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VOLATILITY-REDUCING BIODIVERSITY CONSERVATION

UNDER STRATEGIC INTERACTIONS

EMMANUELLE AUGERAUD-VÉRON, GIORGIO FABBRI,

AND KATHELINE SCHUBERT

Abstract. How can decentralized individual decisions ine�ciently reduce the

ability of biodiversity to mitigate ecological and environmental variability and

then its �natural insurance� role? In this article we present a simple theoretical

set-up to address this question and to evaluate some policy options.

We study a model of strategic competition among farmers for the conversion

of a natural forest to agricultural land. Unconverted forest land allows to con-

serve biodiversity, which contributes to reducing the volatility of agricultural

production. Agents' utility is given in terms of a Kreps Porteus stochastic

di�erential utility capable of disentangling risk aversion and aversion to �uc-

tuations.

We characterize the land used by each farmer and her welfare at the Nash

equilibrium, we evaluate the over-exploitation of the land and the agents' wel-

fare loss compared to the socially optimal solution and we study the drivers of

the ine�ciencies of the decentralized equilibrium.

After characterizing the value of biodiversity in the model, we use it to ob-

tain a decomposition which helps to study the policy implications of the model

by identifying in which cases the allocation of property rights is preferable to

the introduction of a tax on land conversion. Our results suggest that enforc-

ing property rights is more relevant in case of stagnant economies while taxing

land conversion may be more suited for rapidly developing economies.

KEY WORDS: Biodiversity, insurance value,land conversion, recursive pref-

erences, stochastic di�erential games.
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1. Introduction

According to FAO (2018) projections, agricultural production is expected to

increase by 70% between 2005 and 2050 to feed a population that is expected

to reach 9.1 billion people by 2050. Whereas part of this increase will come

from higher agricultural yields, another part will inevitably require the extension

of agricultural land (by 5% per year, FAO, 2018), at the expense of natural

ecosystems. This land conversion phenomenon is, and will be in the future, one

of the main drivers of biodiversity destruction (IPBES, 2019).

The evaluation of the phenomenon demands to appraise the trade-o� between

agricultural production and the damages caused by biodiversity loss. It is part

of a broader re�exion on the development of theoretical tools for identifying

the economic value of biodiversity. Traditional approaches evaluate direct and

indirect use values (see for instance Simpson et al., 1996, for the case of the

pharmaceutical industry or Maille and Mendelsohn, 1993, for ecotourism) or, in a

context of uncertainty, consider the option and quasi-option values of biodiversity

(see e.g. Lasserre and Kassar, 2004, or Di Falco and Perrings, 2005).

A more recent stream of literature introduced and exploited the notion of in-

surance value of biodiversity. The idea comes from the recognition that a series

of services o�ered by biodiversity have an impact on the variability of ecologi-

cal and then economic conditions. It is the case, for example, with regulating

services (control of the local climate, �ood control, regulation of soil fertility, pol-

lination, etc.) or biocontrol services (pest control, resistance to plant invasion,

disease control, etc.). In a series of contributions Baumgärtner (2007), Quaas et

al. (2007), Quaas and Baumgärtner (2008), Baumgärtner and Quaas (2010) and

Baumgärtner and Strunz (2014) measured the insurance value as the reduction

of the risk premium that can be achieved by relying on conservative ecosystem

management. Augeraud-Véron et al. (2019)1 analyzed the total value of biodi-

versity as the welfare gain that can be attributed to biodiversity conservation in

a dynamic framework, distinguishing between the notion of risk and the notion of

intertemporal substitutability. That study also highlighted the insurance value

of biodiversity in a dynamic set-up.

1See also Quaas et al. (2019) for a similar argument applied to a model with natural capital.
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However, studying the optimal trade-o� between agricultural production and

biodiversity conservation is not enough. As various external e�ects are involved,

the study of the decentralized solution is also necessary. Indeed, even if in some

countries the number of farmers is decreasing, agriculture remains a highly dis-

tributed activity, for which farmers' productive choices act as an externality on

the outcomes of others.

We study in this paper the case of a forest-rich developing economy needing to

decide how much forest to be converted to agriculture and how much to be kept

undeveloped, for biodiversity conservation. Among the many motives a country

could have for conserving biodiversity we choose to investigate the natural in-

surance against �uctuations of agricultural productivity motive. The stabilizing

role of biodiversity has been largely documented and the ecological mechanisms

behind this phenomenon are well understood (see for instance Loreau and Mazan-

court, 2013). The role of common pool resources such as natural forests as an

insurance device for rural poor is also well documented (Baland and Francois,

2005, Delacote, 2009), in a context where they do not have access to formal

insurance and to credit markets (Banerjee and Du�o, 2010).

In this spirit we develop and study a decentralized model where two farmers2

can obtain property rights on an undeveloped land, for instance a natural for-

est. Each farmer chooses the share of her land she converts to agriculture, then

produces and consumes the harvest from her plot. The evolution of agricultural

productivity over time is in�uenced by the endogenous choices about the size

of the plots. Indeed, the part of land which is not used for farming is devoted

to biodiversity conservation and the services provided by biodiversity reduce the

volatility of agricultural productivity. The two farmers/players coordinate on a

Nash equilibrium of the economy.

Noack et al. (2019) provides a nice illustration of the relevance of our model.

The authors use panel data covering 7,556 households in 23 developing countries,

combined with data on droughts, the major environmental reason for crop losses,

data on natural biodiversity and data on the timing of the agricultural cycle.

The intrinsic volatility of agricultural yields comes from weather events, here

droughts, whereas natural biodiversity has a stabilizing role. One of Noack et al.

(2019)'s results is that the negative impact of droughts on crop income declines

2The results for the n-farmer case are also provided, see Section 6.
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when natural biodiversity increases. They are able to estimate the magnitude of

the e�ect and obtain that reducing biodiversity by one standard deviation below

the regional mean almost doubles the negative impact of droughts on income.

In this context the attitudes of farmer towards income intertemporal �uctu-

ations and towards risk are essential. In order to disentangle aversion to �uc-

tuations and aversion to risk we use a recursive utility set-up, initially intro-

duced in the seminal works of Epstein and Zin (1991) and of Du�e and Epstein

(1992). The relevance of recursive utilities in natural resources and environ-

mental economic models is well documented (see for instance Knapp and Olson,

1996, Epaulard and Pommeret, 2003 or Howitt et al., 2005) but this is, as far

as we know, the �rst work where a dynamic environmental economic model with

strategic interaction and Epstein�Zin preferences is studied and solved.

The model is completely solved by explicitly �nding the Nash equilibrium of

the di�erential game and characterizing for each farmer the share of land used

for agricultural activities. These shares are constant over time. For any farmer,

impatience drives land conversion, whereas risk and its perception play in the

opposite direction. What the other farmer does also plays a role: a farmer will

convert more land to farming when the other farmer does so if her aversion to

�uctuations is smaller than unity, and she will convert less land when the other

farmer converts more if her aversion to �uctuations is high.

We then compare, in the symmetric situation with uniform preference and tech-

nology parameters, the equilibrium in the strategic competition set-up and the

socially optimal choice. As expected, since the agents only partly internalize the

negative e�ects of their actions, an over-exploitation of the forest systematically

arises, so that the land available for biodiversity conservation is always lower in

the decentralized case than at the social optimum.

We proceed with welfare comparisons and some policy implications of our re-

sults. We show how to decompose the per-capita welfare gain from biodiversity

conservation in two parts: the welfare gain of moving from the open access equi-

librium to the Nash equilibrium, and the welfare gain of moving from the Nash

equilibrium to the optimum. Depending on which of the two is prevalent we can

identify in which cases the allocation of property rights is preferable to the intro-

duction of a land conversion tax. In particular we show that enforcing property
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rights is more relevant in case of stagnant technological progress in agricultural ac-

tivities while policies consisting in pricing the volatility externality (for instance

through a tax on land conversion) may be more suited for rapidly developing

economies averse to �uctuations.

Finally we extend our result to the more general case of more than 2 farm-

ers. We show that the more farmers there are the larger land conversion and the

bigger the volatility externality. Moreover, if the aversion to �uctuations is less

than unity, when the number of farmers increases every individual share of land

devoted to farming increases as well. In this sense, a small aversion to �uctua-

tions is detrimental to biodiversity conservation. Conversely, if farmers have a

large aversion to �uctuations, when the number of farmers increases each of them

converts less land. The pressure of an increasing population on a �xed land area

may then either cause a race to land conversion detrimental to biodiversity con-

servation, or a reduction of each farmer's plot mitigating biodiversity destruction,

depending on their aversion to �uctuations.

The paper proceeds as follows. In Section 2 we present the main elements of

the model which is completely solved in Section 3. Section 4 is devoted to the

comparison between the two-players setting and the social optimum benchmark

while in Section 5 we discuss the policy hints that we get from the model. In

Section 6 we look at the results for the n-player extension of the model and in

Section 7 we conclude. The appendices contain technical details and the proofs

of all the results.
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2. The model

We develop and study a decentralized version of the model proposed by

Augeraud-Véron et al. (2019).

We consider an agricultural economy with a stock L = 1 of land, initially

undeveloped �for instance a natural forest. This forest shelters biodiversity, which

is a common pool resource. Several farmers contemplate converting the forest to

agricultural land. Each one can obtain from the state property rights on a plot,

and then has to decide how much of his plot to convert to farming3. The forest

left intact supports biodiversity and provides ecosystem services.

As explained in Augeraud-Véron et al. (2019), there is a close link between

biodiversity and space, synthesized in the classical species-area curve, initially

introduced by Arrhenius (1921) and Gleason (1922) and well anchored in the

ecological literature. According to the species-area curve, the long term species

richness S(t) is constrained by the size of the natural habitat 1− f(t). The rela-

tionship is non-linear and speci�c to any ecological and geographical context. A

widespread empirically-based speci�cation is the power function used fo instance

by Brook et al., (2003) and Storch et al. (2012):

S(t) = ε1(1− f(t))ε2 with ε1 > 0 and 0 < ε2 < 1

Then, the evolution of biodiversity B(t), de�ned as the variety of ecological ele-

ments present in the habitat, including genes, species, functional traits, commu-

nities etc., can be modeled as:

ηḂ(t) = − (B(t)− S(t)) with η ≥ 0,

where η the relaxation time of biodiversity (see Lafuite and Loreau, 2017). When

this relaxation time is negligible, biodiversity takes instantaneously its long term

value, that is B(t) = S(t), meaning that it responds instantaneously to habitat

conversion.

We describe here a 2-player setting:4 we suppose that 2 players/farmers can

appropriate the forest for farming purposes. They are indexed by i ∈ {1, 2}.

3We will contrast in Subsection 5.2 this institutional setting where farmers can obtain prop-

erty rights on the forest to the case where the forest remains in open access, meaning that there

is no incentive for the farmers to refrain from converting all of it to farming.
4The n-player extension is discussed in Section 6.
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Farmer i can appropriate some share fi(t) of total land, although the following

constraint needs to be veri�ed:

(1) f1(t) + f2 (t) ≤ 1, t ≥ 0.

We denote by f(t) := f1(t) + f2(t) ∈ [0, 1] and 1− f(t) ∈ [0, 1] the shares of land

respectively used for farming and left undeveloped, that is devoted to biodiversity

conservation. We assume that the agricultural production output of farmer i at

time t is given by:

(2) Yi(t) = fi(t)Ai(t)

where Ai(t) is the productivity5 of a unit of land farmed by agent i at time t,

whose dynamics is described by the following stochastic di�erential equation:

(3)

{
dAi(t) = αiAi(t) dt+ σif(t)1/2Ai(t) dW (t)

Ai(0) = A0
i

where W is a real standard Brownian motion W : [0,+∞) × Ω → R, adapted
to some �ltration Ft, de�ned on a complete probability space (Ω,F ,P). In such

an expression, αi ∈ R represents some �xed and exogenous rate of technological

progress in farming activities (it can be equal to 0), and the term σif(t)1/2 mea-

sures the volatility of agricultural productivity. Total volatility has an exogenous

component σi, stemming for instance from weather events, and an endogenous

component f(t)1/2, common to both farmers, increasing in the total share of land

converted to agriculture, that is decreasing in the biodiversity level.6 It is in

this sense that biodiversity appears in the model as insurance against adverse

outcomes.

The two farmers play a non-cooperative game with Markovian strategies so

that farmer i chooses the size of land to cultivate in the form fi = Ψi(A1, A2)

5An intense debate has developed, following the Green et al. (2005) contribution, on the im-

portance of preserving biodiversity also in the context of land used for agriculture, in particular

in relation to di�erent farming practices (extensive vs intensive land use). The discussion about

land sparing vs land sharing remains alive (see for instance Fisher et al., 2014, Kremen, 2015

or Renwick and Schellhorn, 2016). In the simpli�ed context of the model presented here we ab-

stract from this issue and we consider only an average productivity whose growth is exogenous

and independent of the level of biodiversity.
6Augeraud-Véron et al. (2019) write more generally this endogenous component as: f(t)χ/2,

χ ≥ 1. We restrict ourselves to the case χ = 1 for simplicity, without loss of generality.
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where Ψi : R2
+ → [0, 1] is a measurable function. A couple of Markov strategies

Ψ := (Ψ1,Ψ2) is admissible if (1) is veri�ed for all positive couple of real numbers

(A1, A2), i.e. if

Ψ1(A1, A2) + Ψ2(A1, A2) ≤ 1, for all (A1, A2) ∈ R2
+

and if the two equations (3) have a unique solution.7 We denote by C the set of

admissible strategy couples:

C :=
{

Ψ := (Ψ1,Ψ2) : R2
+ → [0, 1]2 measurable : Ψ is an admissible strategy couple

}
Given a strategy Ψ1 of Player 1 (respectively Ψ2 of Player 2), we denote by

C2(Ψ1) (respectively C1(Ψ2)) the set

C2(Ψ1) := {Φ: R+ → [0, 1] measurable : (Ψ1,Φ) ∈ C}

(and similarly for C1(Ψ2)).

We suppose that at each time t ≥ 0 all the production is consumed:

(4) Ci(t) = Yi(t).

Farmer i's target is to maximize an in�nite horizon, continuous time, Epstein-

Zin-Weil utility function with Kreps Porteus utility. This speci�cation of utilities

makes it possible to disentangle the notions of aversion to risk and aversion to

�uctuations which are identi�ed (and con�ated) in the usual time additive ex-

pected utility function i.e. in the speci�cations where the target can be written

as the expected value of utility on each trajectory. We denote by θi > 0 (and

θi 6= 1) the (constant) relative risk aversion of Player i and by φi > 0 her aversion

to �uctuations i.e. the inverse of her intertemporal elasticity of substitution. The

case θi = φi corresponds to the usual time additive case. The discount rate of

Player i is denoted by ρi > 0.

The standard additive case is sometime called �separable case� since the utility

of agents can be written as the integral over time of the discounted instantaneous

expected utility (so the time and the probability are somehow separated in two

di�erent integrals). The same thing cannot be done in context of recursive utility

7This second requirement is not very strong: the term f is bounded (by 0 and 1) so the system

of equations for A has always linear growth, so that, by standard existence and uniqueness

results for the solution of a system of SDE (see Chapter V of Protter, 2005), we only need

to have weak Lipschitz-type continuity in the di�usion term (w.r.t. of Ai) and some mild

regularity of Ψ to guarantee the existence and the uniqueness of the solution.
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(as, for instance in the case of Epstein-Zin-Weil preferences that we use here).

In this case the utility is expressed through the evolution of a suitable stochastic

di�erential equation as more formally explained at the beginning of Appendix A.

The interested reader can look at the foundational works by Du�e and Epstein

(1992a, 1992b) and Du�e and Lions (1992) and at the more recent papers by

Lazrak and Quenez (2003) or Kraft and Seifried (2014).

In this framework the problem focuses on the study of a pair of Hamilton-

Jacobi-Bellman (HJB) equations of the following form:

ρi
1− θi
1− φi

Vi(A1, A2) = max
fi∈[0,1−fj ]

[
(fiAi)

1−φi

1− φi
1

((1− θi)Vi(A1, A2))
1−φi
1−θi

−1
+

∂Vi
∂A1

A1α1 +
∂Vi
∂A2

A2α2 +
1

2
(f1 + f2)

〈(
σ1

σ2

)
, HVi

(
σ1

σ2

)〉]
where Vi(A1, A2) is the value function of Player i, HVi the Hessian matrix of Vi
and 〈·, ·〉 the scalar product on R2 (we did not write explicitely the dependence

of ∂Vi
∂A1

and HVi on (A1, A2) to lighten the notation).

In this setting we implicitly make the assumption that the choice of developing

land made by a farmer at any date is completely reversible. However, given the

particular structure of the model, introducing an irreversibility constraint (i.e., in

formal term, admitting only weakly increasing paths of the shares of land used for

farming) would not signi�cantly change the situation. Indeed the best strategies

we identify are constant over time, so they remain so if we restrict the set of

possible choices.

More technical details on the formulation we use can be found in Appendix A.

The study of the HJB equations is carried out in Appendix B.

3. The characterization of the strategic interaction equilibrium

In this section we solve the model and get an explicit description of the Nash

equilibrium. Let's start by de�ning the quantity

(5) xi =
ρi − αi(1− φi)

θi
σ2
i

2

, for i = 1, 2.
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that will be frequently used below8. The strategies of the two players to balance

are described in the following theorem.

Theorem 3.1. Suppose that

(6) ρi > (1− φi)αi, for i = 1, 2

(it implies in particular x1 and x2 positive),

(7) φ1 + φ2 > 1

and that the following transversality condition is veri�ed:

(8) ρi > (1− θi)
(
αi − θi

σ2
i

2

x1 + x2

φ1 + φ2 − 1

)
, for i = 1, 2.

Then, if

(9) f̄1 :=
φ2x1 + (1− φ1)x2

φ1 + φ2 − 1
∈ (0, 1)

and

(10) f̄2 :=
φ1x2 + (1− φ2)x1

φ1 + φ2 − 1
∈ (0, 1− f̄1),

the couple

Ψ2(A1, A2) ≡ f̄2, Ψ1(A1, A2) ≡ f̄1

is a Nash equilibrium of Markov strategies. Moreover it is the unique Nash equi-

librium of Markov strategies where strategies are constant and deterministic.

Proof. See Appendix B. �

The equilibrium described in Theorem 3.1 is a �true� Markov perfect Nash

equilibrium in the sense that, given the described (constant) strategy Φ1 of Player

1, the described strategy Ψ2 is the unique best response of Player 2 among the

whole set of (constant and non-constant) admissible Markov strategies (and vice-

versa exchanging the role of Player 1 and Player 2).

This equilibrium is unique among equilibria where at least one the the players

plays a constant deterministic strategy but it can fail to be unique in the set of all

admissible couples strategies. In other words there could exist couples of Markov

strategy (non-constant and deterministic for both players) which are equilibria.

The problem of course is that agents could coordinate on equilibria which are

8Quantity xi is only a notation to ease the reading and has no intrinsic interpretation.
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di�erent from the one described. A sort of �meta-analytical� justi�cation can be

used to defend the selection of the described equilibrium precisely because of its

simplicity: an Occam's razor argument suggests indeed that the players could

more easily coordinate on the simplest and more easily computable equilibrium.

Using the expressions of the land used by each player at the equilibrium we

can easily determine the total amount of land converted for agricultural purposes

and therefore, in a complementary way, the land available to preserve biodiversity.

The result is contained in the corollary below.

Corollary 3.2. Suppose that hypotheses of Theorem 3.1 are satis�ed. Then the

total land area devoted to farming is

(11) f̄ := f̄1 + f̄2 =
x1 + x2

φ1 + φ2 − 1
.

To complete the analysis of the system at the equilibrium we can �nally cal-

culate the utility of each of the players:

Proposition 3.3. Suppose that the hypotheses of Theorem 3.1 are veri�ed. Then,

along the described equilibrium, the welfare of the two players is

(12) Vi (A1, A2) =
βi

1− θi
A1−θi
i

with

(13) βi =

(
θi
σ2
i

2
f̄φii

)− 1−θi
1−φi

where the expression of xi and f̄i are given respectively in (5) and in (9)-(10).

Since V1 is only a function of A1, we will simply write V1(A1) instead of

V1(A1, A2). Similarly for V2(A2).

Proof. It is a corollary of the proof of Theorem 3.1. See Appendix B. �

A �rst study of the results of the model is possible using the comparative

analysis contained in the following proposition.

Proposition 3.4. Suppose that the hypotheses of Theorem 3.1 are satis�ed. Then

we have the following dependencies of f̄i on the parameters characterizing Player

i:
∂f̄i
∂ρi

> 0,
∂f̄i
∂σi

< 0,
∂f̄i
∂θi

< 0,
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and on the parameters characterizing Player j:
∂f̄i
∂ρj

> 0, ∂f̄i
∂σj

< 0, ∂f̄i
∂θj

< 0, if φi < 1

∂f̄i
∂ρj

= 0, ∂f̄i
∂σj

= 0, ∂f̄i
∂θj

= 0, if φi = 1

∂f̄i
∂ρj

< 0, ∂f̄i
∂σj

> 0, ∂f̄i
∂θj

> 0, otherwise

Proof. See Appendix B. �

The trade-o� agent i faces when she chooses the amount of land fi she converts

to agriculture is indeed between consuming more today (higher fi) and having

a smaller uncertainty tomorrow (higher 1 − fi). Therefore the fact that ∂f̄i
∂ρi

>

0 is rather intuitive: the higher is the subjective discount rate, the lower the

importance of the future and then the higher the relative weight the player assigns

to present consumption and the higher the fi she will choose. The e�ects of θi
and σi are pure risk-aversion e�ects: the higher σi (respectively θi) the higher

the future volatility (respectively its perception) and then the higher the e�ort

of the agent to reduce it.

To understand the e�ects of preference parameters of Player j on the value of

f̄i it is instructive to have a look at the best response of Player i to a generic

choice f̄j of Player j. It reads (see equations (46) and (48) in Appendix B):

f̄i =
xi + (1− φi)f̄j

φi

Then:

df̄i
df̄j


> 0 if φi < 1

= 0 if φi = 1

< 0 otherwise

If Player i's aversion to intertemporal �uctuations φi is smaller than 1, her best

response is to increase her share of land devoted to farming when Player j in-

creases her own. In this case, there is strategic complementarity. It is the reverse

if φi is larger than 1: Player i, who is now strongly averse to intertemporal �uctu-

ations, will decrease her share of land devoted to farming when Player j increases

her own. Now the decisions of the two players are strategic substitutes.

The total amount of land, that has to be divided between three uses: farming

by Player 1, farming by Player 2, and biodiversity conservation, is �xed. When

Player j chooses to convert more forest to farming, Player i, expecting more

volatility of agricultural productivity in the future, may either increase fi to
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increase its average consumption at each date, or, on the contrary, decrease fi to

counteract the volatility increase due to the behavior of Player j. The �rst e�ect

is stronger than the second one when Player i is not very averse to intertemporal

�uctuations, and vice-versa. In case of strategic complementarity, the discount

rate and the risk parameters of Player j a�ect the behavior of Player i in the

same way as her own do. It is the reverse in case of strategic substitutability.

When φi = 1 the two e�ects compensate exactly, and the decision of Player i is

independent of the choice made by Player j.

4. The symmetric case and the comparison with the optimal

solution

To compare now the results with the optimal solution presented by Augeraud-

Véron et al. (2019) we consider the case where parameters (α, σ, ρ, θ and φ) do

not depend on i. We also suppose that the initial value of A is the same for both

farmers. More precisely we compare the decentralized solution at the symmetric

equilibrium with the optimal solution chosen by a planner which gives in the

social welfare function the same weight to each farmer. We start by re-stating

the result of Section 3 in this circumstances. In the next two subsections we will

compare the results with the social planner benchmark in two perspectives: the

biodiversity conservation and the welfare of the agents.

De�ne

x =
ρ− α(1− φ)

θ σ
2

2

.

The results of Theorem 3.1 and Proposition 3.3 read as follows.

Corollary 4.1. Suppose that

(14) ρ > (1− φ)α

(it implies in particular that x is positive),

(15) φ > 1/2

and that the following transversality condition is veri�ed:

(16) ρ (1 + 2(φ− θ)) > (1− θ)α.
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Suppose that

(17) f̄h :=
x

2φ− 1
∈
[
0,

1

2

]
.

Then the couple

Ψ2(A1, A2) ≡ f̄h, Ψ1(A1, A2) ≡ f̄h

is a Nash equilibrium of Markov strategies. Moreover it is the unique Nash equi-

librium of Markov strategies where strategies are constant and deterministic. The

total land used for farming is then

(18) f̄ := 2f̄h =
2x

2φ− 1
≤ 1.

The corresponding welfare of each farmer is

(19) Vh(A) =
βh

1− θ
A1−θ

with

(20) βh =

(
θ
σ2

2
2−φf̄φ

)− 1−θ
1−φ

.

The expression of f̄ given in (18) is particularly transparent. One can �rst

easily verify that f̄ is always a decreasing function of θ. This is the same �risk

hedging� reaction we have seen in Proposition 3.4 for the dependence of the values

of f̄1 and f̄2 on θ1 and θ2. On the other hand we can observe that f̄ is a decreasing

function of φ if and only if α < 2ρ. This condition relates to the comparison of

the magnitudes of the growth and discount rates. When the trend of agricultural

productivity is smaller than twice the discount rate, farmers' future prospects are

not good. Then the more averse to �uctuations they are the more willing they

are to insure against bad outcomes in the future by conserving more biodiversity.

The opposite occurs when α > 2ρ.

Notice that when α > 2ρ, the two parameters characterizing preferences play

in opposite directions. This is a strong argument in favor of disentangling the

two parameters. See the discussion in Subsection 4.2.

4.1. The e�ect of strategic competition on land use and biodiversity.

We recall that the part f ∗ of land used for farming in the social planner model

of Augeraud-Véron et al. (2019) is equal to

(21) f ∗ =
x

φ
.
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The restrictions on the parameters which are needed to obtain this result are

(14), a transversality condition which reads:

(22) ρ (1 + (φ− θ)) > (1− θ)α,

and the condition x
φ
∈ [0, 1]. So, all in all, the conditions that allow to work in

the intersection of the hypotheses needed for the current results and for the social

planner case are the following: (14), (15), and

(23) ρ (1 + min [φ− θ, 2(φ− θ)]) > (1− θ)α.

When they are satis�ed,

(24)

{
f ∗ = x

φ
if x < φ, 1 otherwise

f̄ = x
φ− 1

2

if x < φ− 1
2
, 1 otherwise.

The optimal share of land used for farming increases with the discount rate ρ,

decreases when intrinsic volatility σ increases, decreases when risk aversion θ

increases, decreases when aversion to �uctuations φ increases if α < ρ, and vice

versa. Notice that, for ρ < α < 2ρ, f ∗ increases with φ whereas f̄ decreases with

φ.

De�ne Λ = f̄
f∗

the ratio of total land converted to farming at the Nash equi-

librium and at the optimum. We have:

(25) Λ =


φ

φ− 1
2

, if x < φ− 1
2

φ
x
, if φ− 1

2
≤ x < φ

1, if φ ≥ x.

Proposition 4.2. Suppose that (14), (15) and (23) are satis�ed. Then Λ ≥ 1 so

that the land used for biodiversity conservation is weakly smaller in the strategic

competition situation than that chosen by the social planner. Λ is strictly greater

than 1 as soon as the optimal land devoted to farming is strictly smaller than 1.

Proof. Direct inspection of formulas in (25). �

Proposition 4.2 shows that a tragedy of the commons mechanism is at work

in the model: the exploitation of the natural resource is larger in the strategic

competition set-up than at the social optimum and then the land used for biodi-

versity conservation is smaller. This is what we expected since the two players do

not completely internalize the volatility externality: the conversion decisions of
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each farmer a�ect the volatility of agricultural productivity and then the utility

of both. In the following proposition we try to dig a little deeper into this result.

Proposition 4.3. Suppose that (14), (15) and (23) are satis�ed and that x ≤
φ− 1

2
, so that the solution is interior at the optimum and at the Nash equilibrium.

Then Λ does not depend on the risk aversion θ and is decreasing in the aversion

to �uctuations φ.

Proof. Direct inspection of the �rst formula in (25). �

The previous proposition identi�es the parameters that play a role in the gap

between the optimal choice of land conversion and the outcome of a strategic

competition for land appropriation between two identical farmers. The result

is sharp: even if the risk aversion has a role in establishing the share of land

devoted to production it has no impact on the gap between the optimal and the

decentralized solutions. Conversely the elasticity of intertemporal substitution

parameter does play a role: the smaller it is the higher is Λ, that is the further

is the Nash solution from the optimal one.

4.2. A technical excursus: comments on the role of the Epstein-Zin-

Weil utility. In this paper we have chosen to use the Epstein-Zin-Weil speci-

�cation of preferences. Of course as a general statement there are several good

reasons to disentangle the e�ect of risk aversion and intertemporal elasticity of

substitution: they are related to di�erent characteristics of the individuals, one

concerning intra-temporal preferences, the other (as the name suggests) inter-

temporal behavior.

At the level of our model the relevance of this distinction is immediately clear

once we look at the realistic possible values of the parameters (see for instance

Barro, 2015). Plausible calibrations of the inverse of the intertemporal elasticity

of substitution φ are smaller than 1 while the relative risk aversion parameter θ is

typically largely higher than 1 (3 and more). This fact, besides pointing out once

again the unlikelihood of the expected utility case (ϕ = θ = φ), has qualitative

implications in the model.

Disentangling the e�ect of risk aversion and intertemporal elasticity of substi-

tution often gives the possibility of more deeply understanding some behaviors

of the model. To clearly make the point consider for instance the value of the
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variable x which appears several times in the paper. Its expression is

x =
ρ− α(1− φ)

θ σ
2

2

while its �expected utility counterpart� is given by

xEU =
ρ− α(1− ϕ)

ϕσ2

2

where ϕ is the unique parameter appearing in the expected utility case. One

can readily see that the derivative ∂xEU
∂ϕ

does not have a univocal sign while the

two derivatives ∂x
∂θ

and ∂x
∂φ

are respectively always negative and positive (under

assumption (6)) so that introducing the two-parameters Epstein-Zin-Weil spec-

i�cation allows to resolve the ambiguity that we observe in the expected utility

case. This explanatory e�ect of the Epstein-Zin-Weil speci�cation on x brings

similar results to more interesting variables. If we look for instance at the ex-

pected utility counterpart of (18) (we could comment in a similar way (9) and

(10)), it reads as

f̄EU =
2xEU

2ϕ− 1
=

2ρ−α(1−ϕ)

ϕσ
2

2

2ϕ− 1
.

The dependence of this expression on ϕ relies on various relative magnitudes

of the parameters and they are not easy to justify, while the signs of the two

derivatives ∂x
∂θ

and ∂x
∂φ

is clear as we stressed in the discussion below Corollary

4.1: f̄ is always a decreasing function of θ and it is an increasing function of φ

if and only if α > 2ρ. As discussed above these results have a neat economic

interpretation.

Observe that in particular, as the two variables indicate di�erent notions and

characteristics, their e�ects on the agent's behavior can be very di�erent. We

have already mentioned above that, as far as α > 2ρ the role of θ and φ in

establishing the size of the land devoted to farming (and then the size of the land

devoted to biodiversity conservation) at the equilibrium f̄ is opposite. This is

also true for the size of the land devoted to farming at the social optimum f ∗.
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5. The effect of strategic competition on welfare and policy

implications of the model

5.1. The per-capita welfare gain of moving from the Nash equilibrium

to the optimum. We restrict ourselves to the most interesting case where pa-

rameters are such that the solution at the Nash equilibrium is interior (f̄ < 1),

which guarantees that the optimal solution is interior as well.

The welfare of each farmer at the Nash equilibrium is given in Proposition 3.3.

At the optimum, the planner sets the level of f at f ∗ and then she gives half of

total production to each farmer9. Since the production is linear in productivity,

the welfare of each farmer is equal to the total welfare Vp computed in Augeraud-

Véron et al. (2019), calculated for a productivity level equal to A/2, where

(26) Vp(A) =
1

1− θ
βpA

1−θ

with

(27) βp =

(
θ
σ2

2
(f ∗)φ

)− 1−θ
1−φ

.

We de�ne the welfare gain of moving from the Nash equilibrium to the optimum

as the permanent percentage increase in consumption that has to be given to each

farmer in order to increase her welfare up to the optimal level. This welfare gain

is denoted ω and de�ned by:

(28) Vh((1 + ω)A) = Vp

(
A

2

)
.

Using equations (26), (27), (19) and (20) we obtain:

(29) ω =

[
1

2

(
φ

φ− 1
2

)φ] 1
1−φ

− 1

and can prove the following proposition:

Proposition 5.1. Suppose that hypotheses of Corollary 4.1 are veri�ed. ω is

always positive, does not depend on risk aversion and is a decreasing function of

aversion to �uctuations.

9This result relies on the fact that all farmers have the same preferences and the same initial

productivity. We also suppose that the planner attaches the same weight to each farmer in the

social welfare function.
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Proof. See Appendix B. �

5.2. Decomposition of the total value of biodiversity and policy im-

plications of the model. In reference to Lucas' welfare cost of �uctuations

(Lucas, 1987), the total value of biodiversity can be de�ned as the welfare gain

from conserving biodiversity at its optimal value compared to no conservation at

all. More precisely, is the percentage increase in consumption society is willing

to accept at all dates to give up the optimal level of biodiversity in favor of no

biodiversity at all (see Augeraud-Véron et al., 2019).

The case where the whole forest is converted to farming and no biodiversity

is conserved can be interpreted as the consequence of a forest in open access,

where property rights are absent or poorly de�ned or enforced. Then each farmer

appropriates 1/2 of total land and all land is converted to farming. Following

Augeraud-Véron et al. (2019), the utility in this case is10:

(30) Voa (A) =
1

1− θ
βoaA

1−θ

with, when the restriction on parameters

(31) ρ > (1− φ)

(
α− θσ

2

2

)
is satis�ed,

(32) βoa =

[
ρ− (1− φ)

(
α− θσ

2

2

)]− 1−θ
1−φ

.

The per capita welfare gain from biodiversity conservation is then λ de�ned by:

(33) Voa

(
(1 + λ)

A

2

)
= Vp

(
A

2

)
.

Using equations (26), (27), (30) and (32) we obtain:

(34) λ =

(
φf ∗ + (1− φ)

f ∗φ

) 1
1−φ

− 1.

10Indeed the utility is computed in Augeraud-Véron et al. (2019) using a sort of �trick�

that can be used only because we consider a constant control. They observe that the welfare

in the situation where we impose that all the land is used for farming is indeed the value

function of a di�erent (auxiliary) optimization problem where the agents can only choose to

take f1 = f2 = 1/2 so we can compute the utility in the situation where we impose f = 1/2 just

computing the value function of the problem where the agents, instead of maximizing on the

set [0, 1] maximize on the set (singleton) {1/2} and so they are obliged to choose f1 = f2 = 1/2.
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λ decreases when the discount rate ρ increases, increases (resp. decreases) when

the trend of agricultural productivity increases if φ < 1 (resp. > 1), increases

with the intrinsic volatility σ, increases with the risk aversion θ and is an ambigu-

ous function of the aversion to �uctuations φ. Augeraud-Véron et al. (2019) show

that when α < ρ, λ unambiguously increases with φ. In this case, a higher aver-

sion to �uctuations translates into more biodiversity conservation and a higher

value of biodiversity. In the opposite case where α > ρ, the e�ect of φ on λ is

ambiguous. Then, increasing aversion to �uctuations decreases the share of land

devoted to biodiversity conservation and may at the same time increase the total

value of biodiversity.

The total insurance value of biodiversity λ can be decomposed in two parts:

the welfare gain of moving from the open access equilibrium to the Nash equi-

librium, denoted λ̄, and the welfare gain of moving from the Nash equilibrium

to the optimum, ω. Assessing the relative magnitudes of these two components

is important for policy. Indeed, if the insurance value of biodiversity is mostly

due to the departure from the open access situation, then the appropriate policy

consists in dividing total land equally among farmers and giving them secure

property rights on their plot; if on the contrary it is mostly due to the lack of

internalization of the volatility externality, then the appropriate policy consists

in pricing the volatility externality, for instance through a tax on land conversion.

Similarly to the de�nition of λ, λ̄ is de�ned by:

(35) Voa

(
(1 + λ̄)

A

2

)
= Vh

(
A

2

)
.

It is easy to see that the decomposition reads:

(36) 1 + λ = (1 + ω)(1 + λ̄).

5.3. Illustrative simulations. To get more insights on the relative magnitude

of the three welfare gains identi�ed above we perform illustrative simulations

using the following values of the parameters: θ = 3, ρ = 0.04 and σ = 0.25,

in three con�gurations: α = 0.035 < ρ, ρ < α = 0.05 < 2ρ, 2ρ < α = 0.085.

The value chosen for θ is empirically relevant (see for instance Barro, 2015). The

value of ρ is in the standard range considered in dynamic models and it is for

instance consistent with the data from Lopez (2008). The range of values of

α is consistent with the growth rates observed in developing countries (see e.g.

World Bank Group, 2018). We have chosen on purpose a very high volatility of
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agricultural productivity, implying a variance σ2 of 6.25 %, in the case where all

land is converted to farming, to re�ect �rstly the fact that agricultural output is

more volatile than global output, and second that without the dampening e�ect

of biodiversity this volatility will become very high. Finally we suppose that

aversion to �uctuation φ is smaller than risk aversion θ. All in all, our calibration

is related to the case of biodiversity-rich developing countries where agricultural

productivity is very volatile, deforestation and land conversion are an issue, and

farmers have a preference for the early resolution of uncertainty (Gollier, 2001), in

the sense that they are more risk averse than they are concerned about smoothing

consumption.11

α < ρ ρ < α < 2ρ 2ρ < α
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Figure 1. Land conversion (upper panel) and welfare gains (lower

panel) as functions of aversion to �uctuations

Figure 1 shows the amount of land converted to farming at the Nash equi-

librium and at the optimum (upper panel) and the three welfare gain measures

11See for instance Lybbert and McPeak (2012) for an empirical highlighting of the preference

for an early resolution of uncertainty in the case of an agricultural economy.
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(lower panel) as functions of aversion to �uctuations φ, in the three con�gura-

tions identi�ed as relevant for the relative magnitudes of α and ρ. The range

of φ is such that the restrictions necessary to obtain interior solutions and the

transversality conditions are satis�ed, and there is preference for early resolution

of uncertainty. In the lower panel the restriction on parameters (31) is added to

ensure the existence of the welfare gains.

In the �rst and second cases depicted on Figure 1, the trend of agricultural

productivity is smaller than twice the discount rate. Then the welfare gain of

conserving the optimal level of biodiversity is increasing in the aversion to �uc-

tuations, whereas the welfare gain from moving from the Nash equilibrium to

the optimum is decreasing in the aversion to �uctuations. Then as φ increases

the welfare gain of conserving the optimal level of biodiversity becomes mostly

explained by the welfare gain of moving from the open access situation to the

Nash equilibrium. These results suggest that the most relevant policy option in

poorly productive agricultural economies is to put in place land property rights

to move away from open access.

In the third case, where the agricultural productivity trend is very high com-

pared to the discount rate, the e�ects may be very di�erent since the welfare

gain of conserving the optimal level of biodiversity is decreasing in the aversion

to �uctuations. We exhibit in the simulation a case where this welfare gain is

mostly explained by the welfare gain of moving from the open access situation

to the Nash equilibrium when φ is small, then more and more explained by the

welfare gain of moving from the open access situation to the Nash equilibrium as

φ increases.It suggests that in highly productive economies averse to �uctuations

the best policy option may be to tax land conversion to internalize the volatility

externality.

6. Extension to the n−player case

The results obtained for the two-player case can be extended to the n-player

case. In this section we brie�y sketch the results in the general case.

As proved in Appendix C the best response function of Player i to the decisions

of the other players is:

(37) f̄i =
1

φi

(
xi + (1− φi)

∑
j 6=i

f̄j

)
.
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As in the two-player case, there is strategic complementarity if φi < 1, strategic

substitutability if φi > 1, and the decision of Player i is independent of the choices

of the other players when φi = 1. Moreover, the interior Nash equilibrium is

characterized by the following set of strategies:

(38) f̄i = min


xi

 n∑
j=1
j 6=i

φj − (n− 2)

+ (1− φi)
n∑
j=1
j 6=i

xj

n∑
j=1

φj − (n− 1)
, 1−

n∑
j=1
j 6=i

fj


.

When preferences parameters are the same for all players and φ > 1 − 1
n
,

according to (38), the interior optimal quantity of land devoted to farming for

each farmer in the n−player game is given by

f̄h =
x

nφ+ 1− n
∈
[
0,

1

n

]
and then the total land devoted to farming is

f̄ =
x

φ− n−1
n

≤ 1.

If can be noticed that

df̄h
dn


> 0 if φ < 1

= 0 if φ = 1

< 0 otherwise

and
df̄

dn
> 0.

Not surprisingly, as the number of farmers increases, the total share of land

devoted to biodiversity conservation decreases. The more farmers there are the

bigger the volatility externality. The open access situation corresponds to the

case of free entry, where new farmers appropriate land until all land is converted

to farming.

More interestingly, how individual choices depend on the number of farmers

is radically di�erent whether the aversion to intertemporal �uctuations is less or

more than 1. We have seen in Section 3 that farmers' decisions are strategic

complements when φ < 1; then, when the number of farmers increases every

individual share of land devoted to farming increases as well. In this sense, a small

aversion to intertemporal �uctuations is detrimental to biodiversity conservation.
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Conversely, if farmers have a large aversion to intertemporal �uctuation (φ >

1), farmers' decisions are strategic substitutes and when the number of farmers

increases each one reduces its own farming.

In the n−player situation, the relationship 1 + λ = (1 + ω)(1 + λ̄) still holds,

with λ unchanged and (see Appendix C)

ω =

(
1

n

(
φ

φ+ 1
n
− 1

)φ) 1
1−φ

− 1

We can see that

∂ω

∂n
=

(
1− 1

n

)(
φ

φ+ 1
n−1

)φ
n

 1
1−φ

1 + n(φ− 1)

thus as φ > 1 − 1
n
, ω is an increasing function of n. The more farmers there are

the bigger the gain of putting in place land property rights.

7. Conclusion

Biodiversity is a multiform concept, as are the ways to calculate its economic

value. Biodiversity is in particular a �ow of services that allows to reduce the

variability of ecological and economic conditions and can therefore be thought of,

among other things, as a natural form of insurance. What is the loss of biodi-

versity insurance value that results from the decentralized decision of individuals

and volatility externalities? Under which conditions is this loss most pronounced?

What policies are best suited to counter this loss?

In this article we propose a theoretical framework to approach these questions.

We consider an agricultural economy with free access and use of a natural forest.

A trade-o� arises between the forest conversion to agricultural activity and the

loss of biodiversity and consequently of its role of natural insurance this conversion

entails.

We study the solution of the model in a context of strategic competition among

farmers, quantifying the over-exploitation of the forest and the welfare loss with

respect to the social optimum. Agents' utility is given in terms of a Kreps Porteus

stochastic di�erential utility capable of disentangling risk aversion and aversion

to �uctuations.
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For empirically plausible values of the parameters, the model suggests that en-

forcing property rights is more relevant in case of stagnant technological progress

in agricultural activities while policies consisting in pricing the volatility exter-

nality (for instance through a tax on land conversion) may be more suited for

rapidly developing economies averse to �uctuations.

The structure of the proposed benchmark model is kept simple to allow the

model to be solved explicitly, but a number of possible extensions would be of

interest. We mention here some of them.

A a �rst extension of the model could include production storage technologies.

In this way the consumption at any given time would not need to be equal to

production and the smoothing of the consumption trajectory could go through a

new channel compared to the model presented in this paper.

A second possible generalization could take into account catastrophic events

that may have an impact on production/productivity and whose frequency or

magnitude could be endogenously in�uenced by conservation choices as suggested

by a great deal of evidence (for example, see Isbell et al., 2015).

A third way to extend the current results could consist in considering the

di�erent impacts of di�erent agricultural models on biodiversity following the

well-developed discussion about land sparing vs land sharing, since a part of the

biodiversity could be preserved also in agricultural environments depending on

the farming practices.
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Appendix A. The utility specification and the definition of

equilibrium

We spend some words to recall how this utility is de�ned. We start by de�ning the

utility for the �nite horizon problem with horizon T > 0. Chosen a couple of strategies

(Ψ1,Ψ2) ∈ C we have, through (3), the dynamics of A1 and A2 and then, thanks to

(2) the processes Yi, and (with (4)) the consumptions paths. The Epstein-Zin-Weil

utility (for player 1, the situation for player 2 is completely analogous) is de�ned (see

Du�e and Epstein, 1992a, 1992b) as the solution at time t = 0 of the following integral

equation (it is a backward SDE with �nal condition equal to 0):

(39) U t,T1 (Ψ1,Ψ2) = E
[∫ T

t
F1(C1(s), U s,T1 (Ψ1,Ψ2)) ds

∣∣∣Ft]
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where the aggregator F can be chosen12 in the following form (Epstein and Zin, 1991,

Svensson, 1989 and and Du�e and Epstein, 1992a) :

(40) F1(C, V ) =
ρ

1− φi
(1− θi)V


 C

ρ
(
(1− θi)V

) 1
1−θi

1−φi

− 1

 .
One of the most characteristic properties of Epstein-Zin-Weil utilities, apart from

the partular case where φi = θi, is that they are not separable in the sense that they

cannot be written as a double integral (one with respect to time and one, hope, with

respect to the probability measure). For this reason, in the general case utility can only

be expressed by an expression of the form (39).

In the in�nite horizon case the utility is de�ned as

U1(Ψ1,Ψ2) = lim
T→∞

U0,T
1 (Ψ1,Ψ2).

Proving that this utility is well de�ned is not in general an easy problem (one has to

be sure that the backward equation has a solution and that the limit exists). Results

for existence are given for instance by Du�e and Epstein (1992a) in the �nite horizon

case, and by Du�e and Lions (1992) in the in�nite horizon Kreps Porteus case (i.e. the

case we are interested in).

Given a strategy Ψ2 of farmer 2 we say that Ψ1 ∈ C1(Ψ2) is a best response to Ψ2 if

(41) Ψ1 ∈ arg max
Φ∈C1(Ψ2)

U1(Φ,Ψ2).

Similarly, given a strategy Ψ1 of farmer 1, Ψ2 ∈ C2(Ψ1) is a best response to Ψ1 if

(42) Ψ2 ∈ arg max
Φ∈C2(Ψ2)

U1(Ψ1,Φ).

We say that the couple (Ψ1,Ψ2) is a Nash equilibrium of Markov strategies if both (41)

and (42) are veri�ed.

Appendix B. Proofs in the 2−player case

Proof of Theorem 3.1. Suppose �rst that Player 2 plays a constant strategy

Ψ2(A1, A2) ≡ f2 for some f2 ∈ [0, 1]. Then the optimal response of Player 1 can be

found as the solution (in feedback form) of an optimal control whose Bellman equation

may be written as:

12Several ordinally equivalent choices of the aggregator are possible, the one described in

(40) has the advantage of eliminating the variance term that in general appears in (39), it is

indeed the unique with this property, see Du�e and Epstein (1992b) and Du�e and Lions

(1992).
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ρi
1− θi
1− φi

Vi(A1, A2) = max
fi∈[0,1−fj ]

[
(fiAi)

1−φi

1− φi
1

((1− θi)Vi(A1, A2))
1−φi
1−θi

−1
+

∂Vi
∂A1

A1α1 +
∂Vi
∂A2

A2α2 +
1

2
(f1 + f2)

〈(
σ1

σ2

)
, HVi

(
σ1

σ2

)〉]

We guess and check the following solution: V1(A1, A2) = β1
A

1−θ1
1

1−θ1 for some positive

constant β1. Then

ρ1
1

1− φ1
β1A

1−θ1
1 = max

f1

(f1A1)1−φ1

1− φ1

1(
β1A

1−θ1
1

) 1−φ1
1−θ1

−1
+ β1A

1−θ1
1

[
α1 − θ1

σ2
1

2
(f1 + f2)

]
i.e.

ρ1

1− φ1
= max

f1

 f1−φ1
1

(1− φ1)β
1−φ1
1−θ1
1

+

[
α1 − θ1

σ2
1

2
(f1 + f2)

]
i.e.

(43)
ρ1

1− φ1
− α1 = max

f1

 f1−φ1
1

(1− φ1)β
1−φ1
1−θ1
1

− θ1
σ2

1

2
(f1 + f2)


The maximizer f1 on (0,+∞) (we will check later that point of maximum will be in

(0, 1− f2]) is given by the solution of

(44)
f−φ11

β
1−φ1
1−θ1
1

= θ1
σ2

1

2

If we replace β
1−φ1
1−θ1
1 taken from (44) into (43) we get:

(45) ρ1 − α1(1− φ1) = θ1
σ2

1

2
[f1φ1 − (1− φ1)f2]

i.e.

(46) f1 =
1

φ1
(x1 + (1− φ1)f2)

where xi is de�ned as in (5). If this expression belongs in [0, 1 − f2], using classical

results for optimization of problems with stochastic di�erential utilities and in�nite

horizon (see for instance Appendix C of Du�e et Epsten, 1992a), the feedback optimal
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control of Player 1 when she knows that Player 2 plays Ψ2(A1, A2) ≡ f2 (i.e. her optimal

response) is Ψ1(A1, A2) ≡ f1 if a transversality condition in the form (see Smith, 1996):

(47) lim
t→∞

E0

[
e−ρ1tV1(A1(t))

]
= 0

is veri�ed. In this expression, and in the following, to lighten the notation, since V1 is

only a function of A1, we simply write V1(A1).

We will verify it at the equilibrium.

A similar argument can be used for Farmer 2 responding to a constant strategy of

Farmer 1. The equation which corresponds to (46) is then

(48) f2 =
1

φ2
(x2 + (1− φ2)f1)

The solution of the system (46)-(48) gives (9)-(10). Thanks to hypotheses of the The-

orem the couple Ψ2(A1, A2) ≡ f̄2, Ψ1(A1, A2) ≡ f̄1 is an admissible couple. When

the players use this couple the total area devoted to farming is, as described in (11),

f̄ := f̄1 + f̄2 = x1+x2
φ1+φ2−1 . To conclude the proof we only need to see that, along the

equilibrium path the condition (47) and its counterpart for Player 2 are veri�ed. We

can see that

E0

[
e−ρitVi(A(t))

]
=

βi
1− θi

lim
t→∞

e−ρitE0

[
Ai(t)

1−θi
]

=
βi

1− θi
A0 lim

t→∞
e−ρite(1−θi)(αi−θi

σ2i
2
f̄)t,

and one can easily see that both (for i = 1, 2) these expressions goes to 0 under the

conditions (8).

Finally we can observe that, since the solution of the two equations (46) and (48) is

unique, so it is the equilibrium of constant strategies. �

Remark B.1. Observe that, s long as the drift and the di�usion terms in equation (3)

remains linear in A there are several degrees of freedom with respect to our speci�cation

in order to obtain existence of a Markov perfect equilibrium of constant strategy.

More precisely, if we consider the generic speci�cation

dAi(t) = αi(f1, f2)Ai(t) dt+ σi(f1, f2)Ai(t) dW (t)

there exists a constant and deterministic equilibrium (Ψ1,Ψ2) = (f̄1, f̄2) if the following

conditions are veri�ed for some β1, β2 > 0:

0 < f̄1 ∈ arg max
f1

 f1−φ1
1

(1− φ1)β
1−φ1
1−θ1
1

+

[
α1(f1, f̄2)− θ1

σ1(f1, f̄2)2

2

]
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0 < f̄2 ∈ arg max
f2

 f1−φ2
2

(1− φ2)β
1−φ2
1−θ2
2

+

[
α2(f̄1, f2)− θ2

σ2(f̄1, f2)2

2

]
f̄1 + f̄2 < 1.

This system has a solution for several speci�cation of αi and θi. The problem (and the

reason why we concentrated on the version that we study in the paper) is that very rarely

the solution of the system can be written explicitly and then studied in detail.

Proof of Proposition 3.4. By direct computation we have

∂f̄1

∂ρ1
=
∂x1

∂ρ1

φ2

φ1 + φ2 − 1
> 0

∂f̄1

∂θ1
=
∂x1

∂θ1

φ2

φ1 + φ2 − 1
< 0

∂f̄1

∂σ1
=
∂x1

∂σ1

φ2

φ1 + φ2 − 1
< 0

and similarly when we compute ∂f̄2
∂ρ2

, ∂f̄2∂θ2
and ∂ ln f̄2

∂σ2
. Conversely, when we compute the

derivatives of f̄1 w.r.t. to parameters of player 2 we get

∂f̄1

∂ρ2
=
∂x2

∂ρ2

1− φ1

φ1 + φ2 − 1

∂f̄1

∂θ2
=
∂x2

∂θ2

1− φ1

φ1 + φ2 − 1

∂f̄1

∂σ2
=
∂x2

∂σ2

1− φ1

φ1 + φ2 − 1

whose sign depend on the value of φ1 compared to 1.

However the sign of fi w.r.t. φi remains unspeci�ed as clear looking at the following

expression:

∂f̄1

∂φ1
=

φ2

φ1 + φ2 − 1

(
∂x1

∂φ1
− x1 + x2

φ1 + φ2 − 1

)
�

Proof of Proposition 4.2. Since, by assumption φ > 1/2, the result is straightforward.

�

Proof of Proposition 4.3. By direct computation we have

∂ ln Λ

∂φ
=

1

φ
− 2

2φ− 1
= − 1

φ (2φ− 1)
< 0.

�
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Proof of Proposition 5.1. The positivity of ω for all φ > 1
2 follows by observing that

the limit of ω when φ tends to in�nity is 0.

We have

ln [1 + ω) = − 1

1− φ

(
ln 2 + φ ln

(
1− 1

2φ

)]
By direct computation of the derivative we obtain:

d ln (1 + ω)

dφ
=

1

1− φ

[
1

1− φ
ln

φ

2φ− 1
− 1

2φ− 1

]
=

1

1− φ

[
1

1− φ
ln

(
1 +

1− φ
2φ− 1

)
− 1

2φ− 1

]
<

1

1− φ

[
1

1− φ
1− φ
2φ− 1

− 1

2φ− 1

]
= 0.

�

Appendix C. Proofs in the n−player case

Optimal response and Nash equilibrium. We assume that the parameters are the

same for all players. Suppose �rst that all players j 6= i play a constant strategy

Ψj(A1, .., An) ≡ fj . Then the optimal response of Player i can be found as the solution

(in feedback form) of an optimal control whose Bellman equation may be written as:

ρi
1− θi
1− φi

Vi(A1, ..., An) = max
f1∈[0,1−

∑
j 6=i fj ]

[
(fiAi)

1−φi

1− φi
1

((1− θi)Vi(A1, ..., An))
1−φi
1−θi

−1
+

 n∑
j=1

∂Vi
∂Aj

αj

+
1

2
(f1 + f2)

〈 σ1

...

σn

 , HVi

 σ1

...

σn

〉]

where 〈·, ·〉 denotes the scalar product on Rn.
We guess and check the following solution: Vi(A1, ..., An) = βi

A1−θ
i

1−θ for some positive

constant βi. Then

ρ

1− φ
βiA

1−θ
i = max

fi

(fiAi)
1−φ

1− φ
1(

βiA
1−θ
i

) 1−φ
1−θ−1

+ βiA
1−θ1
i

α− θσ2

2

n∑
j=1

fj




i.e.

ρ

1− φ
βiA

1−θ
i = max

fi

(fiAi)
1−φ

1− φ
1(

βiA
1−θ
i

) 1−φ
1−θ−1

+ βiA
1−θ1
i

α− θσ2

2

n∑
j=1

fj
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i.e.

(49)
ρ

1− φ
= max

fi

 f1−φ
i

1− φ
1

β
1−φ
1−θ
i

+

α− θσ2

2

n∑
j=1

fj


The maximizer fi on (0,+∞) (we will check later that point of maximum will be in

(0, 1−
∑

j 6=i fj ]) is given by the solution of

(50)
f−φi

β
1−φ
1−θ
i

= θ
σ2

2

If we replace β
1−φ
1−θ
i taken from (50) into (49) we get:

ρ− α (1− φ) = θ
σ2

2

φfi − (1− φ)
∑
j 6=i

fj


i.e.

(51) fi =
x+ (1− φ)

∑
j 6=i fj

φ

When all the strategies are symmetric, then

fi =
x

nφ− n+ 1

Thus using (50), (
x

nφ−n+1

)−φ
θ σ

2

2

= β
1−φ
1−θ
i

�

Per-capita welfare gain and gain from biodiversity conservation. Let us now com-

pute the per-capita welfare gain of moving from Nash equilibrium to optimum, de�ned

as ω such that

Vp

(
A

n

)
= Vh ((1 + ω)A)

As Vp(A) = 1
1−θβpA

1−θ with βp =
(
θ σ

2

2 (f∗)φ
)− 1−θ

1−φ

ω =

(
1

n

(
nφ

nφ+ 1− n

)φ) 1
1−φ

− 1.
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Finally, the per capita welfare gain from biodiversity conservation λ is

Vp

(
A

n

)
= Voa

(
(1 + λ)

A

n

)
The value of λ is the same as in the 2−player case

λ =

(
φf∗ + (1− φ)

f∗φ

) 1
1−φ
− 1.

�
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