Optimal Microgrid Sizing using Gradient-based Algorithms with Automatic Differentiation - Archive ouverte HAL
Conference Papers Year : 2022

Optimal Microgrid Sizing using Gradient-based Algorithms with Automatic Differentiation

Abstract

Microgrid sizing optimization is often formulated as a black-box optimization problem. This allows modeling the microgrid with a realistic temporal simulation of the energy flows between components. Such models are usually optimized with gradient-free methods, because no analytical expression for gradient is available. However, the development of new Automatic Differentiation (AD) packages allows the efficient and exact computation of the gradient of black-box models. Thus, this work proposes to solve the optimal microgrid sizing using gradient-based algorithms with AD packages. However, physical realism of the model makes the objective function discontinuous which hinders the optimization convergence. After an appropriate smoothing, the objective is still nonconvex, but convergence is achieved for more that 90 % of the starting points. This suggest that a multi-start gradient-based algorithm can improve the state-of-the-art sizing methodologies.
Fichier principal
Vignette du fichier
deGodoy 2022 ISGTEU - AD Microgrid sizing - author.pdf (474.66 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Licence
Copyright

Dates and versions

hal-03370004 , version 1 (07-10-2021)
hal-03370004 , version 2 (23-05-2022)
hal-03370004 , version 3 (11-01-2023)

Licence

Copyright

Identifiers

Cite

Evelise de Godoy Antunes, Pierre Haessig, Chaoyun Wang, Roberto Chouhy Leborgne. Optimal Microgrid Sizing using Gradient-based Algorithms with Automatic Differentiation. ISGT Europe 2022, Oct 2022, Novi Sad, Serbia. ⟨10.1109/ISGT-Europe54678.2022.9960498⟩. ⟨hal-03370004v3⟩
340 View
284 Download

Altmetric

Share

More