Supporting Information: Point Defects and Related Excess Electrons in the Dielectric Profile of the Reduced TiO₂(110) Surface

Jingfeng Li, Stéphane Chenot, Jacques Jupille, and Rémi Lazzari*

CNRS, Sorbonne Université, Institut des NanoSciences de Paris, UMR 7588, 4 Place Jussieu, F-75005 Paris, France

E-mail: remi.lazzari@insp.jussieu.fr

S1 Dielectric fits of loss spectra

Fits of the loss data (Figure 2 of the article) are performed by means of the following expression of the dielectric function^{1,2} (see text):

$$\epsilon_{TiO_2}(\omega) = \epsilon_{Ph}(\omega) + \epsilon_{Ib}(\omega) + \epsilon_{gs}(\omega) + \epsilon_{Pl}(\omega).$$
(1)

While phonon $[\epsilon_{Ph}(\omega)]$ and interband contributions $[\epsilon_{Ib}(\omega)]$ are obtained from data of the literature, the BGS contribution is treated through an oscillator $\epsilon_{gs}(\omega) = \frac{\Omega_{gs}^2}{\omega_{gs}^2 - \omega^2 - i\Gamma_{gs}\omega}$ and the transport properties through a Drude term $\epsilon_{Pl}(\omega) = -\frac{\omega_P^2}{\omega^2 + i\omega\Gamma_P}$. Fits neglect (i) the temperature-dependence of the absorption coefficient of polarons^{3,4} and of phonons for which neglect is supported by the absence of shift of the A_{2u} and E_u bulk longitudinal modes (*i.e.* $\omega_{sph,3}$ herein) between 300 and 740 K;⁵ (ii) the decrease in phonon lifetime with defect den $sity^{6}$ since the reduction state of the crystal is low; (iii) the variations upon reduction of the interband transitions intensities (Figure 2 of the article); these are underestimated in simulations because the surface sensitivity of EELS in this energy-loss range (supporting information of Reference 7) overweights the $O_b(vac)$ contribution.

Fits of loss spectra are shown in Figure S1 but also in Figure 1 of Reference 2. The dielectric parameters obtained from the fit in the two scattering geometries are gathered in Table S1. Their variations as a function of O_2 exposure are plotted in the text (Figure 7). BGS characteristics are first extracted from EELS spectra (Figure S1-b,d) and then used to analyze the QEP/phonon region in HREELS (Figure S1a,b). Not included in the initial strategy to determine BGS characteristics, the use of Drude parameters fitted on HREELS data even improves *a posteriori* the agreement between simulations and EELS data in the phonon spectral range (not shown).

For spectra collected parallel to the c-axis, previously found values for bulk $(\Omega_{qs,B,\perp})$, $\omega_{gs,B,\perp}, \Gamma_{gs,B,\perp}, \omega_{P,B,\perp}, \Gamma_{P,B,\perp})$ and surface $(\Omega_{gs,S,\perp}, \omega_{gs,S,\perp}, \Gamma_{gs,S,\perp}, \omega_{P,S,\perp}, \Gamma_{P,S,\perp})$ excitations along the normal direction were kept fixed to extract those relative to the parallel direction $(\Omega_{qs,B,\parallel}, \omega_{qs,B,\parallel}, \Gamma_{qs,B,\parallel}, \omega_{P,B,\parallel})$ $\Gamma_{P,B,\parallel}$) and $(\Omega_{gs,S,\parallel}, \omega_{gs,S,\parallel}, \Gamma_{gs,S,\parallel}, \omega_{P,S,\parallel})$ $\Gamma_{P,S,\parallel}$) by fitting the effective dielectric function $\xi(\omega) = \sqrt{\epsilon_{\perp}(\omega)\epsilon_{\parallel}(\omega)}$ to data of Figure 2 of the article. In a way similar to the perpendicular direction, the bulk was analyzed first, before determining the surface parameters. Once corrected from the effective mass anisotropy, the plasmon damping Γ_P (Table S1) gives a lower bound for the anisotropy of the bulk carrier

Figure S1: Fit of loss spectra of R-TiO₂(110), upon O₂ exposure, with the dielectric model developed in References 1,2: (a)(b) spectra recorded at 100 K with the beam perpendicular to c-axis and (c)(d) at 300 K with the beam parallel to c-axis. Experimental (circles) and fitted (lines) (a)(c) HREELS and (c)(d) EELS spectra. Complementary fits at 300 K with a beam perpendicular to c-axis can be found in Reference 2.

mobility $\mu_{\perp}/\mu_{\parallel} > 3.5$ which is however larger than in Reference 8 ($\mu_{\perp}/\mu_{\parallel} = 0.2$ at 300 K).

S2 Calculation of bulk dielectric properties

Calculations of bulk transport characteristics are performed in the frame of a parabolic band model with a density of conduction states given by $N_C = 2(2\pi m_e m^* k_b T/h^2)^{3/2}$, in which m^* is the temperature-independent effective mass,⁹ k_b the Boltzmann constant, T the temperature and h the Planck constant. Donor defects with a concentration N_D located and an energy level E_D are ionized to give rise to carriers at concentration n_B . Two extreme cases can be distinguished depending on temperature and the relative position of E_D from the bottom of the conduction band E_C .¹⁰ In the freezing regime $(kT < E_C - E_D)$ as assumed herein at 100 K, a partial ionization leads to $n_B = (\frac{1}{2}N_D N_C)^{1/2} \exp\left[-(E_C - E_D)/2k_b T\right]$. In the exhaustion regime as assumed herein at 300 K, all donors are ionized and $n_B = N_D$. From these assumptions, the carrier concentration n_B determined at 100 and 300 K by dielectric fit of (HR)EELS data (Table S1) allows to determine the position of the donor level $E_C - E_D = 21 + 4.2 \ln(m^*) = 30 \pm 10 \text{ meV}$ and of the Fermi level $E_C - E_F = k_b T \ln(N_D/N_C) \simeq$ 64 ± 5 meV assuming a given effective mass $m^* = 10.^{6,8,9,11-13}$ The freezing assumption is based on an expansion to first order of the actual position of the Fermi level $E_F = E_D +$ $kT \ln \left\{ \frac{1}{4} \left[-1 + \sqrt{1 + \frac{8N_D}{N_C}} \exp\left[(E_C - E_D)/k_b T \right] \right\}$ obtained by neglecting 1 in front of the exponential in the square-root and -1 in front of the latter. With the figures obtained in the article, this holds true within 10 % at 100 K. Note also that $E_C - E_D$ and $E_C - E_F$ are quite robust to uncertainties in m^* since for $\Delta m^*/m^* = 100 \%$, $E_C - E_D = 30 \pm 14$ meV and $E_C - E_F = 64 \pm 18$ meV. Conversely, assuming a freezing regime at both 100 and 300 K, the measured values of n_B/m^* leads, besides $E_C - E_D \simeq$ 20 meV, to $N_D = 6.6 \, 10^{18} \sqrt{m^*} \text{ cm}^{-3}$. Since N_D

S3

should be larger than the room-temperature n_B value, this yields $m^* < 1.1$, a unreasonable value lower by one order of magnitude than commonly found values.^{6,8,9,11-13} The values of $E_C - E_D$ deduced herein compare nicely to data of the literature obtained indirectly from a combination of bulk resistivity and Hall coefficient measurements. Bulk resistivity is given by $\rho_B = 1/en_B\mu_B$ where μ_B is the drift mobility. From Hall coefficient $R_H = (\mu_H/\mu_B/B)/n_Bec$ (*B* magnetic field and *c* speed of light), the density of carriers can be estimated under the assumption that drift μ_B and Hall mobility μ_H are of the same order which is not obvious in a tetragonal lattice.^{9,14}

Finally, the bulk reduction state $x \simeq 10^{-3}$ in TiO_{2-x} can be obtained from the donor concentration $N_D = n_B(300K)$. Since the writing TiO_{2-x} implies implicitly a concentration of bulk vacancy of $[V_O(\text{bulk})] = \frac{x}{2}[O]$ where $[O] = 6.4 \, 10^{22} \text{ cm}^{-3}$ is the oxygen density in TiO_2 rutile and assuming the release of two electrons per bulk vacancy *i.e.* $[V(\text{bulk})_O] = n_B/2$, one finds $x = n_B/[O] \simeq 0.001$.

S3 Photoemission analysis of band bending

In the discussion of the evolution of band bending upon O₂ exposure,^{15,16} the shift of the valence band edge ΔV_{XPS} seen in photoemission is assumed to correspond to the actual change in band bending *i.e.*, $L_D \gg \lambda$, L_D and λ being the Debye length and the escape depth of photoelectrons. A basic exponential modeling of the depth dependence of the band position $\Delta V(z) = V_{bb} \exp(-z/L_D)$ combined with the damping of photoemission signal over λ shows that the binding energy scale is shifted by $\Delta V_{XPS} = \int_0^\infty 1/\lambda \exp(-z/\lambda)V_{bb} \exp(-z/L_D) =$ $V_{bb}L_D/(L_D + \lambda)$. If $L_D \gg \lambda$, $\Delta V_{XPS} \simeq \Delta V_{bb}$. The same reasoning holds true also for a more classical parabolic¹⁰ band bending. Table S1: Effect of crystalline anisotropy on the dielectric behavior of bulk and surface excess electrons at T = 300 K. Bulk n_B/m^* and surface carrier density n_S/m^* are calculated from the plasma frequency $\omega_P^2 = ne^2/m_e m^* \epsilon_0$ and surface layer thickness $t_S = 6.5$ Å while electron mobility is obtained through $\mu m^* = 2\pi e/m_e \Gamma$. Surface values correspond to as-prepared R-TiO₂(110) and bulk ones to strong O₂ exposure.

	Plasmon				Band gap states		
	$\hbar\omega_P$	n/m^*	$\hbar\Gamma_P$	$\mu.m^*$	$\hbar\Omega_{gs}$	$\hbar\omega_{gs}$	$\hbar\Gamma_{gs}$
	(meV)	$({ m cm^{-3}/cm^{-2}})$	(meV)	$(cm^2.V^{-1}.s^{-1})$	(meV)	(meV)	(meV)
Bulk \perp	92 ± 10	$6.1 \pm 1.3 \ 10^{18}$	$\simeq 0 \pm 20$	> 60	1270 ± 100	1260 ± 100	950 ± 100
Bulk \parallel	170 ± 40	$2.1 \pm 1.0 10^{19}$	230 ± 100	5 ± 2	1100 ± 250	1260 ± 300	950 ± 300
Surface \perp	650 ± 150	$2.0 \pm 1.0 10^{13}$	> 500	< 2.3	1500 ± 250	1100 ± 200	970 ± 200
Surface \parallel	440 ± 150	$0.9 \pm 0.6 10^{13}$	> 500	< 2.3	1750 ± 250	1100 ± 300	970 ± 300

References

- Lazzari, R.; Li, J.; Jupille, J. Dielectric study of the interplay between charge carriers and electron energy losses in reduced titanium dioxide. *Phys. Rev. B* 2018, *98*, 075432.
- (2) Li, J.; Chenot, S.; Jupille, J.; Lazzari, R. Dual behavior or coexistence of trapped and free states in reducible rutile TiO₂. *Phys Rev B* 2020, 102, 081401(R).
- (3) Emin, D. Optical properties of large and small polarons and bipolarons. *Phys. Rev.* B 1993, 48, 13691–13702.
- (4) Alexandrox, A. S.; Devreese, J. Advances in polaron physics; Spinger: New York, 2010.
- (5) Gervais, F.; Piriou, B. Temperature dependence of transverse and longitudinal optic modes in TiO₂ (rutile). *Phys. Rev.* B 1974, 10, 1642–1654.
- (6) Baumard, J. F.; Gervais, F. Plasmon and polar optical phonons in reduced rutile TiO₂. *Phys. Rev. B* **1977**, *15*, 2316–2323.
- (7) Li, J.; Lazzari, R.; Chenot, S.; Jupille, J. Contributions of oxygen vacancies and titanium interstitials to band-gap states of reduced titania. *Phys. Rev. B* 2018, *97*, 041403(R).

- (8) Hendry, E.; Wang, F.; Shan, J.; Heinz, T. F.; Bonn, M. Electron transport in TiO₂ probed by THz time-domain spectroscopy. *Phys. Rev. B* 2004, 69, 081101(R).
- (9) Yagi, E.; Hasiguti, R. R.; Aono, M. Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO_{2-x}. *Phys. Rev. B* **1996**, *54*, 7945–7956.
- (10) Mathieu, H. Physique des semiconducteurs et des composants électroniques; Masson, 1990.
- (11) Acket, G. A.; Volger, J. On the electron mobility and the donor centres in reduced and Li doped rutile TiO₂. *Physica* **1966**, *32*, 1680–1692.
- (12) Cristea, V.; Babes, V. The Seebeck effect on Nb-doped TiO₂ rutile. *Physica Status Solidi A* **1978**, 45, 617–624.
- (13) Hendry, E.; Koeberg, M.; Pijpers, J.; Bonn, M. Reduction of carrier mobility in semiconductors caused by chargecharge interactions. *Phys. Rev. B* 2007, 75, 233202.
- (14) Friedman, L. Hall effect in the polaronband regime. *Phys. Rev. B.* 1963, 131, 2445–2456.
- (15) Kurtz, R.; Stockbauer, R.; Madey, T.; Román, E.; de Segovia, J. Synchrotron

radiation studies of H_2O adsorption on TiO_2 . Surf. Sci **1989**, 218, 178–200.

(16) Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li, Z.; Hansen, J. O.; Matthiesen, J.; Blekinge-Rasmussen, A.; Laegsgaard, E.; Hammer, B. et al. The role of interstitial sites in the Ti3d defect state in the band gap of titania. *Science* 2008, 320, 1755–1759.