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Abstract—Microgrid sizing optimization is often formulated
as a black-box optimization problem. This allows modeling the
microgrid with a realistic temporal simulation of the energy
flows between components. Such models are usually optimized
with gradient-free methods, because no analytical expression for
gradient is available. However, the development of new Automatic
Differentiation (AD) packages allows the efficient and exact
computation of the gradient of black-box models. Thus, this work
proposes to solve the optimal microgrid sizing using gradient-
based algorithms with AD packages. However, physical realism
of the model makes the objective function discontinuous which
hinders the optimization convergence. After an appropriate
smoothing, the objective is still nonconvex, but convergence is
achieved for more that 90 % of the starting points. This suggest
that a multi-start gradient-based algorithm can improve the state-
of-the-art sizing methodologies.

Index Terms—Automatic differentiation, gradient-based opti-
mization, microgrid, optimal sizing
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I. INTRODUCTION

Microgrid sizing is an optimization problem whose objec-
tive is to find the optimal values of the sizing variables, which
are the capacities of the power and energy storage resources.
Optimality is expressed with at least one objective function
and often extra objectives or constraints which are built from
performance indices related to microgrid costs, environmental
impact, load serving or penetration of renewable sources. All
these factors must be evaluated on the project lifecycle to
include the maintenance and replacements of components. The
microgrid sizing problem has been studied for some decades
and several classical approaches have been consolidated into
convenient software packages such as HOMER [1] or DER-
CAM [2]. This means that the simplest microgrid design
tasks can be considered as solved problems (i.e. optimized
in seconds to minutes with HOMER). By “simple task” we
mean optimizing a few components using a 1-year long hourly
simulation of power balance on a single bus. Still, there is an
interest in finding ever more performant sizing methods in
order to tackle more complex cases. Complexity comes when
optimizing more than a handful of components, or components

with several parameters (e.g the orientation of PV panels
which is generally considered as fixed), but also when the
sizing optimization is formulated as a multistage stochastic
problem to mitigate long term uncertainty (like fuel price over
25 years) as in Fioriti et al. [3]. This latter work, which is
very interesting from a theoretical point of view, has a limited
applicability due to the reported solving time of 70 hours.
Finally, the closed-source nature of programs like HOMER
prevent reusing and expanding its existing parts to adapt to
new design settings. Accelerating the pace of progress in the
domain calls for more open source tools.

A. Optimization approaches

There are many approaches to solve the sizing optimization
problem, but they can be divided into mathematical pro-
gramming (MP) and black-box optimization (BB)'. The MP
approach consists of formulating the microgrid sizing problem
algebraically, e.g., with a Mixed Integer Linear Program
(MILP) model. In the BB approach, the microgrid behavior
is described inside a simulator that receives as inputs the
sizing variables and returns as outputs the performance indices
which are used as objective and constraints functions of the
optimization problem. DER-CAM [2] is a good representative
of the MP approach while HOMER [1] is perhaps the most
famous simulation-based, i.e. BB, sizing tool.

MP is generally formulated with modeling languages ded-
icated to mathetical optimization, e.g. AMPL or GAMS, or
dedicated libraries, e.g. YALMIP, JuMP, Pyomo. One of the
MP advantages is that the problem can be passed to reliable
optimization solvers, often with fast and guaranteed conver-
gence properties. Nevertheless, it is necessary to make several
simplifications in the models of power sources and energy
storage systems, e.g. linearizations, to stay in the scope of the
dedicated language/library and to get the best convergence.
Also, the daily operation is often optimized in an anticipative
manner, i.e., disregarding the uncertainty of hourly inputs such
as load or solar production, because the optimizer has access
to the entire time series at once. All this can lead to a sizing
that does not meet the requirements of a microgrid in practice.

The BB approach allows models which can be way more
physically realistic. Indeed, it uses a temporal simulation
code written with the full freedom of numerical computing

't is a black-box optimization from the point of view of the optimization
algorithm, although the cost function can be fully open source.



languages. Also, implementing a non-anticipative operational
control is easy, e.g. the Load Following strategy of HOMER
[1], [4]. However, the optimization must be solved by gradient-
free methods, for example Nelder-Mead or evolutionary al-
gorithms [5], which could have poor convergence speed.
Indeed, the objective and constraint functions are generally too
complex to allow deriving their gradient by hand and using a
finite difference approximation is disregarded as too slow.

However, it is possible to accelerate black-box design prob-
lems by using gradient-based optimization algorithms thanks
to Automatic Differentiation (AD) software packages [6]. AD
tools can compute the numerically exact gradient of computer
codes. While AD tools have been around for some decades
[7], there is a recent increase in developping high performance
AD packages, mainly because of the increase in the research
on “scientific machine learning” [8]. The promise of gradient-
based microgrid sizing optimization using AD is to obtain
fast convergence with the physically detailed models of the
classical BB gradient-free approaches. Still, the non-convexity
and sometimes the discontinuity of the objective function (see
$IIT) implies that this promise should be carefully checked in
practice. This work proposes to: 1) implement an open source
microgrid simulator, with a simplified HOMER-like model,
using the high performance Julia language [9]; 2) use recent
Julia’s AD and optimization packages to implement a gradient-
based microgrid sizing tool; and, 3) analyze the convergence of
this method in terms of speed and reliability on an examplary
microgrid sizing problem.

Section II presents the proposed AD-based sizing method
while section III details the microgrid model. Finally, conver-
gence is assessed in section IV.

II. METHODOLOGY

To implement a black-box optimization approach for mi-
crogrid sizing using gradient-based algorithms with automatic
differentiation, three elements are needed:

1) a microgrid simulator;

2) an Automatic Differentiation package; and,

3) a gradient-based optimization algorithm.

The microgrid simulator is responsible for receiving the
microgrid technical characteristics, as load demand, climatic
data and components parameters, and returning economic and
energetic indicators, accordingly to an hourly power dispatch
strategy. The detailed description of the models implemented
in the simulator is presented in §III.

The Automatic Differentiation package is used to evaluate
efficiently the gradients of the indicators provided by the
microgrid simulator. For this purpose, the AD package needs
to be have access to the internal coding of the simulator.
Hence, it is important to choose compatible tools.

The gradient-based optimization algorithm solves an opti-
mization problem that is generic and formally described as

min f(x) (1a)

st. h(x)=0 (1b)
g(x)<0 (Ic)
e

where x is the vector of optimization variables, f (x) is the
objective function, h (x) is the vector of equality constraints
and g (x) is the vector of inequality constraints.

The microgrid simulator and the AD package interact with
the optimization algorithm sending the values and gradients of
the objective and constraints functions. The Fig. 1 illustrates
the interaction among these three elements.
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Fig. 1. Relation between optimizer and simulator.

A. Optimization convergence assessment

The functions of (1) need to be smooth, i.e., the functions
need to be differentiable, to use a gradient-based algorithm.
However, a more realistic microgrid model introduces discon-
tinuities in the indicators that are used as functions in the
optimization problem.

For that reason, relaxations in the modeling are usually
necessary to smooth the functions. This smoothing creates
a trade-off between the optimization convergence and model
accuracy. Thereby, the optimization convergence and also the
accuracy of the obtained results must be tested.

The process to evaluate the optimization convergence is
shown in the Fig. 2, where f(z) is the objective function
for the original model, f,.(z) is the objective function for
the relaxed model, =* is the optimal value found with the
optimization of f(z) and x},, is the optimal value found with
the optimization of f,;,(x). Many initial points are chosen
to perform the optimizations. For each one of this points, the
optimization with the original model is executed, as well as the
optimization of the model with relaxations implemented. The
results of both process are saved for a subsequent analysis. The
optimal points x;, found with the relaxed model objective
function are reinserted in the microgrid simulator to evaluate
the indicators values for the original modeling.

B. Employed tools

This work proposes using the Julia language’s packages to
study the feasibility of the presented methodology. The chosen
AD package is the ForwardDiff,jl, because it usually presents
better speed and accuracy than non-AD algorithms [10].

The gradient-based optimization algorithm used is a sequen-
tial quadratic programming one, more specifically the SLSQP
from the NLopt Julia module [11].
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Fig. 2. Methodology for optimization convergence assessment.

The microgrid simulator is completely developed in the Julia
language [12], which allows a proper integration with the AD
and optimization Julia packages.

IIT. MICROGRID SIMULATOR

This section presents the components’ models and some of
the economic and energetic indicators that compose the open
source simulator used in this work.

The total simulation steps that happens during one year is
given by T" = 365 - %, where At is the time-step in hours.
At each one of this steps, the PV and DG production, BT
operation and evaluation of its limits are accounted. Also,
many operation variables and indicators, for further use in the
economic and operation analysis.

A. Power dispatch strategy

In the microgrid simulator the power dispatch to meet the
load Pjyqq(t) is defined by a rule-based strategy with order

1) Photovoltaic
2) Battery
3) Diesel generator

prioritizing the nondispatchable and less pollutants sources.
The power dispatch is combined with the load-following
battery charging strategy. In this approach, the battery is only
charged by the photovoltaic source.
The power dispatch strategy define the Ppr(t) and the
Pp(t) needed by the microgrid.

B. Photovoltaic model

The PV production for each time instant (Ppy (t)), in kW,
is evaluated by Ppy (t) = Ppid - Py (t), where PR is the
rated capacity of the PV array, in kW, PE¥,(¢) is the output of
a 1 kW PV panel, already including temperature and system
loss, for the time ¢.

For the photovoltaic model, the number of replacements
Np 7 depends on its lifetime £py and also the project lifetime
lproj, and is calculated by

14 T0jJ
Nl’;e‘f:{p j-‘—l. 2)

lpy
With the number of replacements, it’s pos-
sible to calculate the PV’s remaining life as

Up" = Lpv = (bproj — Lpv - Npy) -

C. Battery model

At each time step, the battery en-
ergy Epr is updated according to
EBT(t+1) :EBT(t) — (PBT(t)+Oé‘PBT(t)DAt, where

Ppr(t) is the battery power in generator convention, i.e. the
battery is charging when Ppp(t) < 0 and discharging when
Ppp(t) > 0 and « is the linear loss factor.

The charging and discharging power bounds depend on the
rate limits and the energy limits of the battery as a result of
the discrete time modeling.

The energy implied superior bound is
e,max o EBT(t) — Egb’%n
Pyr™ (1) = (14 a) At

where E24" is the minimum available energy, and the inferior
bound is

3)

_EEFT — Epr(t)
(1—a)At 7’

where E'Z{* is the maximum available energy.

The considered limits are the most restrictive of the two
types, rate and energy limits. Therefore, the discharge limit is
PEscharI® () = min (Pge®, Pg®(t)) and the charge limit
is PEheT9¢(t) = max (P]g”Ti", Pg’?i”(t)), where Ppi* and
PIIM are respectively the discharge and charge power limits.

For the battery type chosen, PR4" is numerically equal to
—FEpr,tq and Pg7® is numerically equal to Ep7 ,tq. The
maximum available energy EF2* is equal to the rated energy
Ep7 rtq and the minimum available energy Eg}}”, because it
is considered a change of scale to work only with the energy
actually available from the battery, and not having to use the
state of energy (SOE) concepts.

The battery lifetime depends on the time, ¢7"", of use
and also in the energy that cycles through it. The throughput
lifetime is

PRt (t) = (4)

Ethrpt _ 2. Egtéi“ : Ncycles 5

BT — thrpt ) ( )
BT

where Ny cies 1s the maximum number of complete cycles, i.e.

number of the charge and discharge, and le;p " is the total

energy that cycles through the battery yearly, calculated by

T
thrpt
Bt = |Psr(t)| - At. (6)
t=1
The battery lifetime is the most restrictive of the two types,
thus it’s calculated as £ = min (£527P! guears

Hence, the BT number of replacements N is

re 14 T0J
Npt = [ ;Bﬂ -1 ™

and the remaining life is (757" = {pr — (Uproj — (BT - Npt)

D. Diesel generator model

The DG fuel consumption in liters at
each  time  instant (F(¢)) is  evaluated by
Fpg(t) = (Fo - PH¢ + Fy - Ppg(t)) - At where the  F
is the fuel curve intercept coefficient in I/hr/kW, F} is the



fuel curve slope in {/hr/kW, ng is the rated capacity of
the generator in kW and Pp¢(t) is the DG electrical output
in kW for the time ¢.

The total fuel consumption in one year is

T
Fpa¥™ =" Fpal(t). ®)
t=1

If the DG is on, the model considers that it works during
all the timestep At at the power Ppg(t). This is expressed
mathematically as

0, Ppg(t)=0
hpe(t) = oo () o )
At, 0< Ppg(t) < P[T)G
The DG total operation hours in one year is
T
hSe = hpa(t) (10)
t=1
and during all the project lifetime is h'55"" = h'SL, - 0.

However, the DG operation hours expressed in (9) adds a
discontinuity in the microgrid operation model, interfering in
the gradient-based algorithms convergence. Thus, a relaxation
is implemented as

At Ppe(t)
rla — y PDG(t) § gprtd
hpe(t) =3 € Ppé be (11)
At, ePrd < Ppg(t) < PR

and the total operation hours in one year can be calculated by
replacing hpg(t) with RE(t) in (10).

The Fig. 3 shows the curves for the DG operations hours
models expressed in (9) and (11).

hpa(t)

— Original - -- Relaxed
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Fig. 3. Diesel generator consumption hours.

The DG number of replacements during the project is

Np& = | 1 (12)
DG
where /pe is the DG lifetime in hours of oper-

ation, and the remaining life in operation hours is
rem __ tot,proj rep
058 = tpa — (WSE™ — tog - N

E. Economic model

In the economic model, the costs are analyzed in the
beginning of the project. Hence, the investment, operation
and maintenance (OM) and replacement costs and the sal-
vage value are brought to the present considering the project
discount rate d.

In the following equations, ¢ € ¢ = {PV, BT, DG}, and

Prtd c=PV
#(c) = B, c¢= BT (13)
Py c¢= DG

The discount factors f,; are calculated for each year ¢ of
project according to

1 .
Ja; = mvl e{1,2,... . lproj}- (14)
We can »deﬁne the summation of these factors as
Ofy = . fdy'

=1

It theynumber of replacements of the components is different
of zero, it is necessary to calculate the years when the replace-
ments happen. The sets that contains these years for each com-
ponent are defined as %, ={y-¢. |y € {1,2,...,NJ}},
and with this information, the replacement factors f.5 for
each component are calculated using

T ie.

(15)
(1+d)
With the factors calculated in (14) and (15), it is possible to
evaluated the present costs for each component and the total
net present cost (NPC) for the microgrid project.
The present investment cost for each component is

C(i:m;,tot _ C(z‘nv . (;5(6)

The OM present costs are evaluated by the following set of
equations

(16)

OM,
OO = CBY P o, T

OM,
Cgr =0y - Egf - Ofa (17b)
Coa et = CRY - PH& - Wi - opy + CHEM (170)

where the total fuel cost is
Célgl,tot _ CguGel . FtDogyear o, (18)
The present replacement cost is

C:ep,tot = C"°P . ¢(c) Z ;«;p' (19)

YyEX,

If the components have a remaining life different of zero, a
salvage value needs to be calculated. The proportional unitary
salvage value is S, = C[°P - ZCZ " and the total salvage value
is S = S, ¢(c) - fug,, -

The total component present cost is

tot __ ,vinv,tot OM ,tot rep,tot _ Qtot
Ctot = invitot | COMtot 4 stot,

(20)
Finally, the microgrid NPC is calculated by the summation

NPC =Y Ci".
cET

21



Another economic indicator that can be used is the levelized
cost of energy (LCOE) given by

LCOE = NPC

Eser'u,lifetime

: (de)_lﬂ (22)

where the Fgery 15 fetime 18 the total energy served during the
project lifetime.

F. Energetic indicators

The shedding rate (SR) is the fraction of demand not
supplied and it is calculated by

M=

Pshed(t)

SR (%) =100-Z—— (23)
Pload(t)

M=

~
Il
-

where Pspcq(t) is the power not supplied at each time t.

G. Test case

The microgrid used for the methodology validation is com-
posed of a photovoltaic system, a battery energy system and
a diesel generator. The location chosen was the Ushant Island
and the hourly load data are from 2016 [13]. The solar data
P}J‘“/ (t) was obtained from the PVGIS-SARAH database [14],
[15], for a PV panel with 40° slope, 0° azimuth and a loss of
14%.

The project and components parameters, technical and costs,
are presented in Table I. In the carried studies, the unitary
replacement costs, C/°P, are equal to the unitary capital
COsts, C(’;m’, provided by [16], [17]. In addition, the battery
is considered to be discharged at the start of the project.

TABLE I
PROJECT AND COMPONENTS PARAMETERS.

Parameter ~ Value \ Parameter ~ Value
Lproj 25 yr Cf’nﬁ $ 1200.00 /KW

5% apr c9y $ 20.00 /EW /yr
At 1h ZPV 25 yr
Emin 0 kWh Fo 0
o 5% Fy 0.24 L/h/kWoutput
Cg’i\i $ 350.00 /kWh Cé";é $ 400.00 /EW
coM $ 10.00 /kWh/yr C?GI $ 0.02 /kW/hoper
gycars 15 yr ol $1.00 /1
Neyeles 3000 {pa 15,000 hoper

IV. CONVERGENCE AND PERFORMANCE ASSESSMENT

To validate the methodology, we need to evaluate the
convergence by analyzing the optimization results. Using the
optimization problem structure shown in (1), the optimal
microgrid sizing problem has the vector of optimization
variables @ = [Ppid  Eyd  Ppd]", NPC (z) is the ob-
jective function, and its considered one inequality constraint,
g(x) = SR(x) — SR™**, where SR™** is the maximum
shedding rate in percentage. The optimization variables are
bounded between 10~2 and 10,000 kW (h).

For the convergence assessment two cases were studied.
First, since we introduced a relaxation parameter €, we look
at how it influences the convergence and how it biases the
result to choose a reasonable value. Second, since we suspect
that the maximum shedding rate S R™%*, which is a input from
the system designer, can also affect the convergence, we test
a wide array of values from 0 to 5 % of shedding rate.

In both cases, the assessment is done by running the
optimization with many starting points, as described in §II-A.
For a most exhaustive approach, we take starting points on
a regular grid in the 3D parameter space of x (min: 0,
max: 10MW(h) for Pi¢ and Ey4, 2MW for PLg, step:
500kW(h), which makes 21 x 21 x 5 = 2205 starting points).

Further, the calculation time was also studied to analyze if
this methodology could be faster than the gradient-free ones.

A. Choosing the amount of relaxation

The relaxation parameter ¢ is introduced to make the
optimization problem continuous to ease the convergence,
at the expense of biasing, i.e. underestimating, some costs,
which in turn can displace the optimal sizing x*. These two
aspects affect respectively the two stages of our proposed
sizing method (see §1I-A) and we study them separately.

1) Effect on convergence: Despite making the function
continuous, the relaxation does not make it smooth or convex.
Thus, the convergence of the optimization can only be assessed
empirically. For choosing relaxation parameter £, we run
the gridded multistart optimization for a several amounts of
relaxation between none and full (¢ from 0 to 1). We conduct
this analysis for one constraint level SR™** = 0.01 %.

For each run, we collect 2205 optimized results and we
analyze the distribution of the objective and constraint func-
tions, that are presented in Fig. 4 for ¢ = 0.1. It shows
that the objective and constraint values are tightly clustered
around best and maximum value respectively. However, there
are some strong outliers (heavy distribution tails), that fall
either in the “lower cost, unfeasible” or “higher cost, much
below constraint” categories. To quantify outliers, we define
tolerance thresholds: 105 % of SR™®* for the shedding rate
and 101 % of the best LCOE for the objective (tighter tolerance
because the LCOE varies much less). For ¢ = 0.1, there are
0.45 % points above the objective tolerance and 1.59 % points
above the constraint tolerance. Because the two case are almost
always exclusive, the total amount of unacceptable solutions
is the sum of both, resulting in 2.04 %.

On Fig. 5, we show that the rejection rate of optimization
results generally decreases with €. It is 100 % for € = 0 (ab-
sence of convergence without relaxation) and rapidly falls to
about 2 % for € as small as 0.05. Surprisingly, the convergence
decreases (up to 5 % rejection) when the relaxation becomes
almost total (¢ — 1, which makes hpg smooth, see Fig. 3).
This requires further investigation.

2) Effect on biasing: The optimal values obtained with the
relaxed objective function are used to recomputed the original
model indicators, as shown in Fig. 2. The LCOE for the
original and relaxed models for the tested € are shown in Fig.
6, where the biasing effect of the relaxation can be observed.
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As ¢ increases, the difference between the original and relaxed
LCOE also increases. This happens because the smoothing,
due to the relaxation, in the objective function conduct the
optimal point away from the original optimum.

Therefore, the higher the relaxation, the worse the result
found for the original model. Using this conclusion with
the results presented in the previous section, a relaxation
parameter £ amid 0.05 and 0.1 offers the best compromise
between the effects on convergence and on biasing. For the
rest of this work, we use ¢ = 0.1.

B. Robustness against the maximum shedding rate

The optimization was made for the SR™** equal to 0%,
0.01%, 0.10%, 0.30%, 1.00%, 3.00% and 5.00%. The Pareto
front for these SR™** is presented in Fig. 7. This figure
illustrate the trade-off between cost and quality of service, i.e.
the LCOE decreases for higher S R™**, showing the coherence
of the obtained results.

For the studied range of SR™“*, the rejection rates for the
LCOE, shedding rate or the sum of both, do not exceed 5%.
The rejections for each SR™** are presented in the Fig. 8.
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Fig. 6. Effect of the relaxation on biasing the optimal sizing (case SR™%* =
0.01%). The best sizing (among all multistarts) for a given amount of
relaxation ¢ is evaluated in the unrelaxed simulator. For € > 0.25, the relaxed
optimal sizing is too far from the actual unrelaxed optimum, so that it yields
a too large unrelaxed cost.
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Fig. 7. Pareto front of the relaxed problem (best of all multi starts, € = 0.1).
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Fig. 8. Rejection rate of optimization results of the relaxed problem (¢ = 0.1),
for varying level of shedding rate constraint SR"*.

Even with the methodology presenting acceptable results for
this SR™** range, we realize that the underlying structure of
the optimization problem changes since the cause of rejection
varies with the shedding limit. For small levels of maximum
shedding rate, i.e. SR™* < 0.1%, the rejection is mainly
caused by the violation of the shedding rate tolerance. While
for large shedding rate, the tolerance of LCOE is the primarily
cause of rejection.

These results suggest that using a multi-start gradient-based
algorithm may be suitable for solving the optimal microgrid
sizing with the proposed methodology.



C. Preliminary results of computational performance

The focus of this work is more the assessment of the accu-
racy (e.g. empirical convergence) of the proposed microgrid
sizing method than getting the shortest possible computation
time. Still, the primary motivation to use AD-based optimiza-
tion is indeed the promise of a shorter computational speed,
compared to gradient-free methods. So we analyze the running
time of our method keeping in mind that there may be room
for improvement. Also, the reference problem considered here
has only 3 design parameters . The computer used for these
experiment is a notebook with an Intel Core i7-9750H CPU.

The running time for the simulator alone is 15ms on
average. Computing the gradient of either the objective or
the constraint is only slightly longer at 22 ms, thanks to the
well thought implementation of ForwardDiff.jl. Now, due to
the way we have interfaced our simulator to the NLopt, each
iteration of SLSQP calls separately the objective, the constraint
and their gradient, which calls the simulator 4 times and
makes up for ~ 74 ms per iteration. However, there is a better
interfacing to compute all these values with one ForwardDiff
call, bringing this number down to 22 ms per iteration [18].

We measured the optimization running time with one par-
ticular representative starting point which converge in 43
iterations and this took on average 2.9 s. This is coherent with
the simulator timings, e.g. ~ 3.2s. With the better interfacing
mentioned above, this should go down to =~ 0.95s.

Optimizing a microgrid with 3 variables, for a 1 year long
hourly simulation, in about 1 s sounds very promising, but we
cannot claim this number due to the convergence difficulties
studied here. A multi-start is needed and we need to check how
many starts are needed. Still, the results from previous section
suggest that only a modest number of starts is sufficient.

Also, a comparison with state-of-the-art gradien-free solver
is needed. However, only few of them have actual support of
nonlinear constraint, e.g. NOMAD.

V. CONCLUSIONS

This article proposed a new approach to solve the microgrid
sizing problem. The presented methodology associates the
black-box optimization with gradient-based algorithms, and
the integration between these two elements was achieved
through the use of Automatic Differentiation.

Although the BB method allows the use of more complex
models, some relaxations need to be implemented to reduce
model discontinuities and enable the use of gradient-based op-
timization algorithms. The effect of a relaxation was assessed
from the point of view of convergence and model accuracy.

The results showed that a gradient-based optimization algo-
rithm can find an optimal microgrid sizing with a reasonable
tolerance level for the majority of the initial points scattered
in the search space. The highest rejection was lower than 5%.
Nevertheless, this rejection is decreased to approximately 2%
with a tuning of the relaxation parameter €.

Therefore, the application of this methodology in more
complex microgrids is worthwhile. It is proposed as future
work the optimal microgrid sizing and resource allocation
considering the power flow equations.
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