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Abstract: Propagation-invariant or non-diffracting optical beams have received considerable 

attention during the last two decades. However, the pulsed nature of light waves and the 

structured property of optical media like waveguides are often overlooked. We here present a 

four-dimensional spatiotemporal approach that extends and unifies both concepts of conical 

waves and helicon beams, mainly studied in bulk media. By taking advantage of tight 

correlations between the spatial modes, the topological charges, and the frequencies 

embedded in an optical field, we reveal propagation-invariant (dispersion- and diffraction-

free) space-time wavepackets carrying orbital angular momentum (OAM) that evolve on 

spiraling trajectories in both time and space in bulk media or multimode fibers. Besides their 

intrinsic linear nature, we show that such wave structures can spontaneously emerge when a 

rather intense ultrashort pulse propagates nonlinearly in OAM modes. With emerging 

technologies of pulse/beam shaping, multimode fibers and modal multiplexing, our proposed 

scheme to create OAM-carrying helicon wavepackets could find a plethora of applications. 

Finally, our work provides a general approach to explore the dynamics of three-dimensional 

spiraling wavepackets with topological properties, the outlook of this topic goes well beyond 

optics since being studied nowadays in various branches of physics such as acoustic spanners, 

polaritonics, plasma waves, and particle beams. 
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Introduction 

Light structuring [1] has found far-reaching applications covering numerous fields such as 

fundamental physics [2], telecommunications [3-4], particle manipulation [5-6], quantum 

information technology [7-8], laser micromachining [9-10], and high-resolution imaging [11-

14]. Propagation-invariant or non-diffracting beams belong to the important class of 

structured optical fields that has received a great deal of attention [15-16]. Propagation-

invariant beams are particular solutions of Maxwell’s equations that have the particularity to 

sustain their shape all along the propagation. The simplest well-known (theoretical) 

diffraction-free beams are monochromatic plane waves which are solutions of Maxwell’s 

equation in free space in Cartesian coordinates. Apart this trivial solution, monochromatic 

invariant beams have been widely studied in free space, both theoretically and experimentally 

since several decades. For instance, one can cite Bessel [15], Mathieu [17], Weber [18], and 

self-accelerating Airy beams [19], which are solutions of free space Maxwell equations in 

cylindrical, elliptic, or parabolic accelerating coordinates. 

Orbital angular momentum (OAM)-carrying beams (i.e., vortex beams) are also solutions 

of Maxwell’s equations and have drawn increasing interest in recent years [20-21]. They are 

characterized by a phase singularity at the center, a helical wavefront, and their so-called 

topological charge, an integer number counting how many wavefront rotations take place 

over one propagation wavelength. Even if it is not a general law for such beams, some of 

them are also diffraction-free. This is in particular the case for higher-order Bessel beams. 

This is important to note that, even if OAM beams own helical wavefronts and that the 

direction of their Poynting vectors rotates around the propagation axis, their intensity patterns 

do not. Indeed, their donut-like intensity pattern being cylindrically symmetric, it cannot 

exhibit any rotation in space. However, particular superposition of diffraction-free Bessel 

beams that carry OAM can provide rotating complex beams with spiraling (or screw-shaped) 

trajectories of their intensity distribution during propagation like helicon beams [22-25]. More 

complex forms of OAM-carrying beams have been also investigated numerically such as 

rotating-revolving Laguerre-Gaussian beams using multiple optical-frequency-comb lines 

[26]. More generally, by carefully controlling the interference of structured light that caries 

OAM, twisting and accelerating light over both the radial and the angular directions can be 

demonstrated [27-28], as well as possibly providing an optical pulling force through tractor 

beams [29-30]. 

On the other hand, propagation-invariant pulsed beams (without carrying OAM) have also 

been intensively studied. Such solutions are not only diffraction-free as their monochromatic 

counterpart but are also insensitive to dispersion, i.e., they do not spread in time as they 



propagate in dispersive bulk media. Brittingham’s focus-wave modes [31], Mackinnon’s 

wave packet [32], Bessel-pulse X-pulses [33], and space-time light sheets [34] belong to this 

particular class of propagation-invariant wavepackets. The non-dispersive and non-diffractive 

nature of such fully localized (in space and time) waves is due to their intrinsic coupled 

spatiotemporal properties by which the combined effects of spatial diffraction and temporal 

dispersion cancel each other. Moreover, it has been shown that X-waves can also 

spontaneously emerge when intense ultrashort pulses nonlinearly propagate in dispersive bulk 

media [35]. 

The monochromatic diffraction-free beams are well-known in structured media, and more 

particularly in waveguides, they are called optical modes. A generalization of propagation-

invariant conical waves in dispersive waveguides, called discretized conical waves, has been 

also derived [36-37]. As their bulk counterpart, such wavepackets do not spread in space and 

time. Moreover, it has also been shown that such waves are naturally generated when a rather 

intense ultrashort pulse having a cylindrical symmetry around the propagation axis 

nonlinearly propagates in the waveguide. The intrinsic difference between discretized and 

bulk conical waves comes from the discrete number of modes that can propagate in a 

waveguide, so that their spectrum is also discrete. In this direction of research, propagation-

invariant wavepackets in the form of light sheets have been recently used to demonstrate 

hybrid guiding in unpatterned films with controllable group index [38], and spatiotemporal 

evolution of pulses in a planar polariton waveguide has revealed spontaneous X-wave 

formation [39]. 

When one now considers all the concepts above listed, namely the propagation-

invariance, the pulsed nature, the OAM features of light waves and the structured property of 

optical media like waveguides, it appears essential to establish a global framework able to 

account for their simultaneous combination in both bulk media and waveguides for future 

developments and applications of light structuring. To this end, in this article, we present a 

novel class of invariant spatiotemporal wavepackets guided in multimode optical fibers, 

namely OAM-carrying helicon wavepackets. Note that our generalized approach is also valid 

for bulk media, since the latter can be considered as a waveguide of infinite dimension. The 

main feature of such dispersion- and diffraction-free electric fields is that they rotate in both 

time and space as they propagate, without any space-time distortion, at a chosen group-

velocity in the fiber core. Such an amazing property is a consequence of tight correlations 

between the spatial modes, the topological charges, and the frequencies embedded in the 

optical field. Beyond the possible linear shaping of such structured waves, we also reveal 

their spontaneous emergence triggered by the nonlinear propagation of a rather intense 



ultrashort pulse in fiber OAM modes. In particular, we will show that such wavepackets, 

spiraling in both time and space, are linked to the formation of helical optical shocks.  

The article is organized as follows. We first recall the theoretical description of OAM 

modes and then provide the construction of linear spatiotemporal helicon wavepackets based 

on a strict multidimensional phase-matching condition. A simple analytic example is then 

presented and discussed in the case of a fused silica rod (i.e., at the frontier between bulk 

media and fibers). Next we numerically investigate the nonlinear generation of such wave 

structures through the use of a multimode fiber and its OAM modes pumped by an intense 

ultrashort pulse. In particular, we confirm that the formalism of helicon wavepackets 

introduced in the first section allows us to predict accurately the mode-resolved output 

spectrum of the laser pulse at the output of the multimode fiber. 

 

Theoretical description: spatiotemporal helicon wavepackets 

Basic considerations 

This section is devoted to the theoretical description of propagation-invariant (dispersion- and 

diffraction-free) space-time wavepackets that evolve on spiraling trajectories around the 

propagation axis in structured/finite media. For simplicity, we will restrict our study to a 

scalar approach by considering the weak guidance approximation. Moreover, we will study 

only waveguides whose refractive index presents a cylindrical symmetry around the 

propagation axis   (i.e., standard optical fibers). Using the above restriction, the partial 

differential equation driving the linear propagation of an electric field   is given in cylindrical 

coordinates by: 

   
    

  
 

 
   

 

    
  

         

                             (1) 

where   is the light velocity in vacuum,        is the radial-dependent refractive index at the 

angular frequency  , and    is the Fourier transform of    with respect to the time coordinate: 

                 .     (2) 

Before going ahead, let us find solutions of Eq. 1 that write 

                               (3) 

Such solutions are called optical modes of the fiber and    is called the propagation constant 

of the mode. Note that modes are not necessarily propagating but can be exponentially 

decaying along   provided that    is complex. Moreover, note that, in the context of optical 



fibers, a mode can propagate in the fiber cladding, even if it is of common use to call "modes" 

only the ones confined within the core. Since the electric field is intrinsically   -periodic 

(and assumed piecewise-continuous) with respect to  , its angular dependence can be 

developed as a Fourier-series: 
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By injecting Eqs. 3 and 4 in Eq. 1, one obtains: 
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Since the refractive index is assumed here to be angularly invariant, in bra-ket notation, 

one has: 

           
                       

                    (6) 

where       is the Kronecker delta. It then indicates that optical modes of such fibers are 

necessarily of the form: 

                                  (7) 

In other words, functions          describe the angular part of the optical modes, and this means 

that OAM modes form a basis set to represent spatial modes. This is not true anymore for a 

fiber whose refractive index depends on the angular coordinate  , since, in this case, the 

operator    will couple the different functions         . Equation 7 gives the functional form of 

the optical modes in an angularly-invariant waveguide. Moreover, one will impose that the 

electric field vanishes at a given radius  , which is located sufficiently far from the 

waveguide: 

                 (8) 

Imposing such a Dirichlet boundary condition then discretizes the number of eligible 

solutions. Consequently, for a given couple      , the solutions (i.e., modes) can be indexed 

and sorted by an integer number      , the radial order related to the number of 

concentric intensity rings in the intensity profile. As a consequence, a fiber mode can be 

represented by a triplet        . Moreover, after an appropriate normalization, the modes 

form an orthonormal basis so that any electric field   can be expressed as 

                                               (9) 



where           is the transverse envelope of the mode         and           are the electric 

field coordinates in the modal basis.  

 

Using the unidirectional pulse propagation equation (UPPE) [40], the linear evolution of 

an electric field            along the propagation axis   is given in the modal basis by 

                      (10) 

where           is the propagation constant of the OAM mode       at the frequency  . 

Recall that   and   refer here to azimuthal and radial indices, where                 is the 

topological charge, related to the phase front of the OAM mode. OAM modes are higher-

order modes defined on a different basis as compared to more conventional modes in fiber, 

such as linearly polarized (LP) modes and vector modes, so that they can be also regarded as 

the linear combination of the latter [41-42]. For example, we can here write           

     
          

       , as well as      corresponds to the fundamental mode       of the 

fiber. The    or    terms represent a     or      phase shift in the linear combinations.  

 

 

Definition of helicon wavepackets 

One can now define families of modes           in such a way that their propagation 

constants all verify the same relation: 

                             (11) 

where   ,   , and    are arbitrarily chosen constants. Note that, depending on the chosen 

constants defining a family, the latter can contain a priori several frequencies in the same 

spatial mode and a given frequency can satisfy relation (10) in different spatial modes. A 

corresponding electric field can be built from the linear superposition of the modes belonging 

to the same family: 

                                    
              (12) 

Using Eqs. 10-11, one then obtains the evolution of the above electric field: 

                                (13) 

where         and        . Accordingly, any electric field built from a given 

family is a diffraction- and dispersion-free space-time wavepacket propagating at the group 



velocity      whose intensity continuously rotates around the propagation axis with a spatial 

period      . In other words, the built families are perfectly invariant fields in a frame 

propagating at the velocity      and rotating around the   axis with a period      . 

Wavepackets with spiraling trajectories then result from the linear superposition of waves 

oscillating at different frequencies and carrying different topological charges.  

Several remarks have to be made concerning such wave structures. First, the fact that the 

spatiotemporal intensity rotates around the propagation axis does not necessarily imply that 

the fluence (i.e., the energy per surface unit) does. In fact, using the Parseval theorem, one 

can show that the fluence exhibits the same trajectory (with or without rotation around the 

propagation axis) only if the defined family embeds at least two modes              
  and 

             
  such that       

       
 with      . In addition, the instantaneous power of 

the wavepacket (i.e., the total energy per time unit) is constant except if the electric field 

embeds at least two distinct frequencies in the same spatial mode. 

 

The above construction of wavepackets, composed of discrete frequencies, implies an 

infinite energy, which cannot correspond to a realistic physical situation, except if one uses a 

set of continuous wave lasers (or multiple frequency-comb lines) combined with spatial 

shaping and multiplexing. On the other hand, the carrier frequencies     involved could have 

a finite narrow bandwidth (i.e., associated with a temporal envelope     ). As a consequence, 

the electric field constructed from a given family would write in good approximation (i.e., 

taking into account only the group-velocity difference between spatial modes) as 

                   
                      

              (14) 

so that its evolution along the propagation axis is 
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where       
   

      
   

    with      
   

                   
 the inverse of the group 

velocity of the mode       taken at the frequency    . Accordingly, a wavepacket embedding 

a finite amount of energy is necessarily dispersive, i.e., not strictly speaking dispersion- and 

diffraction-free. Note however, that the effect of dispersion, i.e., the length from which the 

dispersion of the group velocities in the different modes will impact the propagation, will 

strongly depend on the envelope duration. Then, the wavepacket can be considered as 

invariant but over a finite distance.  



Last but not least, if now, one comes back to the essential issue of establishing a general 

framework able to link the concepts of propagation-invariance, pulsed nature, and OAM, it is 

important to notice that modes of a given family lye on a surface S in the three-dimensional 

(l,p,) modal space. This surface embeds both helicon (monochromatic) beams [23,25] and 

discretized conical wavepackets [37], which are located at the intersection between S and 

planes of constant  and constant topological charge l, respectively. Our theory then naturally 

encompasses both concepts which now appear as special cases of spatiotemporal helicon 

wavepackets. 

 

Simple example of helicon wavepackets 

Before studying how the above wavepackets can emerge from nonlinear propagation in a 

standard multimode fiber, we first construct such space-time wave structures in a simple case 

at the frontier between bulk media and fibers. In particular, we consider a dispersive medium 

of finite transversal dimension (radius  ), often used as a toy model for calculating the guided 

modes of hollow core capillaries. Its modes have the advantage to be perfectly analytic as 

follows:  

                  
    

 
                  (16) 

where     is the     root of     Bessel function of first kind   ,                 
    , 

             and      is the frequency-dependent refractive index of the medium. In 

the paraxial approximation, the propagation constants can be approximated by 

               
   

 

            (17) 

Note that such an approximation does not change the underlying physics but it allows to 

deal with more tractable analytical formula. Moreover, we assume that the wavevector      

can be developed in frequency as a Taylor series around a central carrier frequency   . 

Accordingly, one has 

           
  

  
  

  
   

 

     ,    (18) 

where        and       
       

.We can then define the family of modes that 

satisfies: 

             
  

  
   

 
  

   
 

                  .  (19) 



As a result, for each couple      , one has to find the roots of a     order polynomial in    . 

The purely real roots then correspond to frequencies that satisfy Eq. 19. As an example, 

Figure 1(a) depicts the family of modes given by the above condition with              

         , when considering a fused silica rod (   100 µm) and a central wavelength 

           800 nm. This arbitrary choice of the constant    is fixed to the difference 

between propagation constants of the two first OAM modes of our silica rod at   , thus 

defining the rotation period of the fluence, and the two first OAM modes at    will be 

contained in the family presented in this particular example. Note that we added an arbitrary 

group delay of      3 ps m
-1

, i.e., the group velocity of the helicon wavepacket is      

          . Then, we observe an evident combination of X-shaped patterns in the       or 

      planes, whose individual element for the latter is similar to the well-known X-shaped 

conical wave studied in previous works [35-37].  

 

 

Fig. 1. Linear construction of a spatiotemporal helicon wavepacket in a fused silica rod. (a) 

Family of modes satisfying the phase-matching condition (19) for the following parameters: 

    800 nm,  and      3 ps m-1. (b) Power spectrum of the few selected modes involved in 

our linear superposition. (c) Corresponding initial fluence distribution in space. (d) 

Corresponding phase distribution at   . (e) Evolution of iso-contour of the fluence with 

propagation distance (at 1/e2 and half-maximum) showing the counterclockwise rotation 

around the propagation axis. (f) Corresponding iso-surface of the spatiotemporal intensity 

profile at half-maximum that features the localized helicon wavepacket (see also its 

propagation in supplementary movie 1).  

 

Indeed, the overall 3D-pattern of phase-matching results from the combination of all phase-

matched frequencies from modes with various radial and angular indices, which then creates 

discretized conical waves over  - or  -  dimension according to the dispersion regime. If one 



considers a few modes characterized by low radial and angular indices to construct an 

example of helicon wavepackets, a simple solution can be written by considering the second-

order dispersion only: 

                       (20) 

with          
            

   
 

          . Figure 1(b) depicts a set of 12 modes in 

addition to the fundamental fiber mode given by the relation: 

                                        (21) 

The linear construction of the helicon wavepacket then results from the superposition of 

frequencies               with equal spectral amplitudes and phases (see Fig. 1(b-d)). Since 

the present example corresponds to the particular case, where two distinct angular modes 

oscillates at the same frequency (here,              ), the fluence distribution is 

angularly asymmetric with zero-value shifted from the origin (i.e., distinct from a perfect 

donut-like pattern), as shown in Fig. 1(c). The spatial phase distribution at    is shown in Fig. 

1(d), the complex pattern results from the superposition of two OAM fiber modes and is 

characterized by a singularity shifted from the origin. The spatial phase distribution for other 

frequencies that contain a single mode is not shown here since featured by typical signatures 

related to the topological charge (i.e., a phase singularity at the center and   times 2π-

azimuthal phase changes).  

The full electric field at a given propagation distance   is given by Eqs. 12-13. Figure 1(e) 

shows the evolution of the fluence along propagation which implies the spiraling trajectories 

of both fluence and phase profiles while maintaining their initial distribution. The rotation 

period is directly given by          16 cm, and the direction of rotation is counter 

clockwise as driven by the negative value of   . As shown in Fig. 1(f) that displays the iso-

surface of the spatiotemporal intensity at half maximum, the wavepacket looks like a 

corkscrew in space-time coordinates, the points of high intensity being extremely localized in 

both space and time since all frequencies are in phase. Nevertheless, all modes used for the 

construction contain a single frequency so that the instantaneous power (integrated over 

spatial coordinates) is constant. Note that despite the time-localization of our helicon 

wavepacket, this ultrashort structure does not disperse and simply rotates during its 

propagation around the  - and  -axis because of the inherent invariant nature of the 

constructed wavepacket (see supplementary movie 1).  



Note that more complex fluence and phase profiles could be easily generated by choosing 

a superposition of multiple higher-order modes at the phase-matched discrete frequencies. 

This would provide simultaneous revolving and rotating of such profiles in the x–y plane 

during propagation [26]. 

 

Numerical simulations: nonlinear generation in multimode fibers  

Multimode fibers are known as versatile platforms, in particular, for sculpting 

supercontinuum as a function of the initial pump spatial profile [43-45]. In the following, we 

show how spatiotemporal helicon wavepackets can be nonlinearly generated by appropriate 

and realistic initial pumping conditions. Our numerical approach of nonlinear pulse 

propagation is based on the multimode unidirectional pulse propagation equation recently 

derived in [46], which describes the evolution of the complex electric field in the scalar 

approximation: 

           
 

   

    
   

       
     ,   (22) 

   is the vacuum permittivity, and      is the nonlinear polarization expressed in the modal 

basis. Moreover, for convenience, the equation is written in a local frame propagating at an 

arbitrarily chosen velocity    
. The latter is often chosen as the group velocity of the 

fundamental mode           calculated at   . In the context of fiber propagation, using 

a complex representation of the electric field   (expressed now so that              ,   

being the pulse intensity), UPPE rewrites: 

           
 

   

    
          

    
          

                                                                    (23) 

where       is the effective refractive index of the fundamental mode at   ,    is the 

nonlinear refractive index of the medium (here for silica glass, we used     3.2 10
-20

 m
2
/W). 

The function    is the Raman response with fraction     0.18 for fused silica glass. For 

simplicity, we have neglected here the nonlinear term responsible for third harmonic 

generation. We recall that the present simulations are full 3D+1 simulations. Note that the 

effect of usual fiber losses (less than 10 dB/km) is found here to be negligible over the 

considered propagation distance. We solve the propagation by a split-step algorithm as 

described in Ref. [46]. Counting both radial and angular modes, we considered more than 

1500 modes for our calculations. Using such a number of modes would be completely 



intractable if an algorithm based on multimode generalized nonlinear Schrodinger equation 

(MM-GNLSE) were employed [47].  

As an example (see Fig. 2), we investigate the nonlinear propagation of 100-fs Gaussian 

pulse at     1300 nm, with 450-nJ energy, close to the zero dispersion of a standard step-

index multimode fiber (core radius    52.5 µm and numerical aperture     0.22). The 

associated peak power is around 0.8 times the critical power of silica glass. The energy is 

initially equally-distributed on the two first OAM modes of the fiber (   0,    0 and +1). 

Note that such an initial condition could be experimentally realized using a spatial beam 

shaper. The propagation constant difference between the OAM modes at    is           

           -220 rad m
-1

. Accordingly, the laser pulse initially rotates around the propagation 

axis with a period   2.8 cm, as shown in Fig. 2(c). We observe about 3 rotations of the 

guided beam in the fiber core (denoted by the contour-plot of fluence at half-maximum) over 

the 8.5-cm-long propagation distance under study. The detailed nonlinear propagation for 

temporal power and power spectrum is shown in Fig. 2(a-b), respectively. We observe that 

the spectral dynamics reaches a stationary state after 7 cm (see Fig. 2(b)), just past the pulse 

splitting dynamics observed in the time domain. The initial self-focusing dynamics arrested 

by higher order dispersions and self-steepening leads to the spontaneous formation of 

localized sub-pulses (at the trailing edge) in the time domain and a strong spectral 

broadening. Sub-pulses are moving in the same direction in the retarded time frame with 

nearly the same group velocity (different from    
) as indicated by the white dashed arrow in 

Fig. 2(a), and characterized by a relative group delay of 800 fs m
-1

. The simultaneous strong 

broadening associated to the most intense sub-pulse seeds linear waves, which are resonantly 

amplified in higher order modes.  

 



 

Fig. 2. Nonlinear propagation of 100-fs pulses (450-nJ energy at 1300 nm) in a 8.5-cm-long 

segment of step-index multimode fiber. (a)-(b) Evolution of the instantaneous power and 

normalized full power spectrum with propagation distance, respectively. The white dashed 

arrow in panel (a) indicates the group-velocity of the most intense sub-pulse. (c) Evolution of 

iso-contour at half-maximum of the fluence with propagation distance. (d) Output mode-

resolved power spectrum as a function of   and   indices observed after 6.1 cm of propagation. 

(e) Corresponding iso-surface at 1/e2 of the 3D-intensity profile (see also its evolution during 

nonlinear propagation in supplementary movie 2). 

A clear structure emerges in the mode-resolved spectrum at the distance of occurrence of this 

sub-pulse, in the form of discretized conical fish-wave (also known as a combination of both 

X-wave and O-wave) over angular indices   for low radial indices  , as depicted in Fig. 2(d).  

This particular shape corresponds to the formation of a spatiotemporal helicon wavepacket 

belonging to a particular family of modes as defined in the previous section by Eqs. 11 and 

12. In other words, this simply corresponds to the linear superposition of phase-matched 

resonant radiations over the fiber OAM modes. More particularly, the emerging helicon 

wavepacket propagates and rotates according to the velocity features of the most intense sub-

pulse.  

Based on the three-wave mixing (TWM) picture [48], previously developed for describing 

the generation of conical waves in bulk media, the underlying basic idea is here to consider 

that the OAM-carrying supercontinuum generated during the nonlinear propagation scatters 

on a "material wave" which represents the nonlinearly-induced change of the refractive index 

of the medium. While previous conical waves in bulk media and multimode fibers are solely 



characterized by their propagation velocity (see Refs. [37,48]), it is here defined by two 

parameters, namely its propagation velocity and rotation period due to their spiraling 

trajectory based on OAM fiber modes. Accordingly, the energy of the scattered waves will be 

concentrated in families of modes           propagating and rotating at the same rates than 

the material wave (MW): 

                                    
  

  
   (24) 

where      ,      , and       are the propagation constant, the inverse of group velocity, 

and the rotation rate of the material wave, respectively. Here, the material wave corresponds 

to the most intense sub-pulse that is triggered and that swirls around the propagation axis. 

Since the nonlinear process takes place over a finite length   , Eq. 24 is not a strict phase-

matching condition, it can be satisfied over a certain tolerance related to    [37,48]. Equation 

24, together with the precise knowledge of the frequency-dependent propagation constants, 

then allows to estimate the mode-resolved output spectrum shape of the pulse impacted by the 

conical wave emission.       is equal to the propagation constant of the input pump pulse 

              . From Fig. 2(a) and the white dashed arrow, the inverse of group 

velocity is found to be             
    , with      800 fs m

-1
.  

Concerning the rotation rate      , one can expect that it is also impacted by the 

nonlinear propagation in a similar way to the group velocity. This is corroborated by the 3D-

intensity profile spiraling in time and obtained at the distance of conical wave emission, and 

depicted in Fig. 2(e). The iso-surface of the intensity clearly exhibits distinct sub-pulses 

spiraling, characterized by different positions and shapes in space, thus suggesting a variation 

of rotation feature along the pulse splitting. To better unveil this effect, we show the 

corresponding cross-sections of spatial intensity profiles at distinct times in Fig. 3(a-c), 

namely the center of our retarded time frame, and the temporal locations of the maximal 

intensity of the two first sub-pulses, respectively. As above suggested, we clearly observe that 

the intensity peaks do not rotate at the same velocity as the initial propagation constant 

difference between the OAM modes at   . The angular delay between the most intense sub-

pulse (Fig. 2(d)) and the linear rotation at     is found to be ~1.46 rad after 6.1 cm. As a 

consequence, the rotation rate of the material wave can be determined as        

                       , with      24 rad m
-1

. From the above determination of       

and      , we can now provide a detailed analysis of the 3D-phase-matching pattern depicted 

in Fig. 2(e) by using our theoretical approach, in order to confirm the emission of the helicon 

wavepacket. 



 

 

Fig. 3. Cross-sections of 2D-spatial intensity profiles studied in Fig. 2(e) at distinct times of 

our retarded frame, namely (a)    0 fs, (b)    30 fs, and (c)    47 fs. The gray circle 

corresponds to the core/cladding interface. The white dotted line is the angular position from 

   (~13.4 rad from the input, i.e. 2.13 rotations) whereas the white dashed arrow indicates the 

angular position of the maximal intensity. (d) Intensity profiles along the angular position for 

the different times under study (note that the radial positions of maximal intensity were 

chosen). 

 

Figure 4 shows the angularly-resolved spectra for the five first radial and angular indices 

obtained from numerical simulation at the output of the fiber (i.e., after 8.5 cm of 

propagation). The white iso-contour superimposed to the mode-resolved output spectrum 

delimits the inner angular-spectral region that satisfies Eq. 24 with parameters fixed above 

when     5 mm (roughly the distance corresponding to the lifetime of the most intense sub-

pulse). All the mode-resolved output spectral shapes are well fitted by this contour, which 

confirms that a helicon wavepacket rotating at       and propagating at group velocity 

        is generated during the nonlinear propagation. A clear conical wave of fish-wave 

type is revealed over the lowest orders of OAM fiber modes, a typical signature of pumping 

close to the zero dispersion of the medium or waveguide [37,48]. We also notice that the 

bandwidth of phase-matching condition strongly reduces for increasing values of radial or 

angular indices (i.e., higher order modes). Note that, the tolerance of phase-matching 

condition in Eq. 24 (as the wavepacket is generated over a finite distance) makes that spectral 

components forming the wavepacket are not delta functions distributed over a given family of 

modes, in contrast with purely non-spreading wavepackets. Each mode composing the 

helicon wavepacket here supports a certain bandwidth, thus the latter will be dispersive, as 

described by Eq. 15. 

 



 

Fig. 4. Angular-mode-resolved output spectra for the first radial (top panels) and angular 

(bottom panels) indices. The white contour corresponds to the phase-matching of theoretical 

radiations forming the spatiotemporal helicon wavepacket propagating with a group delay     

and rotating around the propagation axis with angular delay     compared to the initial pump 

pulse centered at   .  

 

Discussion and conclusion  

Firstly, we have shown that a pump short pulse built from the superposition of two beams 

having different topological charges nonlinearly propagates along a helical trajectory in the 

waveguide. Close to the critical power, the nonlinearly-induced formation of an ultra-

broadband localized structure (pulse or shock front according to the dispersion regime) then 

takes place, thus generating the main axial spectral broadening.  Besides, it also emits 

resonant radiations through intra- and intermodal properties (conical spectral broadening) 

satisfying the phase-matching condition described by Eq. 25, and whose linear superposition 

forms a spatiotemporal helicon wavepacket with its group velocity and rotating rate (i.e., 

distinct from characteristics of initial pump pulse due to the nonlinear effects which implies 

corrections     and     ). It appears that our analysis also unveils the intensity dependence of 

both group velocity and rotation rate of the ultra-broadband localized structure at the origin of 

the helicon wavepacket. One well-known physical effect at the origin of such a dependence of 

the group velocity is the self-steepening effect. It usually induces a clear optical shock 

appearing on the trailing edge of an ultrashort pulse when studied in the normal dispersion 

regime, which can also seed a conical wave of X-type [37,48]. In the present case, this effect 

is less noticeable but still present at the pulse splitting stage. The formation of an optical 



shock results from the velocity difference between the pulse peak and its tails due to the 

nonlinear dependence of the refractive index. In the same way, we observe such equivalent 

dynamics in the spatial domain, as shown in Figs. 2(e) and 3, featured by an azimuthal self-

steepening of the intensity profiles on the trailing edge. The study of combined temporal and 

azimuthal shocks (i.e., a helical shock) then appears as a possible general mechanism 

responsible for the emergence of spatiotemporal helicon wavepackets. Mathematically, one 

can simply refer to the first-order approximation of the frequency-dependent nonlinearity  

   

       
 in UPPE (see Eq. 22) by setting                   , in order to retrieve the 

origin of simultaneous self-steepening in both temporal and spatial domains. Indeed, this 

would imply in the space-time domain the simplified operator acting on the nonlinear term 

  
      , where       

  
      

  
  

     is the spatiotemporal self-steepening. 

Secondly, it is worth mentioning that, while the above example here considered a 

superposition of     and     as initial conditions, the dynamics still remains the same if 

one uses another superposition of two others OAM modes. For instance, our simulations 

showed (data not shown) that using an initial superposition of     and     also leads to 

the emergence of a helicon wavepacket. In that case, however, the generated wavepacket is 

only composed of modes with even topological charges due to the selection rules imposed by 

the symmetry. More generally, close to the critical power, we have found that preparing the 

initial pump pulse as a superposition of multiple OAMs of low topological charges always 

leads to the emergence of spatiotemporal helicon wavepackets. This is due to the low 

dispersion of the propagation constant with respect to the topological charge  . Even prepared 

with multiple low-order OAMs, the pump pulse still rotates around the propagation axis 

without significant angular dispersion. Indeed, the nonlinear propagation tends to excite the 

modes           that follow “the symmetry” of the field from which it is generated. It leads 

to the preferential generation of a given helicon wavepacket family, as shown in Fig.4. 

Accordingly, our theoretical framework can foresee the global shape of the output spectrum, 

but not the amplitude of the different components of this family, which strongly depends on 

the values of the overlap integral between modes (which also depends on the waveguide 

considered). 

Finally, OAM fiber modes are known to provide an additional degree of freedom with 

which to control nonlinear wave propagation [49-50], but this also raises the usual challenge 

of mode coupling that OAM modes face when propagating in a conventional multimode fiber 

[41-42]. A relatively small difference between the effective refractive indices of two modes 

favors power exchange (i.e., coupling) during propagation. Recently, specially designed 



fibers (i.e., vortex fibers) have been developed to reduce the mutual mode coupling and 

support stable propagation of OAM modes over long distances [41-42]. We recall that our 

description and findings are valid in any waveguide with axisymmetric refractive index 

profile, so that we expect that future studies in specialty OAM waveguides will be successful. 

Note that the spontaneous generation of helicon wavepackets in the case of nonlinear 

propagation can be also observed on very short distances as shown previously. 

 

In conclusion, we have presented a novel kind of propagation-invariant space-time 

wavepackets that have the particularity to rotate around both propagation and time axis. The 

invariance property of such electric fields is due to tight space-OAM-frequency correlations 

that compensate for dispersion and diffraction at the same time. The possibilities and interests 

of such helicon wavepackets are twofold. First, with the actual technologies of modal 

multiplexing and fiber fabrication, the experimental generation of such linear wavepackets in 

multimode fibers seems attainable. Beyond the fundamental interest of their observations, we 

strongly believe that potential applications in laser-matter manipulation could emerge from 

the generation of such wavepackets. Our approach could be also extended to more complex 

structured beams with time-varying OAM also known as self-torqued beams [51]. Second, we 

have shown that twirling wavepackets can naturally emerge from the nonlinear propagation of 

rather intense ultrashort pulses. As for conical waves emerging during filamentation in bulks, 

the formalism of helicon wavepackets brings a proper understanding of the phenomena taking 

place when intense pulses embedding different OAM beams propagate in bulks and 

waveguides. Given the current strong interest of both OAM-carrying beams and fiber modes, 

we expect that this work will stimulate further researches in the field. More specifically, we 

anticipate that space-time helicon wavepackets could emerge during the filamentation process 

in bulk media since Laguerre-Gauss beams are known to exhibit an OAM-dependent Gouy 

phase. Superimposed Laguerre-Gauss beams whose azimuthal mode index is correlated to 

their frequency are associated to helical structures for their phase and intensity profiles in 

space close to the waist [26,52]. As a consequence, such a field combined with our phase-

matching could then generate space-time helicon wavepacket if its power exceeds the critical 

power necessary to trigger the filamentation process. If so, it suggests important applications 

in terms of processing of transparent dielectrics.  

Finally, from a general point of view, our work provides a general approach to explore the 

dynamics of three-dimensional spiraling wavepackets with topological properties, the outlook 

of this topic going well beyond optics since being studied nowadays in various branches of 

physics such as acoustic spanners [53], polaritonics [54], plasma waves [55], and electron or 



particle beams [56]. For instance, strong efforts will focus on investigating optical schemes to 

create and manipulate three-dimensional free electron wavepackets or to transfer the 

symmetry properties of the driving field to molecular dynamics. Other perspectives could rely 

on the possible emergence of coherent structures in the form of such space-time wavepackets 

from turbulence in three-dimensional fluid flows. 
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