
HAL Id: hal-03369924
https://hal.science/hal-03369924

Submitted on 7 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a physical model of the clavichord
Jean-Théo Jiolat, Christophe d’Alessandro, Jean-Loïc Le Carrou, José

Antunes

To cite this version:
Jean-Théo Jiolat, Christophe d’Alessandro, Jean-Loïc Le Carrou, José Antunes. Toward a physical
model of the clavichord. Journal of the Acoustical Society of America, 2021, 150 (4), pp.2350-2363.
�10.1121/10.0006438�. �hal-03369924�

https://hal.science/hal-03369924
https://hal.archives-ouvertes.fr


Towards a physical model of the clavichord

Jean-Théo Jiolat,1 Christophe d’Alessandro,1 Jean-Loic Le Carrou,1 and Jose Antunes2
1Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, Équipe Lutheries-Acoustique-
Musique, F-75005 Paris, France
2Instituto Superior Técnico, Centro de Ciências e Tecnologias Nucleares, Applied Dynamics Labora-
tory, Portugal

String excitation by the tangent in the clavichord is a unique mechanism. The tangent,
keeping in contact with the string after the initial strike, controls continuously the string
tension. Four main flexible subsystems are considered in the clavichord: the tangent/key
subsystem, the strings subsystem, the bridge-soundboard subsystem, the string damper sub-
system. A modal description of the dynamics of these subsystems is proposed. Parameters
of the subsystems are estimated on a copy of a historical instrument by Hubert (1784). The
different subsystems and their couplings are modeled using a modal Udwadia-Kalaba for-
mulation. The string-tangent interaction is modeled via the intermittent contact dynamics,
using the Kirchoff-Carrier string model. Realistic string, soundboard and tangent motions
are obtained using a time-domain synthesis scheme that computes the dynamics of the un-
coupled subsystems and the constraints resulting from coupling between them. Simulated
motions of the model in response to a driving force on the key are analysed. The results
are consistent with experimental measurements and published data on the dynamics of the
clavichord. The model is able to reproduce the main acoustic features of the instrument:
force on the key for intonation control, key velocity for dynamic nuances control, constant
spectral slope for varying dynamic nuances.
©2021 The authors for the preprint. [http://dx.doi.org doi: 10.1121/10.0006438]
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I. INTRODUCTION

The clavichord is highly prized as a practice instru-
ment among keyboard players, because of its superior
ability to encourage a polished technique1. Its sound is
weak and sometime a little disappointing at the first con-
tact with the instrument. One explanation for the special
appreciation of the clavichord as a wonderful coach of fin-
ger technique lies in the refined string control allowed by
its simple and direct action. In the clavichord, the string
and tangent stay in contact, i.e. are mechanically cou-
pled as long as the key remains depressed (see2 for a thor-
ough presentation of the instrument). This feature has
important consequences on the sound and the dynamic
of the instrument, allowing for expressive pitch control,
a unique feature among stringed keyboard instruments.
The aim of the present research is to develop a physical
model of the clavichord that is able to account for, and
synthesize the specific feature of the clavichord’s action,
from finger motion to soundboard vibration.

Relatively few acoustic studies on the clavichord have
been published so far. The first ones3,4 mainly report de-
scriptions of sound features (level, spectrum) due to the
tangent action compared to the piano and harpsichord
actions. A study on the clavichord touch and action is
developed in5, showing that hardness of touch and pitch
stability are related to string tension and key balance
parameters. Some aspects of the physics of the instru-
ment are investigated in6: soundboard and cavity cou-
pling, tangent velocity profile and string displacement,

sound decay rate, string pair coupling effects. A linear
string model is used for qualitative explanation of the
tangent velocity profile (modeled as an exponential de-
caying function), string motion and sound decay rate.
Based on these results a comparison with the piano and
harpsichord is derived in7. Focusing on the string ex-
citation mechanism, the dynamics of the clavichord is
revisited in8. A mass-spring-damper model of the key/-
tangent and string system oscillation is developed. Using
a quasi-static approximation of the string motion and a
delay-line model of the string, the excitation dynamics is
studied and compared to experimental data. A linear
relationship between tangent velocity and sound pres-
sure level is found. String displacement (and then vari-
ation of string tension) has a significant effect on funda-
mental frequency, but the sound spectral slope does not
vary much with tangent velocity or displacement. Mea-
surements on 4 clavichords are in good agreement with
these findings9. Musical consequences of the needed joint
tangent displacement/velocity controls for the clavichord
playing technique are studied in terms of the so-called
"clavichord’s paradox"10.

As for sound synthesis, two approaches for physical
modeling of the clavichord have been published so far.
The signal processing approach by11 is based on com-
muted wave-guide synthesis: string/tangent interaction
is partly based on sampling of real sounds (for a realistic
knock sound) and partly on additional filters accounting
for the variable string tension during a tone. Physical
models of the piano gave birth to a successful software pi-
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FIG. 1. (color online) (a) Description of a clavichord and
(b) Sketch of the clavichord’s mechanism in three positions of
the touch: at rest, the tangent flushing the string and after
excitation

ano synthesizer able to produce realistic sound synthesis
for modern and historical pianos, for harpsichords as well
as for hybrid instruments and for the clavichord12. For
commercial reasons, the physical modeling techniques
used and specific features for the clavichord model are
not published, but it seems that a hard metallic ham-
mer is simulated for the initial tangent strike, together
with an additional after-touch effect accounting for the
enforced tangent/string contact. Note that other physi-
cal piano models based on finite element techniques have
been developed and published13,14.

The aim of this paper is to develop a physical model
of the clavichord with special attention to the collision
and contact between the tangent and the string, which
is of prime importance for explaining the instrument’s
dynamics and sound features. Intermittent contacts are
often encountered in musical instruments and have been
studied in numerous works in the past decade. Colli-
sions (see15 for a review on the subject ) are modeled
by a penalty approach16,17, by nonsmooth contact dy-
namics, which is particularly adapted for hard contacts18
or dry-friction and stick-slip transitions19 or by a La-
grange multiplier approach, particularly fit for multi-
body systems20. This former method coupled to the
modal Udwadia-Kalaba (U-K) formulation seemed ap-
propriate for the clavichord, following recent results for
stringed instruments21, including the guitar and Por-
tuguese guitar22,23. In Part II, a functional description
of the clavichord in terms of vibrating subsystems re-
sults in a simplified one string model. Parameters are
identified using experimental measurements on a copy of
a historical instrument. A model of tangent/string in-
teraction based on the Kirchhoff-Carrier string represen-

tation and the U-K formulation for coupled dynamical
systems is developed for the one-string clavichord model
in Part III. The modal equations of the U-K model can
be solved by means of a simple finite difference time dis-
cretization scheme. Synthesis results are compared to the
measured dynamic behavior of the real clavichord using
experiments and published data in Part IV.

II. VIBRATORY AND ACOUSTIC SUBSYSTEMS IN THE
CLAVICHORD

A. Principle of the clavichord and tangent action

A clavichord and its parts are described in Figure
1-(a) (instrument built in 2007 and inspired by a Hubert
(1784) historical model). The main parts of the instru-
ment are indicated on the picture. The strings, organized
in pairs, are stretched between the hitch-pins and tuning
pins and attached to the radiating soundboard through
the bridge and bridge pin. Strings are functionally di-
vided into three sections. The "damped section", be-
tween the hitch-pin and the tangent. This section is par-
tially covered by strips of cloth. its vibration is rapidly
damped after excitation. The "played section" vibrates
between the tangent and bridge, as long as the tangent
stays in contact with the string after the initial tangent
strike. When the key is released, the tangent contact
is lost and the string vibration is damped by the cloth
strips. The "resting section" between the bridge and the
tuning pin, is not directly excited by the tangent, but
as it is not damped in the clavichord (contrary to e.g.
the square piano), partial transmission of the played sec-
tion vibration results in sympathetic vibration24,25. The
strings are pressed vertically on the bridge and pressed
horizontally on the bridge pins laid out along the bridge.
This contact leads to the soundboard/string coupling.
The soundboard vibrates under the action of the string,
and because of its large surface sound is radiated in the
air.

A complete study of the instrument is out of the
scope of the present work: only the simplified model dis-
played in Figure 1-(b) is studied in depth. This simplified
model is made of only one string (the chosen string is the
first string of the G3# choir) and the corresponding key,
tangent and damper. The string is stretched between the
hitch-pin and tuning pin and in contact with the bridge
at the bridge pin. The soundboard and bridge are those
of the whole instrument, because it is important to con-
sider this part in its integrity even for modeling a unique
string. Other aspects of the instrument, like the case and
lid, are not considered in the present study, because their
vibratory and acoustic functions are only of second order.

B. Vibratory and acoustic subsystems

For modeling purposes, the model can be consid-
ered as an assembling of four vibrating subsystems as
displayed in Figure 2. The initial force for playing the
instrument is provided by the player’s finger. The player
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FIG. 2. (color online) Schema of the modeled G#3 string
being excited by the tangent.

moves the tangent/key subsystem, the first subsystem,
providing the string excitation. The strings, second sub-
system, act as the vibratory engine of the instrument.
Attached to the left side of the strings are the cloth
dampers, third subsystem. Attached to the right side of
the strings, is the bridge/soundboard subsystem, fourth
subsystem.

The string is the central subsystem of the instrument.
Let Y S(x, t) (resp. Y D(x, t), Y k(x, t), Y B(xB , t)) be the
string displacement (resp. damper displacement, key-
tangent subsystem displacement, bridge displacement)
at position x (resp. x, x, xB). The vibratory subsys-
tems are coupled to the string at points xDi, xLtg, xB
(i-th damper, tangent and bridge). The first subsys-
tem, the tangent/key subsystem, can be considered as
a rigid rod which tilts with respect to a pivot. When
the tangent strikes the string, the elastic string reacts
and the whole system oscillates. The tangent has a mass
MTg = 5 g, the key has a mass Mk = 30 g. The length
of the key is LT = 28.9 cm. The pivot of the key (bal-
ance point) is situated at a distance Lp = 17.2 cm of the
back of the key, the finger presses the key at a distance
Lf = 27.9 cm of the back of the key, and the tangent
is located at a distance Ltg = 3.5 cm of the back of the
key, see Figure 1-(b). Associated modal parameters for
the tangent/key subsystem (kk,mk, ck) are used. The
string, second subsystem, is characterized by its mass,
elasticity and damping factors. Between the hitch pin
and excitation point, the third subsystem is the cloth
strips damper, represented by N parallel dash-pots char-
acterized by their mass and viscous damping coefficients
(mD, cD). The number of dampers is set empirically to
N=65, as it seemed enough to ensure effective damping.

In the remaining of this part, parameters of the sub-
systems in Figure 2 are estimated using the instrument
displayed in Figure 1-(a) and the G#3 string. Three
functional parts of the string can be identified: between
x = 0 m and x = 0.2 m, is the damped part of the string,
with a cloth damper coiled up between x = 3.4 cm and

ρ (kg.m−3) E (Pa) δve−te

7000 80 × 109 1,5 × 10−4

Qstruc ηair (kg.m−1.s−1) ρair (kg.m−3)

2.5 × 104 1,8 × 10−5 1,2

TABLE I. String’s parameters used to simulate the string
damping coefficients

x = 13.7 cm. The played part of the string is between
x = 0.2 m and x = 0.53 m. The sympathetic part rest
of the string is between the bridge pin x = 0.53 m and
tuning pin x = 0.84 m.

C. The key-tangent subsystem

The key-tangent subsystem mass (determined in sec-
tion III B is mk = 1.17× 10−2 kg. It is represesented by
a rigid body mode, then its stiffness is kk = 0 N.m−1. Its
damping is set to ck = 2.5 kg.s−1, in order to reproduce
the low frequency oscillation damping of the tangent-
string contact point observed in section IVB.

D. The string subsystem

The string modal damping characteristics are ob-
tained by measurements of the vibrating string stretched
on a string sand bench, allowing for measurements with
almost full decoupling of the string from other vibratory
structures. The Valette and Cuesta string model (see
section III C 3) is used. The string is excited by a copper
wire that breaks at a given tension when lifted vertically.
The vibratory displacement of the string is measured at
the other extremity by means of optical forks26. For the
right (sympathetic) part of the G#3 string (L = 31.7 cm,
ds = 0.33 mm, f0 = 396.9 Hz), damping characteristics
for 23 partials between 396.9 Hz to 9354 Hz are analyzed
using the high-resolution algorithm ESPRIT27–29.

The measured damping coefficients are matched with
the Valette and Cuesta model and displayed in figure 3),
with the parameters reported in Table I, where E and
ρ corresponds to the Young modulus and density of a
brass string respectively, ηair and ρair are taken from
the previous data30, and other parameters are defined in
section III C 3. Experimental Qexp and theoretical Qth

quality factors are reported together with 95 % error bars
for ten measures and relative error εQ =

|Qexp−Qth|
Qexp

.

E. Bridge and soundboard subsystems

To simulate the vibratory motion of the bridge, the
modal parameters (mass matrix, stiffness matrix, damp-
ing matrix, mode shapes) of this subsystem need to be
known. As no analytical solutions can be given for such a
system, modal parameters of the bridge are estimated by
means of experimental modal analysis21 based on mea-
surements of the bridge Frequency Response Function
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FIG. 3. (color online) String quality factor: experimental
(blue cross) and theoretical (blue line, 95 % error bars (blue
bar) and relative error (red star).

(FRF). The FRF is obtained by measurement of the vi-
bratory response at the coupling point between the bridge
and the G#3 string (using a PCB M352C65 accelerome-
ter and an acquisition system with a sample rate of 51.2
kHz and a 24 bit depth). The system is excited by an au-
tomatic impact hammer (force sensor PCB 086E80). The
accelerometer is placed above the bridge pin and mea-
sures its vertical acceleration. All the other strings are
damped by strips of cloth woven on both sides of strings
(above the soundboard on the right side and above the
keyboard on the left side). Modal analysis between 100
Hz and 3500 Hz is conducted in two steps. A first step is
the estimation of physical poles containing the modal fre-
quencies and damping coefficients of the analyzed struc-
ture, using the Least square rational function (LSRF)
estimation method (Matlab signal processing toolbox31).
The second step is the estimation of residues which en-
capsulate the mode shapes and modal masses of the sys-
tem. Normalizing modal masses to mn = 1 kg for modes
n = 1,2,...,NB , the corresponding mode shapes are esti-
mated from the residues. The estimated and measured
FRF at the G#3 string/bridge coupling point are plotted
on figure 4. 31 bridge modes are identified between 100-
600 Hz, giving a satisfying reconstruction of the FRF. 108
bridge modes are identified between 600-3500 Hz, giving
a representation of the bridge mobility for higher frequen-
cies. High frequency modeling is necessary for a realistic
simulation, even if it does not comply exactly to physical
modes of the system, as previously discussed in32 . Mea-
sured and reconstructed impulse responses are given in
sound example MM2.wav and MM3.wav respectively.

F. The damper subsystem, coupling between subsystems and
activation

The felt damper is modeled by a series of 65 dash-
pots. The parameters cD, mD are chosen so that the
measured damping effect exerted on the string once the
key is released is well reproduced. The values chosen are
mD = 1.0× 10−2 kg, and cD = 8.0× 102 kg.s−1.
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FIG. 4. (color online) Bridge and soundboard modal analysis.
Top panel: comparison of the spectral magnitude (Ref 1 dB :
1 m.s−2.N−1) of the measured (blue ) and reconstructed (red
) FRF. Second panel, corresponding unwrapped phase),third
panel corresponding mode shapes. Bottom panel: corre-
sponding measured (blue) and reconstructed (red) impulse
responses.

The four subsystems are coupled through the string:
the string is coupled to the damper at the damper loca-
tion; it is coupled to the bridge at the bridge pin loca-
tion; it is coupled to the tangent/key subsystem during
its contact at the tangent location. All these coupling
conditions assume a continuity of displacement between
the string at the coupling position and the other sub-
system involved. Finally, the whole vibratory system is
activated by an external force that represents the action
of the finger on the key. The typical finger force profile
is a step with given attack and release times.

III. PHYSICAL MODELING USING THE U-K FORMULA-
TION

A. U-K formulation for the clavichord

In this section, the clavichord model in terms of four
coupled vibratory subsystems is modeled using a modal
U-K formulation20,21. Let us consider a mechanical sys-
tem with mass matrix M which is subjected to a force
vector Fe(x, ẋ, t).
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including all constraint-independent internal and ex-
ternal forces. This system is also subjected to constrain-
ing forces Fc(t). Denoting the dynamical solution yu(t)
of the unconstrained system and y(t) of the constrained
system, the motion equations of the constrained system
derived by Udwadia and Kalaba21,33 are:

ÿ = ÿu + M−1/2B+(b−Aÿu), ÿu = M−1Fe(t) (1)

where A is the constraint matrix and b the con-
strained vector obtained from Ph holonomic and Pnh non-
holonomic constraints, φp and ψp respectively, defined as:

φp(y, t) = 0, p = 1, 2, . . . , Ph (2)

ψp(y, ẏ, t) = 0, p = Ph + 1, Ph + 2, . . . , Ph + Pnh

(3)

Time differentiation of equation 2 and 4 gives the
matrix-vector constraint equation in terms of accelera-
tions:

A(y, ẏ, t)ÿ = b(y, ẏ, t) (4)

Note that generalized Moore-Penrose inverse matrix
B+ of B = AM1/2 can be rendered numerically ro-
bust, even for a singular constraint matrix. For a par-
ticular external (finger) excitation Fe(x, ẋ, t) these equa-
tions are solved using a suitable time-step integration
scheme. A modal version of the U-K formulation suitable
for continuous flexible systems like musical instruments
is derived21. Assuming a set of S vibrating subsystems
defined in terms of their unconstrained modal basis and
coupled through P kinematic constraints, one obtains:

q̈ = WM̃−1(−C̃q̇− K̃q + Fext) (5)

where q represents the vector of modal displace-
ments, M̃, K̃, C̃ are respectively the modal mass ma-
trix, modal stiffness matrix, and modal damping matrix,
while W = 1 − M̃−1/2B+A is a global transformation
matrix (which can conveniently be computed in advance
of the time loop ), where A is the modal constraint ma-
trix, and Fext are the external modal forces applied on
the system.

B. Key-tangent modeling

A mode shape is associated to the key-tangent sub-
system to model the tilting motion of the key. The modal
representation of this system is given by :

Y k(x, t) = φk(x)qk(t) (6)

where Y k is the displacement of the key-tangent sub-
system, φk is its mode shape and qk is its modal ampli-
tude, and,

mkq̈k(t) + ckq̇k(t) + kkqk(t) = Fext(t) (7)

wheremk, ck and kk are respectively the modal mass,
modal damping and modal stiffness of the key-tangent
subsystem, and Fext is the modal excitation force that
the musician exerts on the key. The key is modeled as a
rigid body mode in rocking motion. The mode shape φk
is given in the following way :

φk(x) =
LT − x
LT − Lp

− 1, x ∈ [0, LT ] (8)

Let the the linear density of the key be ρk = Mk

LT
.

For any continuous linear system with density ρ, mode
shape φn and length L, the modal mass mn is :

mn =

L∫
0

ρφn(x)2dx (9)

Then, the modal mass of the key-tangent subsystem
mk is the sum of the tangent modal mass and that of the
key :

mk = MTgφ
k(Ltg)2 +

LT∫
0

ρkφ
k(x)2dx (10)

After some calculations, it gives :

mk = MTg

(
LT − Ltg

LT − Lp
− 1

)2

+Mk

3L2
p − 3LpLT + L2

T

3 (LT − Lp)
2

(11)

C. String modeling

1. Modal description of the string

A modal representation of the string complying with
the modal U-K formulation is given in this section. A
modal expansion of the string displacement Y S is :

Y S(x, t) =

Ns∑
n=1

φSn(x)qSn (t) (12)

where φSn are the mode shapes of the string, qSn are
its modal amplitudes, and Ns is the number of string
modes. Considering that the boundary conditions of the
clavichord string are pinned-pinned, one obtains the fol-
lowing string’s mode shapes, for a string length L :

Preprint J. Acoust. Soc. Am. / 7 October 2021 Towards a physical model of the clavichord 5



φSn(x) = sin
(nπx
L

)
n = 1, 2, . . . , N (13)

For a large enough static displacement, the geometri-
cal non-linear force F S

nl related to the string’s variation of
tension needs to be considered. This yields the following
string’s modal equations :

MSq̈S + CSq̇S + KSqS + F S
nl(q

S , q̇S) = 0 (14)

where MS , CS and KS are the modal mass matrix,
the modal damping matrix and the modal stiffness matrix
of the string respectively, and qS is the modal amplitude
vector of the string. In the next section geometrical non-
linear forces are expressed by means of the Kirchhoff-
Carrier model.

2. Non-linear string dynamics in string tangent inter-
action

The tangent lifts the string after the initial contact
and increases the string tension. This displacement can
be quite significant, up to 3-5 mm, inducing a substantial
rise in pitch. The string uplift is a geometrical deforma-
tion, resulting in non-linear forces that must be consid-
ered in the dynamics of the instrument. For dynamic
modeling of the non-linear forces, the Kirchhoff-Carrier
non-linear string model is used34,35, following previous
work on the twelve-string Portuguese guitar22,23. Note
that in this one dimensional string motion model, all
couplings between transverse and longitudinal motions
are neglected. This seems to be a convenient approxima-
tion for 1D simulation, even if for small string vibratory
amplitude, these couplings exist and are important for
detailed potential energy considerations36.

According to the mode shapes in equation 13, the
Kirchhoff-Carrier model leads to geometric non-linear
terms for computing the dynamic tension Tdyn :

Tdyn(t) =
ES

2L

L∫
0

[(
∂Y S(x, t)

∂x

)2
]
dx (15)

which gives rise to the non-linear differential equation
of motion (T0 being the string tension at rest) :

ρS
∂2Y S(x, t)

∂t2
− (T0 + Tdyn(t))

∂2Y S(x, t)

∂x2
= 0 (16)

The force Fnl due to geometric non-linear terms is :

Fnl(x, t) = Tdyn(t)
∂2Y S(x, t)

∂x2
(17)

Thereby, it yields the nonlinear modal force terms :

Fnl
n (t) =

L∫
0

Fnl(x, t)φn(x)dx (18)

Using equations 12 and 13 and calculating the inte-
grals in equation 15, gives the dynamic tension that de-
pends quadratically on the modal response amplitudes:

Tdyn(t) =
ESπ2

4L2

N∑
n=1

n2 (qn(t))
2 (19)

Then, calculating the integral in equation 18, the
cubic modal force terms are deduced22 :

Fnl
n =

ESπ4

8L3
n2qn(t)

N∑
m=1

m2qm(t)2 (20)

Equation 20 represents the modal non-linear forces
for the string due to the vertical displacement resulting
from the tangent lift. In contrast to the quasi-static sit-
uation, the force in equation 20 can be computed in dy-
namic modeling of this interaction. The increase in ten-
sion due to tangent height Ye is an important parameter
for the player, as it is related to the hardness of touch5,
i.e. the key force feedback felt by the player.

3. Model of string’s modal dampings

The string model by Valette and Cuesta37 is chosen
to bestow a proper damping coefficient to each string
mode. The air friction, the visco-elastic and thermo-
elastic friction as well as the structural friction are
taken into account and represented by the quality fac-
tors Qn,air, Qn,ve−te and Qstruc respectively.

Q−1n = Q−1n,air +Q−1n,ve−te +Q−1struc

=
R

2πρL
(nf0)−1 +

4π2ρLEIδve
T 2

(nf0)2 +Q−1struc

(21)
where R stands for mechanical resistance

R = 2πη + 2πds
√
πηairρairf (22)

and where ρair and ηair correspond to the dynamic
viscosity and the density of the air respectively, and ds
represents the string’s diameter. Then, Q−1n represents
the damping coefficient associated to the nth mode of
the string. E is the Young modulus of the string, I is the
second moment of inertia of the string, T is the string’s
tension, ρL is the linear density of the string, and δve−te
is the imaginary part of the string Young modulus. The
term δve−te = δve + δte encapsulates visco-elastic effects
δve and thermo-elastic ones δte, taking the same approach
as29. Qstruc is a constant value. Using ζn =

Q−1
n

2 , one
can obtain the damping ζn coefficients of the string.
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D. Bridge modeling

The motion of the bridge is modeled using modal
equations. Modal expansion of the bridge displacement
is :

Y B(s, t) =

NB∑
n=1

φBn (s)qBn (t) (23)

where s is the curvilinear coordinate position on the
bridge, NB is the number of bridge modes, φBn are the
mode shapes of the bridge and qBn are the modal am-
plitudes of the bridge. Modal equations governing the
bridge’s vibratory motion are :

MBq̈B + CBq̇B + KBqB = 0 (24)

where MB , CB and KB are the modal mass matrix,
the modal damping matrix and the modal stiffness matrix
of the bridge respectively, and qB is the modal amplitude
vector of the bridge. Because of the complexity of the
structure, as opposed to the string, analytical expression
cannot be derived for bridge modal equations. Numerical
values to the bridge modal parameters are obtained by
experimental modal analysis (section II E).

E. Damper modeling

The damper is modeled by coupling a portion of
string with a number of mass-spring-dampers assuming
a continuity of displacement between the dampers and
the string at their contact points. All these mass-spring-
damper are considered independent of one another. The
modal equations governing the dampers’ vibratory mo-
tion are :

MDq̈D + CDq̇D + KDqD = 0 (25)

where qD is the amplitude vector of the damper re-
sponses. The length of qD isND, the number of dampers.
Matrices MD, CD and KD are square diagonal with
identical coefficients mD, cD and kD, respectively. All
the mass-spring-dampers associated to the cloth damp-
ing device have the same mass, stiffness and damping co-
efficients. So all the mass-spring-dampers have the same
frequency and the same damping. These mass-spring-
dampers representing the cloth damper are coupled with
a certain length of the string, as described in section
III F 3.

F. Couplings between subsystems

The individual subsystems are described with the
help of a modal representation. The modal constraint
matrix A and the vector b of the constrained system is
given by AQ̈ = b with:

A =

AB

Ak

AD

 ,b =

bB

bk

bD

 , Q̈ =


q̈S

q̈B

q̈k

q̈D

 (26)

where AB is the matrix coupling the string with the
bridge with bB its associated vector, Ak is the matrix
coupling the string with the key-tangent subsystem with
bk its associated vector, and AD is the matrix coupling
the string with the damper with bD its associated vector.
Given the continuity conditions for coupling, these ma-
trices and vectors are derived in sections III F 2, III F 1
and III F 3.

1. String and key-tangent subsystem coupling

When the tangent touches the string, coupling be-
tween the two subsystems occurs. At the contact loca-
tion, assuming a continuity of displacement between the
two subsystems, the coupling conditions are :

Y S(xext, t)− Y k(Ltg, t) = 0 (27)

[ΦS(xext)]
TqS(t)− Φk(Ltg)qk(t) = 0 (28)

where Y k is the displacement of the tangent, xext is
the position where the string is excited. The tangent is
initially located below the string with respect to axis y.
The whole string is initially at rest at altitude y = 0.
At the moment when the tangent reaches altitude y = 0,
Ak must be modified to couple the two subsystems. The
coupling conditions are :



If Y k(Ltg, t) < Y S(xext, t)

⇒ bk = 0

and Ak = 0

If Y k(Ltg, t) = Y S(xext, t)

⇒ bk = 0

and Ak =
[
[ΦS(xext)]

T 0 . . . 0 − Φk(Ltg)T 0 . . . 0
]

The U-K formulation apply constraints on the system
acceleration. Respecting the constraints on acceleration
does not imply respecting the constraints on the system
displacement and velocity. Stabilization techniques are
needed to avoid numerical drifts during the simulation,
because of the displacement and velocity constraint vio-
lation. The technique used here is based on a geomet-
ric projection approach, applied after each time step tk,
when small computational errors lead to violations of the
holonomic ϕ(q(tk)) 6= 0 and non-holonomic constraints
Ψ(q(tk), q̇(tk)) 6= 0, expressed in terms of their modal
coordinates and velocities. Following Yoon et al38, the
displacement constraint violations are cancelled by per-
turbing the solution q(tk), so that the corrected solution

Preprint J. Acoust. Soc. Am. / 7 October 2021 Towards a physical model of the clavichord 7



qc(tk) = q(tk) + δq(tk) perfectly copes with the con-
straints ϕ(qc(tk)) = 0. This yields39:

ϕ(qc(tk)) = 0

⇒ ϕ(q(tk) + δq(tk)) = 0

⇒ ϕ(q(tk)) + δϕ = 0

(29)

with the constraint perturbation given by:

δϕ =

N∑
n=1

∂ϕ

∂qn
δqn = Aδq (30)

Where A denotes the constraint gradient matrix, in
terms of the modal coordinates, which is typically non-
square. Then, from equations 29 and 30, stems the fol-
lowing constraint-enforcing correction:

ϕ(q(tk)) + Aδq = 0

⇒ δq = −A+ϕ(q(tk))

⇒ qc(tk) = q(tk)−A+ϕ(q(tk))

(31)

where A+ is the Moore-Penrose pseudo-inverse of
matrix A. When non-holonomic constraints are ap-
plied, a procedure similar to 31 may be used for the cor-
rected velocities q̇c(tk) = q̇(tk) + δq̇(tk) which perfectly
cope with the velocity constraints Ψ(qc(tk), q̇c(tk)) = 0.
Then:

Ψ(qc(tk), q̇c(tk)) = 0

⇒ Ψ(qc(tk), q̇(tk) + δq̇(tk)) = 0

⇒ Ψ(qc(tk), q̇(tk)) + δΨ = 0

(32)

with the constraint perturbation given :by

δΨ = Aδq̇ (33)

and, from 32 and 33, stems the following constraint-
enforcing correction:

Ψ(qc(tk), q̇(tk)) + Aδq̇ = 0

⇒ δq̇ = −A+Ψ(qc(tk), q̇(tk))

⇒ q̇c(tk) = q̇(tk)−A+Ψ(qc(tk), q̇(tk))

(34)

2. String-Bridge coupling

The string and bridge are coupled, assuming a conti-
nuity of the string and bridge displacements at the string-
bridge contact point: the string displacement Y S(xB , t)
must be the same as that of the bridge Y B(xB , t), where
xB is the location of the coupling point on the string and
xB is the location of the coupling point on the bridge :

Y S(xB , t)− Y B(xB , t) = 0 (35)

with modal coordinates, it leads to :

[ΦS(xB)]TqS(t)− [ΦB(xB)]TqB(t) = 0 (36)

with the mode shape vectors :

ΦS(xB) = [φS1 (xB)φS2 (xB) . . . φSNS
(xB)]T ,

ΦB(sB) = [φB1 (xB)φB2 (xB) . . . φBNB
(xB)]T

(37)

where NB is the number of bridge modes, NS is the
number of string modes. Equation 38 shows the string-
bridge coupling matrix AB and the associated vector bB :

AB =
[
[ΦS(xB)]T −[ΦB(xB)]T 0 . . . 0

]
(38)

3. String-Damper coupling

For string-Damper coupling, continuity of the
string’s displacement Y S(xD, t) with that of the damper
Y D(rs, t) is assumed, xD being the location of the
damper on the string:

Y S(xD, t)− Y D(xD, t) = 0 (39)

[ΦS(xD)]TqS(t)− qD(t) = 0 (40)

Equation 40 leads to the following matrix AD and
vector bD = 0, where ΦS(xDj

) is the mode shape of the
string coupled with the nth damper at the xDj location :

AD =


[ΦS(xD1

)]T 0 . . . 0 −1 0 . . . 0

[ΦS(xD2)]T 0 . . . 0 0 −1 . . . 0
...

...
...

...
...

...
. . .

...

[ΦS(xDND
)]T 0 . . . 0 0 0

... −1



IV. SIMULATION AND EVALUATION OF THE CLAVI-
CHORD MODEL

In this Section, assessment of the model is performed
along three lines: string motion, tangent-string interac-
tion, bridge vibration, by comparing simulated and ex-
perimental data. A finite difference approach is chosen
for simulation of the one-string model developed in Sec-
tion III, using the experimental data of Section II. The
time step for simulation is chosen according to an en-
ergy analysis of the simulation (using Ns = 150 string
modes). This energy analysis studies the work done by
the key-tangent subsystem compared to total energy of
the coupled system for different time steps. The energy

provided to the system is the work Ee =
N∑

n=1
Ee,n done

by the tangent, with the modal work Ee,n:
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Ee,n(t) =

T∫
0

Fext,n(t)q̇kn(t)dt (41)

The sum of all modes energy of the string, of the
system tangent-key, of the damper and of the bridge
gives the total energy of the modeled system. Results re-
ported in figure 5 shows that the total energy converges
towards the key-tangent subsystem work as the time step
decreases.

Given the energy analysis of the simulated model, a
time step of ∆t = 2× 10−6 s has been chosen to ensures
a realistic simulation. A smaller time step gives a better
fit between the work done by the key-tangent subsystem
and the total energy of the coupled system but it does
not improve much the auditory or visual quality of the
simulation, when it increases much the computational
load.
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FIG. 5. (color online) Convergence of the total mechanical
energy of the system compared to the work done by the tan-
gent.

Assessment of the model is performed in 3 steps: 1/
visualisation of string motion; 2/ tangent-string interac-
tion and dynamics of the clavichord; 3/ bridge vibrations
and comparison with experimental data;

A. String motion

The string motion of the clavichord is shaped by the
specific excitation mechanism of the instrument. Simula-
tion of the G#3 string motion is displayed in Figure 6, in
response to a 4.2 N excitation force applied on the key.
The same data are better visualized in the associated
video MM1.mov, displaying evolution of the string and
tangent motions in time. The top panel represents the
initial 4 ms, i.e. the beginning of the motion. The tan-
gent (represented by circles at x = 0.6 m, sampled with
a period of 0.05 ms) comes in contact with the string and
lifts the string to a maximum. When the tangent strikes
the string, an angular point is created and propagates to

FIG. 6. (color online) History of the transverse motion for the
G#3 string. x axis: time (s); y axis : string length; z axis:
transverse string motion. Top panel: full string between t =
10.0 ms and t = 14.0 ms. Middle panel: full string between
t = 7.0 ms and t = 57.0 ms. Bottom panel: sympathetic part
alone, between t = 9.0 ms and t = 17.0 ms.

the bridge. At the same time, the string is uplifted by
the tangent. After the arrival of the angular point at the
bridge, it is reflected back and then reflected again by the
tangent. As the mechanical impedance of the bridge and
that of the tangent are high compared to the string me-
chanical impedance, most of the wave energy is reflected.
Vibratory amplitude (then the sound amplitude level)
depends on the angle of the angular point, and then on
the ratio of wave velocity in the string and tangent ve-
locity, as discussed in8, and then on the steepness of the
tangent motion slope. In the middle panel of Figure 6
the string motion history is displayed between 7 ms and
57 ms (sampled with a period of 0.5 ms). The low fre-
quency (81 Hz) oscillation of the key-tangent subsystem
because of the elasticity of the string is observed. Bot-
tom panel of Figure 6 shows vibration of the sympathetic
part of the string between the bridge and tuning pin, be-
tween 9 ms and 17 ms (sampled with a period of 0.05 ms).
Note that this vibration is two orders of magnitude lower
than the played part of the string, between 10−5 - 10−6

m, and that the string motion looks rather disorganized
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compared to the more regular motion between the tan-
gent and bridge pin. This Figure and associated Video1
represent the first visualization of simulated clavichord
string motion to the best of our knowledge. Compari-
son with high-speed videos of the string motion in the
vicinity of the tangent40 shows good agreement with the
simulation.

B. Tangent-string dynamics

Tangent-string dynamics is an essential feature of the
clavichord dynamics, tangent velocity and displacement
being the main control parameters for the performer.
Figure 7 shows the velocity of the contact point between
the tangent and the key. As expected8, the key-tangent
system oscillates, because of the string elastic reaction to
the tangent uplift. The simulated oscillation frequency is
81 Hz (peak velocity 1.279 m.s−1, top panel in Figure 7),
compared to the 40 Hz measured oscillation frequency
(peak velocity 1.135 m.s−1, middle panel of Figure 7).
The vertical tangent velocity is measured using a B&K
4374 miniature high-sensitivity accelerometer attached to
the key, close to the tangent, and a conditioning ampli-
fier B&K 2635. With an accelerometer mass of ' 0.75 g
and a key mass of ' 20 g, the mass weighting effect of
the accelerometer is neglected. This frequency difference
could be explained by the lack of finger weight in the
model. Finger weigh would provide additional mass to
the key-tangent subsystem, decreasing its oscillation fre-
quency. In this "light key" simulation, the key-tangent
subsystem modal mass is 1.17 × 10−2 kg, with a damping
coefficient of 2.5 kg.s−1. A "heavy key" simulation (bot-
tom panel of Figure 7), where the key-tangent subsystem
modal mass becomes 2.87 × 10−2 kg and its damping co-
efficient is 3.5 kg.s−1, is consistent with measurements.
Because the key is heavier in this case, the tangent im-
pact velocity decreased (peak velocity 0.928 m.s−1).

Figure 8 shows the effect of the tangent uplift on
string tension. Simulated tangent uplift changes the
measured41 fundamental frequency. This is consistent
with measured data and quasi-static modeling results
published earlier8. The tangent displacement controls
pitch.

To study the effect of tangent velocity on acceleration
at the bridge, the force Fext applied on the key-tangent
subsystem is varied. The impact velocity and the average
acceleration are computed by the model. Similarly to the
sound pressure level (SPL) the acceleration level is com-
puted as the logarithm of acceleration integrated over
250 ms. Figure 9 shows a linear relationship between
the logarithm of the impact velocity and the accelera-
tion level in dB. This is in good agreement with exper-
imental results obtained for impact velocity and sound
pressure level and with predictions by a linear model of
string-tangent dynamics8. Playing fasted results in play-
ing louder.

The influence of the impact velocity on the timbre of
the bridge acceleration is studied. Spectral slopes of the
acceleration spectrum for different impact velocities of
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FIG. 7. Comparison of simulated and measured velocity at
the tangent-string contact point. Top panel: "light key" sim-
ulation; middle panel: measurement; bottom panel: "heavy
key" simulation.
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FIG. 8. (color online) Top: Dynamic tension of the string
(red) and corresponding fundamental frequency (blue) for a
0.5 s note. Bottom: zoom of this same dynamic tension of
the string in the first 0.1 s.

the key-tangent subsystem (0.4433 m.s−1, 0.535 m.s−1,
0.622 m.s−1, 0.698 m.s−1, 0.769 m.s−1, 0.834 m.s−1,
0.894 m.s−1 and 0.951 m.s−1) are presented in Figure
10. Two effects are noticeable. First, increasing the ex-
citation force leads to increasing the static displacement
of the string, hence the fundamental frequency. This ac-

10 Preprint J. Acoust. Soc. Am. / 7 October 2021 Towards a physical model of the clavichord



-1 -0.8 -0.6 -0.4 -0.2 0

log velocity [m.s-1]

95

100

105

110

ac
ce

le
ra

ti
o

n
 [

d
B

]

FIG. 9. (color online) Logarithmic bridge acceleration (ref 1
dB : 1 m.s−2) as a function of the logarithmic tangent impact
velocity.
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FIG. 10. (color online) Logarithmic spectral magnitude of
bridge acceleration (ref 1 dB : 1 m.s−2), for different im-
pact velocity of the key-tangent subsystem ), with the average
spectral slope.

counts for the frequency shift of the partials in figure
10. Second, the spectral slopes for the different spectra
remain on average identical. This spectral slope of the
simulated bridge acceleration is consistent with the SPL
spectral slope variation with respect to the tangent im-
pact velocity reported earlier8. Playing louder does not
change much the clavichord’s timbre.

C. Bridge vibration

Bridge vibration assessment is essential, because
bridge vibration results in soundboard vibration, and
then sound radiation. For assessment of the model, sim-
ulated and measured bridge motions are compared. A
robotic finger42 is used for measurement. The robotic
finger presses the key following a programmed vertical
motion for the string under study. All other strings are
muffled using felt strips.

Measurement of acceleration at the bridge pin fol-
lows the procedure described in section II E. The first
simulation takes into account all the bridge modes iden-
tified in section II E up to 3500 Hz. The second sim-
ulation takes into account the first 31 identified bridge
modes, leading to a modal truncation of the bridge at 600
Hz. Measured and simulated signal waveforms are dis-
played in Figures 11, together with corresponding sound
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FIG. 11. (color online) Bridge acceleration waveforms (1s).
Top: measurement. Middle: simulation (3500 Hz modal trun-
cation). Bottom: simulation (600 Hz modal truncation).
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FIG. 12. Bridge acceleration waveforms at different times.
Measurement in blue, simulation (3500 Hz modal truncation)
in red, simulation (600 Hz modal truncation) in black.
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FIG. 13. (color online) Bottom: force applied on the key and
resulting force on the tangent. Middle: force on the bridge
with (red) and without (blue) dampers. Top: bridge displace-
ment with (red) and without (blue) dampers.

example MM4.wav (measured signal), sound example
MM5.wav (modal truncation at 3500 Hz) and sound ex-
ample MM6.wav (modal truncation at 600 Hz). Figure
12 gives a closer look to details of the three waveforms
in Figure 11 at the 0.01 s, 0.1s and 0.31s respectively.
The visual and sound results show good general agree-
ment between measurement and simulation. The effect
of modal truncation on the high frequency content of the
simulated waveforms is clearly observed. The main dif-
ference between measurement and simulation is observed
in the attack transient. This could be explained by the
structural noise noticeable in a real clavichord but not
taken into account in the model. Structural noise re-
sults from the shock of the tangent on the string, that
excites all the case of the instrument, and coupling of the
whole the string band through the damper (often coined
as "drum noise"),

Finally, the forces applied to the key and the response
at the bridge are analyzed with the help of Figure 13. A
step force of 4.2 N is applied on the key for 1 s. The con-
straint force at the contact point between the tangent
and strings is computed. Note that the tangent force is
lower than the force applied to the key, because of the
leverage ratio of the pivoting key (since xf−xp is smaller
than xp − xtg). Two conditions are studied in the sim-
ulation with and without the damper subsystem. The
middle panel shows the simulated force at the bridge. As
expected, the force is lowered during the tone, because
the tangent lifts the string, and then releases the string
pressure on the bridge. When the dampers subsystem
is removed, the string appears less constrained, and the
force lowering is higher. String vibration is apparent in

the force signal. The top panel shows the vibration dis-
placement. As expected, the string is raised in response
to the tangent lift, and raised higher when the dampers
are withdrawn. The vibratory magnitude is surprisingly
low (a maximum of about 0.015 mm). For assessment,
displacement measurements are performed on the G#3

string using a Keyence (LJ-V7060) profilometer. The
same order of magnitude is observed: a bridge lift of
0.010-0.020 mm and a maximal vibratory amplitude of
about 0.010-0.015 mm, a result that is in good agreement
with the simulation. After the key release, the tangent
loses contact with the string. The remaining vibration
after the key release corresponds to the sympathetic vi-
bration between the bridge and tuning pin, and in the
non-damped situation to the vibration of all the length
of the string. In this latter situation, the magnitude is
larger.

V. CONCLUSION AND PERSPECTIVES

Time-domain physical simulation of a simplified
clavichord model is developed in this paper, together
with measurements on a functional instrument. The
clavichord is considered as a constraint system made of
four vibratory coupled subsystems: key-tangent, string,
damper and bridge-soundboard. In a first part, modal,
dynamic and motion parameters for the four subsys-
tems are measured on the clavichord under study. Vari-
ous measurement techniques and devices are used: ex-
perimental modal analysis for the bridge, soundboard
ans key (accelerometers and impact hammer), string
damping characteristics (isolated string bench and op-
tical forks), tangent and string motions (accelerometer
and laser vibrometer), applied force on the key (robotic
finger). These experimental results are useful for sim-
ulation assessment in this paper, as well as for refer-
ence for future studies of other instruments. The sec-
ond part is devoted to simulation. The Udwadia-Kalaba
(U-K) formulation is chosen because of its compatibility
with a modal representation for coupled vibratory sub-
systems. Modal representations for the string, bridge,
key-tangent and damper subsystems are developed. An-
other key point in this work is dynamic modeling of ge-
ometrical nonlinear forces resulting from the string up-
lift by the tangent, with the help of the Kirchoff-Carrier
model. Conditions of continuity in displacement between
each subsystem are considered to derive the coupling ma-
trix of the constraint system. String excitation is ob-
tained by coupling the key-tangent subsystem and the
string at the moment of contact. The constraint force
uplifts the string and sets string into vibration. Cou-
pling between the string and the key-tangent subsystem
requires a stabilization techniques to correct constraints
violation for the displacement and the velocity, because
two subsystems are not exactly in the same position at
the contact moment. In the third part, simulation re-
sults are confronted to experimental results. A suitable
time step for time-domain simulation is chosen according
to an energy convergence analysis. The key-tangent and

12 Preprint J. Acoust. Soc. Am. / 7 October 2021 Towards a physical model of the clavichord



string dynamic of the model is compared to measure-
ments. Low-frequency oscillation and dynamic tension
variation of this subsystem are successfully rendered by
the model. This is on the side of the performer’s fingers.
Simulated string motion is realistic, and the associated
video showing velocity and displacement of the simpli-
fied model is in our opinion the peak of the present pa-
per. Bridge motion can be considered as the source the
radiated sound. Realistic force, displacement and accel-
eration waveforms (with associated sound examples) are
obtained in response to the force applied on the key. This
is on the side of the performer’s ears. Results on the dy-
namics of the clavichord reported earlier in the literature
are found in the simulation : linear relationship between
the bridge log acceleration and log peak tangent velocity,
pitch variation as a function of key uplift height, bridge
acceleration with almost constant spectral slope for dif-
ferent tangent impact velocities.

A simplified 1-string instrument is simulated here.
Important vibro-acoustic characteristics of the clavichord
are therefore missing and must be worked out. For most
instruments the tangent strikes a choir of unison strings.
This influences considerably the clavichord sound, as the
two unison strings are not struck exactly at the same
time by the tangent. The sound of the clavichord is in-
fluenced by the vibration of the sympathetic strings, cre-
ating a reverberation effect and sometimes "wolf" notes.
Sound radiation by the soundboard, reflection by the lid,
structural noise must be studied. Needless to say, a full
model of the instrument should include all the strings.
We believe the approach presented here forms a solid ba-
sis for such a project, aiming at a fully parametric physi-
cal clavichord model that would be desirable for historical
instrument simulation and analysis, performance studies
and new music instrument design.
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