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Towards Anomaly-Tolerant Systems by Dissipation Block Synthesis

Arthur Perodou, Christophe Combastel and Ali Zolghadri, Senior Member, IEEE

Abstract— The complexity of modern control systems re-
quires mitigating the effects of numerous anomalies, such
as attacks, faults and network-induced disturbances. In this
perspective, the synthesis problem of a dissipation block for
anomaly-tolerant control is addressed. The dissipation tech-
nique consists in interconnecting a block to a system in order
to make their interconnection dissipative. The underlying idea
is that, if the resulting dissipative characterization is suitably
chosen, the considered anomalies can be mitigated. In this
paper, it is revealed how the block, here an LTI system, can
be synthesized by deriving sufficient LMI-based conditions. A
numerical example is provided to illustrate this result which
is applied to design a control reconfiguration, providing a
defense mechanism that ensures resilience with respect to a
data-injection cyber attack.

Keywords : anomaly tolerant control, dissipation block,
passivation, QSR-dissipative systems

I. INTRODUCTION

The ever-increasing integration of cyber elements to phys-
ical systems offers new computational and interconnection
capabilities, but also leads the design of modern control
systems to be a challenging problem. Part of this complexity
comes from the many sources of anomaly that have to
be considered and mitigated, including attacks, faults and
network-induced disturbances [1], [2], [3].

In order to design a control system tolerant to anoma-
lies, two complementary strategies are commonly employed,
respectively referred to passive and active in the fault-
management literature [4]. The first strategy consists in
designing a system such that it inherently satisfies some
specifications even in abnormal conditions, and is particu-
larly linked with usual Robust Control techniques [5]. In the
second strategy, the system is monitored and reconfigured
when an anomaly occurs, and is based on a detection and
reconfiguration scheme [2].

Passivity is an ubiquitous concept in System and Control
theory [6]. First, passive systems inherit important properties
such as stability and minimum-phase. Moreover, passive
systems can be represented by structured models that make
their analysis, control and design easier [6], [7]. Last but not
least, the compositional feature of passive systems appears
promising for modern control systems [8]. Dissipative theory
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may be viewed as an extension of these properties for a larger
class of interconnected systems [9], [10].

From an anomaly-tolerant control perspective, a promis-
ing approach that can be used in both passive and active
strategies is based on the concept of dissipation block. This
consists of interconnecting a block to a system in order
to make their interconnection dissipative. If the dissipa-
tion block is suitably chosen, this enables to mitigate the
effects of anomalies on the control system. For instance,
the introduction of a particular block based on the wave
variable transformation [8] enables to ensure the L2-stability
of passive systems interconnected over a network subject to
delays and packet loss [11] or denial-of-service attacks [12].
Another relevant example is the block insertion based on the
M -transformation matrix [13] that passivates, with a desired
passivity index, the interconnection of M with a stable
system G in order to obtain a system tolerant to anomalies
such as quantization [8], delays [14], denial-of-service [15]
or data injection [16] attacks. In those works, the blocks
are structured static gains and their synthesis is generally
complex. Recently, it has been proposed in [17] a method
based on Linear Matrix Inequality (LMI) optimization [18]
to synthesize an unstructured linear time-invariant (LTI)
system M for fault-tolerant purposes. Based on the passivity
indices of a faulty system G, the block M is synthesized to
ensure the asymptotic stability of their interconnection.

In this paper, the problem of synthesizing an LTI sys-
tem M such that its interconnection G ? M with a given
system G satisfies a given dissipative characterization is
addressed. In particular, it is revealed that this problem can
be solved using LMI-based sufficient conditions. In addition
to this numerical advantage, the main contribution of this
paper comes from the generality of the result. Indeed, a
wide range of dissipative characterizations for the system G
and the interconnection G ? M are allowed. Moreover, this
methods allows to synthesize a general LTI system M , that
admits structured or static blocks as particular cases.

The paper is organized as follows. First, brief reminders
on the dissipative characterization are provided in Section II.
In Section III, the dissipation block synthesis problem is
explicitly formulated. In Section IV, it is shown how this
problem can be solved using LMI-based conditions. Finally,
an illustrative example is provided in Section VI, while
Section VI provides some concluding remarks.

II. PRELIMINARIES

A. Notations

Lower (upper) case letters are used for vectors (matrices).
Rn×m denotes the set of real-valued matrices of size n×m,



Sn the set of real symmetric matrices of size n × n and
Dn the set of diagonal real-valued matrices of size n × n.
In and 0n×m are respectively the identity matrix of Rn×n
and the zero matrix of Rn×m. The subscripts are omitted
when obvious from the context. XT stands for transpose
of X while M > (resp. ≥) 0 denotes positive (semi-)
definiteness, and diag(v) is the diagonal matrix with the
elements of vector v on the diagonal. Bold characters denote
either explicit decision variables in a design problem or op-
timization variables in an optimization problem. Signals are
assumed to belong to L2e, the extended space of L2[0,∞).

B. Background

In this paper, the input-output characterization of dissipa-
tive systems of [9] is used.

Definition 1:
Let Q ∈ Sp, S ∈ Rp×m and R ∈ Sm be three given
matrices. The system G : u→ y is {Q,S,R}-dissipative if

∀u ∈ L2e, ∀T ≥ 0,

∫ T

0

[
y(t)
u(t)

]T [
Q S
ST R

] [
y(t)
u(t)

]
dt ≥ 0

This definition includes several usual characterization.
For instances, a system is passive if it is {0, 1

2I, 0}-
dissipative, has finite gain if it is (−I, 0, γ2I)-dissipative,
is input-feedforward-output-feedback passive (IF-OFP) if it
is (−ρI, 1

2I,−νI) with ρ, ν ∈ R, and is very strictly
passive (VSP) if additionally ρ > 0, ν > 0 [13]. It is
worth to notice that certain properties can be deduced from
a {Q,S,R}-dissipative characterization of a system. For
instance, if Q < 0 then the system G is finite-gain stable,
and if additionally G has a zero-state detectable state-space
realization, then G is asymptotically stable [9].

Remark 1: The problem of finding a relevant {Q,S,R}-
dissipative characterization of a system G is highly con-
textual and is still under investigation. For instances, the
reader may refer to [9, Chap. 8-9] for frequency domain
criteria for linear systems and general conditions for simple
nonlinear systems to test dissipativeness, to [8, Sec. 6] for
an introduction to experimental determination of passivity
indices, or to [17, Remark 3] for a brief overview of recent
results on the estimation of dissipative properties.

III. PROBLEM STATEMENT

M

G

wz

yu

Fig. 1. Interconnection of G with the dissipation block M

Consider a system G with input u and output y

y = G(u)

In the sequel, G is only characterized by its dissipative
characterization. This description is general and includes, for
instance, non-linear and uncertain systems.

The system G is considered to be subject to anomalies
that depend on the context and that may be faults, attacks or
network-induced disturbances. In order to mitigate the effects
of the considered anomalies, it is interconnected with an LTI
system M whose model is described as follows

(M) :


ẋ(t) = Ax(t) +Byy(t) +Bww(t)

u(t) = Cux(t) +Duyy(t) +Duww(t)

z(t) = Czx(t) +Dzyy(t) +Dzww(t)

(1)

where A ∈ Rn×n, By ∈ Rn×p, Bw ∈ Rn×m, Cu ∈ Rm×n,
Duy ∈ Rm×p, Duw ∈ Rm×m, Cz ∈ Rp×n, Dzy ∈ Rp×p,
Dzw ∈ Rp×m. In addition, it is assumed that x(0) = 0.

The interconnected systems G ?M is then described as

(G ?M) :



y(t) = G(u)(t)[
ẋ(t)
u(t)

]
=

[
A By
Cu Duy

] [
x(t)
y(t)

]
+

[
Bw
Duw

]
w(t)

z(t) =
[
Cz Dzy

] [x(t)
y(t)

]
+Dzww(t)

(2)
Problem 1:

Given a {QG, SG, RG}-dissipative system G, find if there
exists an LTI system M described by (1) such that the
resulting interconnection G?M is {Qp, Sp, Rp}-dissipative.
If so, compute it.

IV. MAIN RESULT

In order to tackle Problem 1, the sub-problem of finding
a system M with fixed order n is first tackled. Then, it is
proposed to iteratively increment n, with the aim of finding
its minimum value.

A. Synthesis with fixed order

In this subsection, it is assumed that the order n of M is
fixed. First, next lemma provides an LMI feasibility problem
as a sufficient condition for the analysis problem of checking
if G ?M is {Qp, Sp, Rp}-dissipative.

Lemma 1:
Let Qp ∈ Sp, Sp ∈ Rp×m, Qp ∈ Sm be given matrices. Let
G be a {QG, SG, RG}-dissipative system. Let M be given
as in (1) where n is known.
Then, the interconnected system G ?M described by (2) is
{Qp, Sp, Rp}-dissipative if ∃P ∈ Sn, ∃τ ∈ R,

P > 0 τ > 0



FT


0 0 −P 0 0 0
0 −τRG 0 −τSTG 0 0
−P 0 0 0 0 0

0 −τSG 0 −τQG 0 0
0 0 0 0 Qp Sp
0 0 0 0 STp Rp

F ≥ 0

(3)
where F :=

[
FT1 FT2

]T
and

F1 :=


A By Bw
Cu Duy Duw

I 0 0
0 I 0

 , F2 :=

[
Cz Dzy Dzw

0 0 I

]

Proof:
Consider the signals u, x, w ∈ L2e as in (2). Observe that
∀t ∈ R,

F

x(t)
y(t)
w(t)

 =
[
ẋT (t) uT (t) xT (t) yT (t) zT (t) wT (t)

]T
Pre- and post-multiplying (3) by

[
xT (t) yT (t) wT (t)

]
and its transpose conjugate leads then to:[
z(t)
w(t)

]T [
Qp Sp
STp Rp

] [
z(t)
w(t)

]
− 2ẋT (t)Px(t)

− τ
[
y(t)
u(t)

]T [
QG SG
STG RG

] [
y(t)
u(t)

]
≥ 0

Let T ≥ 0. By integration of last inequality between t = 0
and T , it comes that G ?M is {Qp, Sp, Rp}-dissipative as:

−2

∫ T

0

ẋT (t)Px(t)dt ≤ 0

−τ
∫ T

0

[
y(t)
u(t)

]T [
QG SG
STG RG

] [
y(t)
u(t)

]
dt ≤ 0

Remark 2: The introduction of the optimization variables
P and τ , that are called multipliers, is closely related with
the so-called S-procedure. The interested reader may refer to
[18, Chap. 8] for instance.

Based on Lemma 1, and the application of the Schur
lemma [18, Chap. 2], the next theorem reveals that a similar
LMI-based sufficient condition enables to solve Problem 1.

Theorem 1:
Let Qp ∈ Sp, Sp ∈ Rp×m, Rp ∈ Sm be given matrices,
where Qp ≤ 0. Let G be a {QG, SG, RG}-dissipative system
with RG ≥ 0. Let M be given as in (1) where n is known.
Denote rp := rank(Qp) and rG := rank(RG) and factorize
Qp and RG as

Qp = V Tp ΛpVp RG = V TG ΛGVG (4)

with Λp ∈ Drp , Vp ∈ Rrp×m, ΛG ∈ DrG and VG ∈ RrG×p.
Then (i)⇒ (ii).

(i) ∃A ∈ Rn×n, By ∈ Rn×p, Bw ∈ Rn×m, Cuτ ∈
Rm×n, Duyτ ∈ Rm×p, Duwτ ∈ Rm×m, Cz ∈ Rp×n,
Dzy ∈ Rp×p, Dzw ∈ Rp×m, τ ∈ R such that

τ > 0 Θ ΦG Φp

ΦTG ΓG 0

ΦTp 0 Γp

 ≥ 0 (5)

hold where Θ :=

θ11 θ12 θ13

θT12 θ22 θ23

θT13 θT23 θ33

,

θ11 := −A−AT

θ12 := −By −CTuτS
T
G

θ13 := −Bw +CTz Sp

θ22 := −DT
uyτ

STG − SGDuyτ − τQG
θ23 := −SGDuwτ +DT

zySp

θ33 := DT
zwSp + STpDzw +Rp

and
1) If rG ≥ 1 and rp ≥ 1, then

ΦTG = VG
[
Cuτ Duyτ Duwτ

]
ΓG = τΛ−1

G

(6)

ΦTp = Vp
[
Cz Dzy Dzw

]
Γp = −Λ−1

p

(7)

2) If rG ≥ 1 and rp = 0, then (6), Φp = 0 and
Γp = 0.

3) If rG = 0 and rp ≥ 1, then ΦG = 0, ΓG = 0
and (7).

4) If rG = rp = 0, then ΦG = 0, ΓG = 0, Φp = 0
and Γp = 0.

(ii) There exists a solution to Problem 1, that is there
exists a system M defined by (1) such that G ? M is
{Qp, Sp, Rp}-dissipative, where A, By , Bw, Cz , Dzy

and Dzw are directly obtained from condition (i) and[
Cu Duy Duw

]
:= τ−1

[
Cuτ Duyτ Duwτ

]
Proof:

For the sake of brevity, as the proofs of cases 2), 3) and
4) can be straightly derived from case 1), it is assumed that
rG ≥ 1 and rp ≥ 1.

By Lemma 1, a sufficient condition for (ii) is provided
by ∃A,By,Bw,Cu, Duy,Duw, Cz,Dzy , Dzw, ∃P > 0,
∃τ > 0, such that (3) holds.

Denote T such that P = T TT . Define AT := TAT−1,
ByT := TBy , BwT := TBw, CuT := CuT

−1 and
CzT := CzT

−1. This corresponds to the change of state
variable xT := Tx for the system M . It is then equivalent
to synthesize these new representation matrices.

By pre- and post-multiplying (3) byT−1 0 0
0 I 0
0 0 I

T and

T−1 0 0
0 I 0
0 0 I





the inequality (3) is equivalent by congruence [19] to 0 0 CTzT Sp

0 0 DT
zySp

STp CzT STpDzy DT
zwSp + STpDzw +Rp


−

AT +ATT ByT BwT

BTyT 0 0

BTwT 0 0


−τ

 0 CTuT S
T
G 0

SGCuT DT
uyS

T
G + SGDuy +QG SGDuw

0 DT
uwS

T
G 0


−

C
T
uT

CTzT
DT
uy DT

zy

DT
uw DT

zw

[τRG 0
0 −Qp

] [
CuT Duy Duw
CzT Dzy Dzw

]
≥ 0

Define Cuτ := τCuT , Duyτ := τDuy , Duwτ := τDuw.
Using (4) and by applying the Schur Lemma [18, Chap. 2],
last inequality is equivalent to Θ τ−1ΦG Φp

τ−1ΦTG τ−1Λ−1
G 0

ΦTp 0 −Λ−1
p

 ≥ 0

Finally, by congruence, last inequality is equivalent to (5) by
pre- and post- multiplying byI 0 0

0 τ I 0
0 0 I


Therefore, by successive equivalence and the application of
Lemma 1, condition (ii) is satisfied.

Remark 3: The factorizations (4) can be obtained using
an eigenvalue decomposition. For instance, as QG ≤ 0 is a
real symmetric matrix, ∃UG ∈ Rp×p, ∃ΛG < 0 ∈ DrG ,

QG = UTG

[
ΛG 0
0 0

]
UG = UTG

[
I 0

]T
ΛG
[
I 0

]
UG

The matrix VG is then defined by VG :=
[
I 0

]
UG.

Theorem 1 provides a sufficient LMI-based condition for
the synthesis of an unstructured LTI system M . However,
it should be noticed that, if needed, condition (i) can be
specialized to a system M with some particular structure.
For instance, the wave variable transformation [8] may be
obtained with the following constraints A By Bw

Cu Duy Duw

Cz Dzy Dzw

 =

 0 0 0

0 bI −
√

2bI

0
√

2bI −I


while the M-transformation matrix [13] is given by A By Bw

Cu Duy Duw

Cz Dzy Dzw

 =

 0 0 0
0 −mfI I
0 (ms −mpmf )I mpI



B. On minimum-order dissipation block M

In Theorem 1, the order n of M is considered fixed. An
associate problem is to find M with minimum order. This
may be achieved using an iterative algorithm that increments
the order of n and solves the associate LMI feasibility
problem at each iteration until a feasible solution is found.

V. ILLUSTRATION

Tank 3

v1out

Tank 1

γ1

Pump 1v1in

Tank 4

v2out

Tank 2

γ2

Pump 2 v2in

Fig. 2. Quadruple water-tank process

In this section, a numerical example is provided to illus-
trate the main result of this paper and the potential of the
dissipation block approach.

The quadruple-tank process testbed introduced in [20] is
considered (Fig. 2). The process inputs are the voltages v1in

and v2in applied to the pumps, and the outputs are the
voltages v1out and v2out from level measurement devices of
tanks 1 and 2. The process is modeled as follows:{

ḣ(t) = Ap
√
h(t) +Bpvin(t)

vout(t) = Cph(t)

where h =
[
h1 h2 h3 h4

]T
, hi the water level of tank i,

vin =
[
v1in v2in

]T
, vout =

[
v1out v2out

]T
and

Ap =


−0.1123 0 0.1123 0

0 −0.0789 0 0.0789
0 0 −0.1123 0
0 0 0 −0.0789



Bp =


0.0833 0

0 0.0624
0 0.0476

0.0312 0

 Cp =

[
0.5 0 0 0
0 0.5 0 0

]

Due to physical limitations, the inputs viin , i = 1, 2, are
such that vmin ≤ viin ≤ vmax where vmin = 0 V and
vmax = 12 V. Moreover, for safety reasons, the water tanks
should not overflow nor be empty. The safety set S is then

S := { h | ∀i = 1, . . . , 4, hmin ≤ hi ≤ hmax }



where hmin = 0 cm and hmax = 15 cm. The process is
controlled by remote PI controllers, using a wireless network,
that compute the control input vc from a reference r and
measurement vout such as vic = Ki(1 + 1

Ti·s )(ri − viout)
where K1 = 3, K2 = 2.7, T1 = 30 s and T2 = 40 s.

A. Uncertain linear approximation

In this section, it is proposed to approximate the process
by an uncertain linear system G. To achieve this, introduce
the variables xG := h−h0 and u := vin−v0

in where (h0, v0
in)

is a stationary operating point of the process, that is

0 = Ap
√
h0 +Bpv

0
in

Using a Taylor-Mclaurin series expansion, it comes that for
hi in the neighborhood of h0

i√
xGi + h0

i =
√
h0
i

√
1 +

xGi
h0
i

=
√
h0
i

(
1 +

xGi
2h0

i

+ δixGi

)
where δi ∈ [cδi − rδi , cδi + rδi ] is a bounded uncertain pa-
rameter. Denote AG := 1

2Ap(h
0
diag)

−1/2, A∆ := Ap
√
h0
diag ,

h0
diag = diag(h0) and ∆ := diag(δ). By introducing y(t) :=
vout(t)− Cph0, a linear approximation is then given by

(G) :

{
ẋG(t) = (AG +A∆∆)xG(t) +Bpu(t)

y(t) = CpxG(t)
(8)

In addition, define C∆ := diag(cδ) and R∆ := diag(rδ).

B. Dissipative characterization

In this subsection, a method is proposed to compute
a {qGI, sGI, rGI}-dissipative characterization of G, where
qG, sG, rG ∈ R and qG < 0. When G is a single-input-
single-output LTI system, this characterizes a disk of cen-
ter cd and radius rd in the complex plane [9], where

cd :=

(
−sG
qG
, 0

)
rd :=

√
s2
G − qGrG
q2
G

In this case, minimizing r2
d while G being {qG, sG, rG}-

dissipative leads to the smallest disk which contains the
Nyquist plot of the transfer function associated with G.
Based on a similar idea, it is proposed to minimize r2

d such
that G is {qGI, sGI, rGI}-dissipative.

The next lemma shows that verifying that G is
{qGI, sGI, rGI}-dissipative may be achieved based on an
LMI feasibility problem.

Lemma 2:
Let G be described by (8). Let qG, sG, rG ∈ R and qG < 0 be
given. Then G is {qGI, sGI, rGI}-dissipative if there exists
P ∈ S4, Π ∈ D4 such that P > 0, Π > 0 and

ET


0 0 −P 0 0 0
0 D∆Π 0 −ΠC∆ 0 0
−P 0 0 0 0 0

0 −C∆Π 0 Π 0 0
0 0 0 0 qGI sGI
0 0 0 0 sGI rGI

E ≥ 0

(9)

hold where D∆ := C2
∆ −R2

∆, E :=
[
ET1 ET2

]T
and

E1 :=


AG A∆ Bp
I 0 0
I 0 0
0 I 0

 E2 :=

[
Cp 0 0
0 0 I

]
Proof:

Let xG, u ∈ L2e be two signals. Pre- and post-muliplying (9)
by
[
xTG (∆xG)T uT

]T
and its transpose conjugate gives

ẋG
xG
xG

∆xG


T 

0 0 −P 0
0 D∆Π 0 −ΠC∆

−P 0 0 0
0 −C∆Π 0 Π



ẋG
xG
xG

∆xG


+

[
y
u

]T [
qGI sGI
sGI rGI

] [
y
u

]
≥ 0

Using similar ideas that for the proof of Lemma 1, the results
is obtained by noticing that ∀δ ∈ [cδ − rδ, cδ + rδ],[

I
∆

]T [
D∆Π −ΠC∆

−C∆Π Π

] [
I
∆

]
≤ 0

In order to minimize r2
d, introduce the slack variable λ

such that λ ≥ r2
d. By the Schur lemma, this is equivalent to[

λ+ rG
qG

sG
qG

sG
qG

1

]
≥ 0 (10)

Notice that, as there is an infinite number of equivalent
{qG, sG, rG} associated with a disk (cd, rd), one can fix
the value of qG to any negative number, e.g. qG = −1,
without loss of generality. Thus, minimizing r2

d such that G
is {qGI, sGI, rGI}-dissipative, when qG is arbitrarily fixed,
may be achieved by solving the following optimization
problem with linear objective and LMI constraints:

min
λ, sG, rG∈R,

P>0∈S4, Π>0∈D4

λ subject to (9), (10)

C. Illustration on the mitigation of a cyber-attack

Two scenarios are considered. First, an attack by data
injection with saturation objective, i.e. vin = vc + vmax,
is considered from t = 100 s, where the process is
operating at the stationary point (h0, v0

in) where h0 =[
12.40 12.70 1.592 1.455

]T
, v0

in =
[
3.049 2.979

]T
.

In the second scenario, a dissipation block is interconnected
between the process and the network once the attack is
detected. It is assumed that the defense mechanisms re-
quire 3 s to detect the attack and trigger the dissipation block
interconnection.

The first scenario is illustrated in Fig. 3. It can be observed
that, without the defense mechanism, the tanks 1 and 2
overflow. In addition, while the controller adapts its control
input to this bias injection to finally come back to the original
operating point, this leads to empty the tanks 3 and 4.

For the second scenario, based on Section V-B
with cδ =

[
0.0192 0.0189 0.0772 0.0816

]
, rδ =[

0.0211 0.0205 0.2369 0.2620
]
, G is considered to be
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Fig. 3. Upper saturation-injection without defense mechanisms

{−I, 1.91I, 3.46I}-dissipative. Applying Theorem 1 with
Qp = −I , Sp = 0.5I , Rp = 0.25I , a dissipation block M
is obtained where A By Bw

Cu Duy Duw

Cz Dzy Dzw

 =

 0 0 0
0 0.0520I 0.0746I
0 I 0


The second scenario is illustrated in Fig. 4. One may observe
that the trigger of the dissipation block mechanism mitigates
early the anomaly such that the process remains safe.
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Fig. 4. Upper saturation-injection with dissipation block reconfiguration

VI. CONCLUSION

In this paper, the synthesis problem of dissipation block
for anomaly-tolerant control was addressed. Anomaly is
understood here as any kind of attacks, faults or network-
induced disturbances affecting the normal system behavior.
It was shown that this problem may be formulated as an LMI
feasibility problem. Finally, a numerical example provided
promising results for the design of a defense mechanism that
ensures resilience with respect to cyber-attacks.

This work paves the way for further investigations on
the safety and security of cyber-physical systems based on
dissipation block synthesis. In particular, future research
directions include practical implementation of such blocks,
to explicitly link the global {Q,S,R}-dissipative charac-
terization with desired resilience properties, or to make an
appropriate use of dynamical blocks over static blocks.
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