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ABSTRACT

A mathematical model with four parameters describing the adsorption equilibrium of supercritical gases on

microporous adsorbents in a wide range of pressures is studied. Numerical experiments related to determining the model

parameters by nonlinear regression process of experimental data are carried out. From a physical point of view for a

particular system adsorbent/adsorbat at a given temperature, these parameters are strictly defined. There was instability in

determining the two of the parameters during the process of nonlinear regression related to proposed different initial

values and obtained incorrect final results. The mathematical model is transformed by combining of these two parameters.

Thus a three parametric model is received. The parameters of the resulting model are correctly determined during the

process of nonlinear regression independently of the given initial values.

Keywords: adsorption, regression process, equilibrium.

INTRODUCTION

The adsorption processes have found widespread
application in modern technologies. They are used for
fine purification of industrial gases, air, and to obtain
components with high purity. Particularly effective is
the use of adsorption processes for taking harmful or
valuable components with low concentrations from
mixtures thereof during various technological processes
[1]. Important point in the design of adsorption processes
takes into account proper description and modeling of
equilibrium of the studied systems, which sets as its
base for further calculations. One fairly recent models
describing adsorption equilibrium of supercritical gases
on microporous adsorbents in a wide range of pressures
is that proposed by Ch.Chilev et al.[2, 3]. The model
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based on a combination between the potential theory
firstly proposed by Polany and later developed by Dubinin,
the concept of lattice structure of the gas phase and using
mathematical formalism of statistical thermodynamics
and quantum mechanics. As a result, a four-parametric
equation of the following type is received [2]:

bx _axt
r:rmm[ﬁe :| 1

Eq. (1) relates the Gibbs mass excess to the
variable X (degree of occupation of the lattice in the
gas phase), respectively, the pressure in the gas phase
[2]. The equation contains four parameters, namely:

e Maximum Gibbs mass excess - Fmax s

e constant indicating the ratio of adsorbed phase
volume V to the gas phase volume V- b=V, /V,
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e constant energetic

o,E

_ “g—m-m

2kT™,

(reporting the intermolecular interactions),
e constant energetic

KT

m-s

(reporting the interactions between the adsorbed molecules
and the solid phase).

In the above expressions: E, - - energy of interaction
between gas molecules relation to a single molecule, J ; o "
coordination number of the gas phase lattice; M o - total
number of cells in the gas phase lattice (the number of
independent active centers); K - constant of Boltzmann,
m?kg / (Ks?); T - temperature, K.

The degree of occupation of the gas phase lattice is
the ratio between the number of filled cells and the total
number of cells in this phase, and can be determined by
the expression [2]:

= P W 2)

In the equation (2) N A is the Avogadro num-
ber, M [g/mol] is the gas molar mass. The maxi-
mum density of the closed system corresponding to
x=1is p™ = \/5/03 , where the radius of the gas
molecules is ¢ . Using one of the proposed in the
literature steady state equations for real gas (PVT
models) the mass density of the gas P can be calculated.
In the present work for determining the mass density of
the gases the model of Peng Robitson is used [4].

NUMERICAL EXPERIMENTS

Using nonlinear regression of experimental data
the model parameters are determined. To perform the
nonlinear regression procedure both the program
function “datafit” in software environment Scil.ab4.0
or sub-optimization program (curve fitting toolboxes)
in the software environment MatLab9.0 [5-7] was used.
The software environment MatLab9.0 has much greater
opportunities for optimization and control during the
nonlinear regression process.

The residuals from a fitted model are defined as
the differences between the response data and the fit to
the response data at each predicted value [8].

residual = data — fit

Mathematically, the residual for a specific
predicted value is the difference between the response
value y and the predicted response value 3.

r=y-y
GOODNESSOF FIT STATISTICS

The Curve Fitting Toolbox supports the good-
ness of fit statistics for parametric models:

o The sum of squares due to error (SSE)

e R-square

¢ Adjusted R-square

¢ Root mean squared error (RMSE)

Sum of Squares Due to Error. This statistics
measures the total deviation of the response values from
the fit to the response values. It is also called the summed
square of residuals and is usually labeled as SSE [9].

n
SE=Dw (y~9)
i=1
A value closer to 0 indicates a better fit. Note
that the SSE was previously defined in the Least Squares
Fitting Method.
R-Square. This statistics measures how suc-
cessful the fit is in explaining the variation of the data
[8, 9]. Put in a different way, R-square is the square of
the correlation between the response values and the pre-
dicted response values. It is also called the square of
the multiple correlation coefficient and the coefficient
of multiple determination. R-square is defined as the
ratio of the sum of squares of the regression (SSR) and
the total sum of squares (SST). Here SSR is defined by
the equation:

$R=gw(%—wz

SST s also called the sum of squares about the mean,
and is defined as:

§W=2w(m—w2

where SST = SSR + SSE. Given these definitions, R-
square is expressed as:
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SR SE
R-square= ——=1-——
ST ST

R-square can take on any value between 0 and 1,
with a value closer to 1 indicating a better fit. For
example, an R2 value of 0.8234 means that the fit ex-
plains 82.34 % of the total variation in the data about
the average.

If you increase the number of fitted coefficients in
the model, R-square might increase although the fit may
not improve. To avoid this situation, you should use the
degrees of freedom adjusted R-square statistics.

Note that it is possible to get a negative R-square for
equations that do not contain a constant term. If R-square
is defined as the proportion of variance explained by the fit,
and if the fit is actually worse than just fitting a horizontal
line, then R-square is negative. In this case, R-square can
not be interpreted as the square of a correlation.

Degrees of Freedom Adjusted R-Square. This
statistics uses the R-square statistic defined above, and
adjusts it based on the residual degrees of freedom. The
residual degrees of freedom is defined as the number of
response values n minus the number of fitted coefficients
m estimated from the response values [9].

Vv=n—-m

Here v indicates the number of independent
pieces of information involving the 7t data points that
are required to calculate the sum of squares. Note that
if parameters are bounded and one or more of the esti-
mates are at their bounds, then those estimates are re-
garded as fixed. The degrees of freedom are increased
by the number of such parameters. The adjusted R-
square statistics is generally the best indicator of the fit
quality when you add additional coefficients to your
model.

SSE(n-1)
SST(v)

The adjusted R-square statistics can take on any

adjusted R—square=1-

value less than or equal to 1, with a value closer to 1
indicating a better fit. Negative values can occur when
the model contains terms that do not help to predict
the response.

Root Mean Squared Error. This statistics is
also known as the fit standard error and the standard
error of the regression [9]. It is an estimate ot standard

deviation of the random component in the data.
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RMSE =s=VMSE

where MSE is the mean square error or the residual
mean square.

\'

A RMSE value closer to 0 indicates a better fit.
RESULTSAND DISCUSSION

From mathematical point of view the process of
nonlinear regression is very sensitive to the initial values
of the parameters [10]. In this context, when we de-
scribe the experimental data using the model equation
in the form of eq. (1), for two of the parameters one
obtain very accurate results, i.e. regardless of the initial
approximations values of these parameters, their final
values are the same.

There is a problem with the other two parameters.
Their final values depend much on the initial
approximation values, and during the process of
regression significantly changed. In Table 1 the initial
and final values of the model parameters obtained during
the process of nonlinear regression of equilibrium
experimental data of ethylene on activated carbon [3]
are given. The results show that for parameters aand
t despite the different initial approximation values the
same final results are obtained. Thus, these parameters
are uniquely determined with sufficient precision.

However the final results for the other two pa-
rameters I and b, very strongly depend on their ini-
tial approximation values. In setting the initial value §
of I'. .. the obtained result is 11.466 and for initial
value 10, respectively 4.98, i.e. the final values strongly
depend on the initial approximations. For the param-
eter b the same result is obtained. Therefore, to be used
correctly this model in the form of equation (1) is nec-
essary to know the initial approximation values of both
two parameters (I, and D) with great precision be-
cause during the regression process they are optimized
somehow, but not calculated correctly.

Parameter D=V, /V; is the ratio of the vol-
ume of adsorbat to the volume of gas phase per gram
of the adsorbent. It is a constant for a given system
adsorbents/adsorbat at fixed temperature. Since the
proposed model is a new one and has never been used
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Table 1. Parameters of the model.

First regression Second regression
Parameters
initials finals initials Finals
| R 8 11,465826 10 4,9849601
b 10 10,821713 100 99,465201
a 15 35,493338 35 35,61064
t 0.6 0,3754962 1,2 0,3980201

before, no data can be found for this parameter for
different systems.

In terms of the maximum adsorbed amount
(I',o ) for a given adsorbent/adsorbat system, in the
literature the necessary data can be found. But there are
differences in the results of I", _, given by different au-
thors, depending on their use of adsorption models to
describe the equilibrium. Thus, the existing results for
this parameter are not really sure. Besides, the number
of systems adsorbents/adsorbat for which can be found
these results are not many.

Table 2 presents the results of different types of fit
statistics produced during the nonlinear regression process
of experimental data. The table shows that different initial
values for the parameters, do not influence the resulting
errors (the results from the first and second regression are
the same). Thus, the initial approximations values of the
parameters only influence the final results for two of the
parameters, but not on the stability of the nonlinear
regression process.

It is noteworthy that for both of the used initial
approximation values of the parameters: the same product

K= 1—‘maxbt is obtained. If from Table 1 we calculate
this product (K ) at different initial values for the
parameters, then in both cases the same numbers are
obtained.

Table 2. Fit statistics.

11,435826x10,821713%% = 28,0399
4,9849601x 99, 465201°%% = 28,0399

K=T_b'=

max

Therefore, we propose to combine the two pa-
rameters I' _ and D, thus eq. (1) is converted into the

type

t
X
r=K|-~-—e*
[1_Xe ] 3)

Here the new parameter is K =T",_b'. Thus, a
three parameter model whose parameters are uniquely
and certainly determined during the process of nonlinear
regression is obtained. The values of the parameters
obtained from new regression process for the same system
adsorbent/adsorbat using eq. (3) are presented in Table 3.

The table shows that for the parameters a@and
{ the same value as in Table 1 are obtained. Thus they
are uniquely and certainly determined. For the third
parameter K independent of initial approximation val-
ues, the final results are equal. Hence it can be con-
cluded that the determination of this parameter using
the model form of eq. (3) is correct.

In Table 4 the different types of fit statistics pro-
duced during the nonlinear regression of experimental
data using eq. (3) are presented. The table shows that
despite the initial approximations values of the model

Statistic First regression Second regression
SSE 0.01743 0.01695

R-square 0.9728 0.9804

Adjusted R-square 0.8893 0.8324

RMSE 0,425627 0,433842
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Table 3. Parameters of the model.

First regression Second regression
Parameters
Initial Final Initial Final
K 5 28,039962 100 28,039962
a 15 35,493225 5 35,493225
t 0.6 0,3754953 1,2 0,3754953

parameters, the same values for the regression errors
(results of first and second regression are practically
identical) are obtained. Thus, using eq. (3), the initial
approximations for the parameters do not affect over
the stability of regression analysis, which is a criterion
for obtaining correct results.

Comparing Tables 2 and 4 (using the model equa-
tion in the form (1) and (3)) shows that the second case
we have better fit statistics of regression. The difference
in both cases for the errors: sum of squares due to error
(SSE) and the square deviation (R-Square or R2), is
very small. This indicates that the type of model equations
((1) or (3)) does not affect over these two statistical errors.

There is a change in the standard deviation (Root
mean squared error RMSE). This statistics is fundamental
and is related to the accuracy of regression,when its value
is closer to zero indicates a better fit. In the first case
(using the eq. (1), Table 2) RMSE H” 0.43, while the second
(using the eq. (3), Table 4) RMSE H” 0.29. Thus, from view
point of the regression process is more suitable use of the
model equation in the form (3). It should be noted that if
the number of fitted coefficients in the model increase,
RMSE might increase although the fit may not improve. In
our case, the numbers of parameters change. To avoid this
situation, one should use the degrees of freedom adjusted
R-square statistics (Adjusted R-Square). For this parameter
value close to 1 is considered better. The comparison
between Tables 2 and 4 shows that the values of this

Table 4. Fit statistics.

parameter increase from 0.8893-0.8327 (in the first case)
to 0.9974-0.9993 (in the second case). Thus, from view
point of this parameter, in the second case the nonlin-
ear regression process is better [12-13].

This shows that in terms of procedure for non-
linear regression of experimental data, it is better to use
the model in the form (3). Thus it is not possible to
determine the parameters 1", and b, but only their
proposed combination (parameter K ). The resulting
three parameters, K, @ and t are uniquely and cer-
tainly obtained for a given system, and the results of
regression analysis are largely reliable.

As a result from the above mentioned discus-
sion, we recommend the following algorithm for treat-
ing of experimental data using eq. (3).

1. Gibbs excess adsorption is calculated by setting
the values of temperature and pressure. With these values,
the mass density of the bulk phase is deduced by the
equation of state (PVP model) for the gas phase.

2. From the bulk mass density, one estimates the degree
of occupation of the gas phase lattice (x) using eq. 2.

3. Excess adsorption can be then deduced by a non-
linear fitting from eq. 3.

CONCLUSIONS

The four-parametric model describing the ad-
sorption equilibrium of pure gases on microporous
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Statistic First regression Second regression
SSE 0.01102 0.01065

R-square 0.9904 0.9904

Adjusted R-square 0.9993 0.9974

RMSE 0,2848876 0,2848876
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adsorbents is studied. The numerical experiments re-
lated to determining the model parameters by nonlin-
ear regression of experimental data are made. The in-
fluence of the initial approximations values of param-
eters on their final values and the stability of the overall
regression process is studied. Two energetic parameters
of the model @ and t are uniquely and certainly deter-
mined during the nonlinear regression process, regard-
less of their initial approximations value. For the other
two parameters was found that their final results de-
pend strongly on the initial approximation, i.e. they are
not uniquely determined during the nonlinear regres-
sion process. Therefore, the mathematical association
of these parameters in the new parameter K is done.
The three-parametric model, whose parameters
(K, and t) are determined uniquely and certainly
during the nonlinear regression process is obtained.
Thus, the final values of the parameters and the fit sta-
tistics of the regression essentially do not depend on
the initial approximations.
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