik0ri
r

eik0r (31)

Finally

∂nZ

∂2G0

∂yi∂yj
(y,Z) =

1

4π

[
∂2f

∂yi∂yj
(r · n) +

∂f

∂yi

∂

∂yj
(r · n) + +

∂f

∂yj

∂

∂yi
(r · n)

]
, (32)

where

∂2f

∂yi∂yj
=

∂2

∂yi∂yj

(
1− ik0r

r3

)
eik0r +

∂

∂yi

(
1− ik0r

r3

)
∂

∂yj

(
eik0r

)
+

∂

∂yj

(
1− ik0r

r3

)
∂

∂yi

(
eik0r

)
+

(
1− ik0r

r3

)
∂2

∂yi∂yj

(
eik0r

)
,

(33)

and with
∂2

∂yi∂yj

(
1− ik0r

r3

)
=

5rirj − δijr2

r7
(3− 2ik0r) + 2ik0

rirj
r6

, (34)

∂2

∂yi∂yj

(
eik0r

)
=
ik0(δijr

2 − rirj)− k2
0rirjr

r3
eik0r. (35)
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