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Abstract: Individuals who are minoritized as a result of race, sexual identity, gender, or 53 
socioeconomic status experience a higher prevalence of many diseases. Understanding the 54 
biological processes that cause and maintain these socially-driven health inequities is essential 55 
for addressing them. The gut microbiome is strongly shaped by host environments and affects 56 
host metabolic, immune, and neuroendocrine functions. The gut microbiome is thus an important 57 
pathway by which differences in experiences caused by social, political, and economic forces 58 
could contribute to health inequities. Nevertheless, few studies have directly integrated the 59 
human gut microbiome into investigations of health inequities. Here we argue that accounting for 60 
host-gut microbe interactions will improve our understanding and management of health 61 
inequities, and that health policy must begin to consider human-microbiome interactions as 62 
important pathways linking social environments to population health.   63 
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 64 
1. Introduction 65 

Inequities in morbidity and mortality are a persistent challenge among populations in the 66 

US and globally. Some of these disparities trace to underlying inequities related to 67 

socioeconomic status (SES) (1). For example, in the US, men in the highest and lowest percentile 68 

of income have an approximately 15 year difference in life expectancy (2). In addition to SES, 69 

self-identified race, sexual identity, and gender status also are powerful predictors of many 70 

health outcomes (3-5). For instance, controlling for SES, Black adults have triple the odds of 71 

being diagnosed with diabetes compared to white adults (4), and LGBTQ adults are twice as 72 

likely to report multiple risks for cardiovascular disease than heterosexual individuals (3). 73 

Importantly, although racial health inequities are sometimes assumed to have biological 74 

underpinnings, race is a social construct created to control access to power and resources; it has 75 

no robust genetic or biological foundation (6-8). Therefore, traditional concepts of heritability or 76 

ancestry cannot account for intergenerational patterns in health inequities. Instead, biological 77 

patterns observed across minoritized populations are driven by the influences of social forces on 78 

physiology and health (9). Personal experiences of racism and discrimination create chronic 79 

stress that results in negative health outcomes (10). Similarly, discriminatory laws and policies 80 

hinder access to resources like health care, employment, and education, and foster the 81 

development of segregated neighborhoods with reduced access to fresh, unprocessed foods, 82 

limited space for safe exercise, and increased exposure to noise or chemical pollutants (5, 10-12).  83 

 Knowledge of the importance of these environmental and social inequities in driving 84 

disparities in health outcomes has stimulated investigations into the biological pathways that link 85 

lived experiences to altered health. This research is critical for clarifying the causes of unequal 86 

burdens of disease across demographic groups and is an important precursor to devising effective 87 
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strategies to reverse or ameliorate their effects. To date, much work in this area has focused on 88 

the impact of chronic stressors, such as discrimination, on bodily systems like stress physiology 89 

or inflammation that drive chronic disease risk (10, 13). Structural disparities in experiences that 90 

influence nutrient intake, blood pressure regulation, or carcinogenic exposure similarly 91 

contribute to health inequities in well-described ways (5, 10-12). This biological embodiment of 92 

structural inequity is increasingly recognized as manifesting across multiple time scales: adults 93 

exhibit biological symptoms of their current environments, but adverse early life environments 94 

also can lead to persistent biological changes that increase adult risk for negative health 95 

outcomes including coronary heart disease, stroke, metabolic disease, and osteoporosis (14). 96 

Adding to this established literature, the recent rise of work on the gut microbiome 97 

(GM)—the community of microbes that inhabits the human gastrointestinal tract—is revealing a 98 

novel set of pathways through which environmental exposures could contribute to health 99 

inequities. The composition and function of the GM is strongly shaped by host lifestyle and 100 

environment (15), including the foods we eat (16), medications we take (17), types of houses we 101 

live in (18), and people we spend time with (19). As these factors change with time, so does the 102 

GM, making it a plastic component of human biology. As a result, the adverse environmental 103 

effects of structural discrimination on the basis of SES, race, or gender/sexual identity are likely 104 

to be reflected in the GM of minoritized populations (Fig. 1).  105 

In turn, the GM contributes to myriad aspects of host biology. It confers protection from 106 

pathogens through colonization resistance, influences host nutrition and metabolism, trains and 107 

modulates immune function, and contributes to patterns of brain development and behavior (20-108 

24). As a result of these diverse effects, alterations to the GM during both infancy and adulthood 109 

are recognized as leading to dysregulation of immune, metabolic and neuroendocrine processes 110 
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involved in a range of health disparities, including obesity, diabetes, atherosclerosis, asthma, 111 

allergies, depression and anxiety (25-29). Although causality can be difficult to establish, a 112 

growing list of studies now provide evidence that an altered GM is a causal factor in disease (28, 113 

29). In addition, because some of the pathological states that result from an altered GM (e.g. 114 

obesity, inflammation, diabetes) can have adverse effects on the gestational environment 115 

experienced by the next generation and because microbes can be passed from parents to 116 

offspring (30, 31), the GM is increasingly recognized as potentially influencing health in an 117 

intergenerational fashion. These relationships raise the possibility that differences in the GMs of 118 

minoritized populations both reflect patterns of structural inequities and amplify them by 119 

negatively impacting health outcomes (Fig. 1). 120 

Despite these potentially important links, and calls for attention to them (32, 33), few 121 

studies have directly investigated the role of the GM in health inequities. Here, we aim to explore 122 

the potential that this work holds, and to encourage the integration of the GM into future studies 123 

of health disparities. After briefly summarizing concepts of GM health, we review evidence from 124 

past studies linking the GM to health inequities. We then outline the probable effects of 125 

environmental disparities on GM composition and function and discuss known contributions of 126 

the GM to nutrition and metabolic diseases, asthma, cognitive development, and mental illness. 127 

We also consider the potential role of the GM in COVID-19 morbidity and mortality. We 128 

conclude by explaining how the plasticity and responsiveness of the GM makes it a particularly 129 

useful lever for interventions and examine both the opportunities and challenges for using GM 130 

research to inform health policies aimed at reducing the burden of health inequities. 131 

 132 

2. GM ecology and health 133 
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 Many specific microbial mechanisms of disease are still not fully understood, and there 134 

are no known microbes that are present in all healthy people or absent from all unhealthy people. 135 

As a result, identifying 'healthy' and 'unhealthy' GM states is difficult. However, because the GM 136 

is an ecological community of thousands of interacting microbial taxa, ecological theory 137 

provides valuable guiding principles. Importantly, the most influential GM impacts on host 138 

health are likely to be emergent community functions that result from the complex ecological 139 

interactions of multiple microbial taxa. As a result, a change in the relative abundance of a single 140 

microbial taxon may or may not affect community function depending on the composition of the 141 

rest of the community (34). Instead, the relative abundances of multiple interacting microbial 142 

taxa, as well as the stability of the overall community across time and its resilience to 143 

disturbance, more strongly shape GM function and, ultimately, host health (35).  144 

Because basic ecological theory posits that more complex ecological communities are 145 

also more stable and resilient, GM diversity is often used as a proxy for health (36). However, as 146 

observed in the infant gut, reduced GM diversity does not always have adverse effects on the 147 

community or host health (37). Therefore, concepts such as modularity, or interconnectedness, of 148 

the GM are also useful for describing GM community structure and associated impacts on hosts 149 

(35). Additionally, identifying keystone microbial taxa or functions that promote modularity 150 

and/or disproportionately contribute to emergent community function can provide important 151 

insight into host health (34).  152 

 153 

3. Evidence linking GM to health inequities 154 

To date, the majority of studies of the human GM have had a narrow biomedical focus or 155 

describe broad population-level trends in response to environmental variation.  Few studies have 156 
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assessed GM variation across demographics likely to experience structural inequities, and only a 157 

handful have attempted to link socially-attributed variation in the GM to host health (38-42).  158 

Nevertheless, the existing literature provides growing evidence that the social and environmental 159 

gradients known to predict and contribute to health inequities also predict GM community traits 160 

(see Table 1).  For example, across globally diverse populations, different measures of SES have 161 

been associated with distinct GM traits in both adults (42-44) and children (45-49)(but see (50)). 162 

Similarly, the GM consistently varies with race (e.g. Asian, Black, Hispanic, white) and/or 163 

ethnicity/ancestry (Arapaho, Cheyenne, Dutch, Ghanaian, Moroccan) in adults (38, 39, 41, 51) 164 

and children (46, 47, 52, 53).  165 

Three studies in particular have provided strong evidence linking structural inequities to 166 

GM variation in the context of SES. One of the first studies in this area demonstrated that after 167 

adjustment for demographic and lifestyle confounders, neighborhood SES in Chicago explained 168 

12-25% of the variation in adult GM composition (43). Specifically, participants in a higher-SES 169 

neighborhood had greater GM diversity and altered relative abundances of key bacterial taxa. A 170 

larger subsequent study in the UK likewise reported a positive association between neighborhood 171 

SES and GM diversity. Importantly, this association was observed in a discordant-twin analysis, 172 

which minimizes the possibility of the main effects being confounded by shared genetic or 173 

family influences (44). This paper also found that individual SES was positively correlated with 174 

GM diversity, and the relative abundances of some bacterial taxa. Finally, a study of 14 districts 175 

in China showed that the relative abundances of taxa accounting for 38.8% of the GM varied in 176 

response to personal yearly income and spending (42). 177 

Despite the important contributions of these papers, however, most studies of GM 178 

patterns in minoritized populations do not operationalize structural inequities, and small sample 179 
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size reduces power to disentangle common co-variates. Further, while race and ethnicity/ancestry 180 

are often used interchangeably, they are distinct concepts that interact differently with biology. 181 

While some ethnic groups are minoritized, their shared ancestry may lead to genetic differences 182 

that contribute to patterns in health inequities in addition to the social experiences of racism and 183 

discrimination. In contrast, biological patterns across racial groups primarily reflect the impact of 184 

racism and discrimination. As a result of these weaknesses and inconsistencies, the relative 185 

importance of personal experiences of racism and discrimination versus structural impacts on 186 

environments for the GM remains largely unknown. Similarly, the scale (i.e. household, 187 

neighborhood, and beyond) at which structural inequities might affect the GM is unclear. 188 

Nonetheless, the existing literature demonstrates that the same social gradients that predict 189 

disparities in major classes of disease also predict variation in the GM. These relationships 190 

underscore the likely role of the GM in mediating socially-driven health disparities. 191 

  192 

4. Potential pathways to disparities in the GM 193 

Population differences in GM communities are established in response to a combination 194 

of factors that include intergenerational transmission during infancy as well as ongoing effects of 195 

environment and lifestyle factors from infancy into adulthood. As a result, structurally imposed 196 

differences in lifestyle and environmental factors can preclude the establishment of appropriate 197 

GM communities as early as birth. Infants are typically first exposed to microbes during labor 198 

and birth via contact with the maternal vaginal and fecal microbiome (37, 54, 55). Cesarean 199 

births are more frequent in low-SES and minoritized populations (56), and babies born via 200 

cesarean section exhibit altered GM developmental trajectories during the first year of life as a 201 



9	

result of lower maternal microbial input compared to vaginal delivery, along with increased 202 

exposure to antibiotics (57).  203 

Practices such as skin-to-skin contact and breastfeeding offer further opportunities for 204 

microbial exchange that may promote the establishment of keystone GM taxa and functions (57, 205 

58). Breast milk is a source of probiotic bacteria, as well as of prebiotic oligosaccharides that 206 

help foster the establishment and growth of beneficial microbes in the infant gastrointestinal tract 207 

(59). Mothers in low-SES or minoritized populations may engage in less skin-to-skin contact and 208 

shift from breastmilk to formula earlier as a result of maternal work pressure or lack of relevant 209 

health information (60, 61). At three months, breastfed babies have a distinct GM compared to 210 

formula fed babies, including lower microbial diversity and increased relative abundances of 211 

beneficial microbes (62, 63).The combined loss of protective microbial factors in breastmilk and 212 

increased exposure to waterborne pathogens and toxins [e.g., the Flint, Michigan water 213 

contamination crisis (64)] may place children at higher risk for negative alterations in the GM.  214 

As infants mature, GM composition stabilizes, and by approximately three years of age, 215 

the GM resembles that of an adult (62). Both before and after this age, a number of factors are 216 

known to influence the GM. Close physical proximity to other people and/or household animals 217 

leads to increased GM similarity in both adults and infants (19, 65). Hygiene, sanitation, and 218 

medical practices can impact the GM, often by disrupting community composition and reducing 219 

diversity (66, 67). Finally, although environmental factors appear to play the strongest role in 220 

shaping the human GM (15), host genotype has been associated with variation in a subset of the 221 

GM (68, 69).  222 

Diet has one of the largest known impacts on the GM, altering GM composition on 223 

timescales from hours to years (16, 70). Specifically, high-fat, low-fiber diets that tend to be 224 
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more geographically and economically accessible to low-SES and minoritized families (71) have 225 

been shown to reduce GM diversity and negatively alter GM function (16, 70, 72). Increased 226 

time spent indoors and reduced exposure to outdoor environmental microbes is also believed to 227 

reduce GM diversity (73, 74), and low-SES and minoritized populations generally have less 228 

access to safe, outdoor green space compared to higher SES groups (75). Various forms of sleep 229 

disruption alter the GM (76, 77), which puts individuals with unusual sleep-wake cycles like 230 

shift workers, who are often disproportionately from minoritized populations (78), at risk for 231 

altered GM composition and associated diseases. Finally, low-SES and minoritized populations 232 

experience high levels of chronic stress (10, 11), which can result in altered GM composition, 233 

such as reduced relative abundance of lactobacilli (79-83).  234 

 235 

5. Pathways through which the GM can contribute to health outcomes 236 

Determining the GM’s contribution to health inequities in human populations, and 237 

harnessing this information to inform policy, will require strong evidence that variations in the 238 

GM exert a causal impact on specific health outcomes. Here, we explore the potential role of the 239 

GM in shaping health conditions with known disparities, including undernutrition, metabolic 240 

diseases, asthma, neurodevelopmental and mood disorders, and COVID-19.  241 

 242 

Child Undernutrition 243 

 Child undernutrition affects more than 50 million individuals under five years of age, 244 

contributes to nearly half of all global child deaths (84), and is most common in low-SES and 245 

minoritized populations (85). Severe cases are surprisingly refractory to recommended 246 

nutritional-based therapies, with long-term sequelae that include stunting, decreased earning 247 
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potential, impaired vaccine responses, and increased long-term risks of obesity, metabolic 248 

syndrome, and cognitive deficits (86).  249 

Undernutrition is believed to have multiple biological causes, including both macro- and 250 

micronutrient deficiencies. In low resource settings, infection by enteropathogens that decrease 251 

nutrient absorption and assimilation while simultaneously increasing immune energy needs is a 252 

primary cause of undernutrition (87). As a result, inequities in undernutrition are commonly 253 

associated with structural variation in sanitation and availability of safe, treated water as well as 254 

maternal, prenatal, and perinatal factors affecting the function of the immune and endocrine 255 

systems (88). However, other mechanisms may also be at work. For example, the GM influences 256 

the establishment of enteropathogens by reducing their success via competitive exclusion or 257 

pathogen-defense functions (24). Therefore, variation in early life GM development as a result of 258 

the factors outlined above could dictate susceptibility to infection and its sequelae. The 259 

inflammation resulting from infection can further alter the GM, increasing risk of future infection 260 

and further impairing other aspects of physiology (89). Even in the absence of active infection at 261 

the time of sampling, undernourished children have GMs with reduced diversity and altered 262 

composition (90-92). These GMs can causally impair growth when introduced into germ-free 263 

mice (90, 91). Importantly, growth impairment can be ameliorated in both mice and piglets 264 

through the use of prebiotic foods (93) and probiotic administration of Lactobacillus plantarum 265 

(94).  266 

   267 

Diseases related to overnutrition 268 

More than half of the world’s adult population is overweight or obese, and the related 269 

conditions of diabetes and cardiovascular disease are now the leading causes of death globally 270 
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(95). The rise of these conditions has been particularly rapid in minoritized populations (96), and 271 

it is unclear why individuals and populations vary in susceptibility when faced with similar diets 272 

and environments (95). Factors such as stress and sleep disruption, cesarean births, and early life 273 

antibiotics have been implicated (97-100).  274 

The GM is one potentially important pathway for understanding these relationships. In 275 

general, studies associate an altered, low diversity GM with increased risk for obesity and 276 

diabetes (28, 101), and the GMs of obese human individuals can causally induce obesity in mice 277 

(28). These effects may operate via multiple mechanisms, including excess host-accessible 278 

energy production by microbes in the form of short-chain fatty acids (SCFAs), alteration of host 279 

metabolic programming via production of SCFAs and other metabolites, and promotion of host 280 

inflammation (28, 102, 103). Disparities in environmental factors that result in these GM traits 281 

could therefore contribute to disparities in metabolic disease. While many of the environmental 282 

factors described earlier could play important roles in affecting the GM in this context, high-fat, 283 

low-fiber diets that can be prevalent in minoritized populations in settings like the US (71) 284 

consistently result in GM signatures that resemble those typical of obesity and metabolic disease 285 

(72).  286 

Asthma 287 

Asthma affects approximately 14% of children worldwide with incidence increasing by 288 

50% every decade (104). Asthma disproportionately impacts low-SES, minoritized, and urban 289 

populations in middle- and high-income countries (105), with more than 80% of deaths occurring 290 

in these populations. In addition to its role in mortality, the impact of asthma includes wide-291 

ranging factors like days lost from school and interference with physical exercise (106). 292 

Although genetic susceptibility contributes to asthma pathogenesis in some populations, it only 293 
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explains a minority of cases (107). Instead, asthma prevalence and severity are linked to a range 294 

of environmental factors including reduced exposure to outdoor environments, animals, and 295 

helminthic infections, increased incidence of viral and bacterial infections, increased antibiotic 296 

exposure, cesarean birth, and formula feeding (107-111).  297 

There is accumulating evidence for a role of the GM as mediator between these 298 

environmental factors and asthma morbidity. Microbial alterations have been observed in the 299 

airways of individuals with asthma (112, 113), and infant GM signatures can be used to predict 300 

asthma risk later in life (29, 114, 115). For example, Faecalibacterium, Lachnospira, Veillonella, 301 

and Rothia are negatively associated with future asthma development in 3-month-old infants 302 

(29), and supplementation of these bacteria to germ-free mice colonized with asthma-associated 303 

stool samples ameliorates airway inflammation (29). While additional research is needed, 304 

research to date has linked asthma morbidity in children to GM-mediated impacts on immune 305 

function development and inflammatory responses (109, 116).  306 

  307 

Preterm birth and neurodevelopmental trajectories 308 

Despite technology-enabled increases in the survival of extremely preterm (<28 weeks) 309 

infants in the U.S., cognitive outcomes in these individuals are often severely impaired (117, 310 

118). Preterm babies born into low-SES families and/or minoritized populations often have 311 

poorer cognitive outcomes (119). While a number of factors, including access to early life 312 

education (120), likely contribute to these patterns, variation in inflammatory markers in infant 313 

serum is a key area of interest (121, 122). 314 

The GM could play a key role in mediating the relationship between preterm neuro-315 

developmental outcomes and inflammation. Research in mice has demonstrated that the GM 316 
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links key immune and neurological pathways in infancy (22), and the composition of the human 317 

GM has been associated with neurodevelopmental status at one year of age (123). Additionally, 318 

gnotobiotic mice colonized with the GM from human preterm infants experience systemic 319 

inflammation, as well as alterations in myelination, neuronal number, and neurotransmission 320 

pathways (124). No research to our knowledge has directly linked specific environmental 321 

disparities to pre-term neurodevelopmental outcomes. However, if disparities in the 322 

environmental factors outlined above affect either the maternal or infant GM, it could alter infant 323 

inflammatory profiles, which in turn have well-established effects on cognitive development 324 

(125). Additionally, the parental ability to engage with infants in the neonatal intensive care unit 325 

via skin-to-skin contact and/or breastfeeding, as a result of professional or personal demands, or 326 

infant health status, may also result in disparities in infant microbial exposures.  327 

 328 

Mental health 329 

 Mental illness is recognized as one of the largest causes of morbidity globally (126). 330 

Depression is the leading cause of disability worldwide, and approximately half of those 331 

diagnosed with depression also suffer from anxiety simultaneously (127). Individuals belonging 332 

to minoritized populations as well as individuals with reduced economic resources are 333 

disproportionately impacted by these conditions (1, 128), and experiential and behavioral factors 334 

such as stress and diet are considered among the strongest influences on conditions like 335 

depression and anxiety (129, 130).  336 

The GM is emerging as a potentially important mediating pathway for mental illness. In 337 

both humans and rodents, individuals with symptoms of depression have distinct GM 338 

compositions compared with individuals without symptoms (131, 132), and a depressive 339 
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phenotype can be induced in rats using a fecal transfer from depressed patients (133). 340 

Conversely, probiotics and prebiotics have been shown to ameliorate depressive symptoms in 341 

both animal models and humans (134, 135). These relationships are likely associated with the 342 

ability of the GM to influence the metabolism of host neurotransmitters and hormones including 343 

serotonin, dopamine, GABA, ACTH, and glucocorticoids (136, 137). There is also evidence 344 

from mice that gut microbes can directly influence nervous system functioning through 345 

interactions with sensory neurons, including the vagus nerve that connects the gut to the brain 346 

(138, 139). As a result, the roles of diet and stress in mental health are likely mediated, at least in 347 

part, through the GM (140), and disparities in mental illness likely reflect disparities in diet and 348 

stress that impact the GM.  349 

 350 

The role of the GM in infectious disease and the COVID-19 pandemic 351 

 The COVID-19 global pandemic caused by coronavirus SARS-CoV-2 represents one of 352 

the most recent and acute examples of health inequities. Although all populations are susceptible 353 

to the disease, Black and Latino populations in the U.S. are exhibiting higher infection and 354 

mortality rates compared to their white and Asian counterparts (141-143). These disparities are 355 

likely due to a combination of factors including limited opportunities to engage in isolating 356 

behaviors to reduce exposure, increased probability of underlying comorbidities perpetuated by 357 

structural inequities such as obesity, cardiovascular disease, and diabetes, and reduced access to 358 

healthcare (141-143). 359 

 Although there is still much to learn about this virus and its interactions with hosts, it is 360 

likely that the GM influences COVID-19 susceptibility and outcomes (144). To begin with, 361 

many of the underlying comorbidities that increase risk of morbidity and mortality from COVID-362 
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19 appear to be shaped by host-microbe interactions, as described previously. Additionally, since 363 

data from mice demonstrate that the GM trains the immune system and affects host responses to 364 

other respiratory viruses such as the influenza virus (145, 146), it is similarly likely to play a 365 

role, either directly or indirectly via effects on other disease sequelae, in moderating host 366 

immune responses to SARS-CoV-2. For example, COVID-19 mortality rates appear to be 367 

strongly influenced by host susceptibility to out-of-control inflammatory responses, and the GM 368 

can directly influence these responses (147, 148). Similarly, COVID-19 can infect the gut as well 369 

as the respiratory tract (149), allowing for direct interactions between the GM and virus-infected 370 

cells..  371 

 372 

6. Importance of early life and intergenerational GM dynamics on health 373 

The studies reviewed above show that a range of environmental and lifestyle factors at various 374 

points in the lifecycle can influence the GM in ways that influence risk for multiple disease end 375 

points. Although this work confirms that the GM exhibits responsiveness and plasticity to 376 

changing environments throughout life, GM community establishment during infancy is likely to 377 

be particularly important given emerging evidence that it is not only which microbial taxa and 378 

genes that are established, but when in the lifecycle, that matters to the long-term disposition of 379 

immune, metabolic, and neurological states (20, 150, 151). For example, mice that are not 380 

exposed to key microbial strains during early life do not develop appropriate immune and 381 

nervous system function, even if they are exposed to those microbes later (151, 152). Likewise, 382 

mice exposed to low-dose antibiotics during early life exhibit altered metabolism and immune 383 

function even after their GM returns to its original state (153). Intergenerational GM dynamics 384 

also appear to be important. Mice fed a low fiber diet lose fiber-dependent GM taxa cumulatively 385 
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across generations (154). Some studies in mice also suggest that mothers may pass on 386 

inflammatory bowel disease, metabolic disease risk, or stress phenotypes to their infants via the 387 

GM (97, 155, 156).  Therefore, to the extent that findings in mice apply to humans, the 388 

determinants of GM composition and its impact on health may not be limited to a single 389 

generation. 390 

 391 

7. Leveraging the GM to address health inequities 392 

 The growing evidence that the GM is a link between social environments and diseases 393 

characterized by marked disparities points to new levers that could be harnessed to help 394 

ameliorate their effects. However, key gaps remain that must be addressed before the GM can be 395 

effectively used to guide interventions. For example, current studies describe either the 396 

relationship between the social dynamics of SES/race/gender identity and the GM, or the 397 

relationship between the GM and health. No study simultaneously and empirically assesses 398 

SES/race/gender identity, the GM, and health outcomes to determine what facets of health 399 

inequities are actually mediated by the GM and the relative importance of the GM versus other 400 

potential mediating pathways. Similarly, inequality manifests at multiple levels of organization, 401 

exposing people to neighborhood, household, workplace, and individual factors that can alter the 402 

GM. However, no GM study has quantitatively examined the relative importance of exposures at 403 

these different levels or the extent to which they interact with each other. Not only does this gap 404 

limit scientific understanding of personal versus structural drivers of health inequities, but it 405 

inhibits the development of effective interventions. 406 

  To begin to fill these gaps, future studies should engage a multidisciplinary approach that 407 

melds GM research with fields like epidemiology and the social sciences (32) to strengthen study 408 
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design and quantitative assessment of inequities. For example, SES is measured differently 409 

across many of the existing studies and often targets a narrow range of factors such as income 410 

and education (Table 1). Similarly, in studies of race and gender/sexual identity, the role of 411 

experiences with racism and discrimination—either through personal encounters or structural 412 

inequities—has not yet been addressed directly. The social sciences can provide critical guidance 413 

in these areas. Additionally, the declining costs of GM sequencing will facilitate larger sample 414 

sizes and higher resolution microbial data to leverage epidemiological approaches to tease apart 415 

the independent effects of multiple environmental determinants. Quasi-experimental approaches 416 

(e.g. discordant twin or adoption studies), interventions (e.g. randomized cash-transfer and 417 

housing-voucher experiments), and controlled animal model experiments (e.g. social dominance 418 

challenges) currently used to study health inequities outside the microbiome context can also be 419 

used to further strengthen causal inference.  420 

  As evidence linking the GM to the embodiment of structural inequities in minoritized 421 

populations amasses, it will open up new opportunities for intervention to ameliorate or reverse 422 

health inequities. Although much basic research remains to be done, we imagine that future 423 

interventions will take multiple forms that could work in complementary ways to reduce the 424 

disproportionate societal burden of many common diseases. Specifically, we believe that the 425 

development of interventions should include a combination of research-based therapies and 426 

policy updates that use a biomedical approach to target known keystone GM traits that 427 

disproportionately contribute to host health as well as an ecological approach to support the 428 

development and maintenance of stable, resilient GM communities (Fig. 2). 429 

 430 

Targeted biomedical interventions  431 
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Targeted GM interventions for specific diseases are receiving growing attention. For 432 

example, Lactobacillus and Bifidobacterium probiotics are being used in multiple clinical trials 433 

as a treatment for depression with mixed outcomes (157), and fecal transplants are a highly 434 

effective therapy for C. difficile infection (158). Nevertheless, substantial research is necessary 435 

before these approaches can be routinely implemented. Even in the relatively simple case of 436 

probiotics, the microbial taxa of interest are only established in the gut in a subset of people, and 437 

it remains unclear whether there are durable health benefits (159, 160). Efforts may need to focus 438 

on keystone GM taxa that have large positive effects on their host, such as Bifidobacterium 439 

longum subsp. infantis in breastmilk (161). Alternatively, researchers should look past microbial 440 

taxonomy to identify specific microbial genes, proteins or metabolites that are associated with 441 

particular beneficial or detrimental effects (162). 442 

While these personalized treatments and interventions have the potential to transform our 443 

ability to treat many of the diseases in which disparities are observed, the current practices 444 

surrounding their development and distribution limit their power to substantially alter patterns of 445 

health inequity. First, most GM biomedical research targets relatively homogenous populations 446 

that consist largely of affluent adults of European descent and does not consistently account for 447 

the rich cultural and environmental contexts in which people and their GMs exist. Given the 448 

extent to which structural forces, acting through ecological, behavioral, and experiential factors, 449 

shape the GM, this narrow approach will result in emerging therapies that will have untested 450 

utility in populations experiencing the highest burdens of GM-mediated disease. Challenges with 451 

generalizability in the GM field more broadly underscore this risk. For instance, research from 452 

China has demonstrated that predictive models of health designed using the GM of one 453 

population with specific cultural and environmental traits cannot easily be translated to another 454 
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(163). Therefore, GM research must incorporate knowledge from the health inequities field and 455 

begin to account for cross-population differences in the context of both basic research and 456 

applied clinical trials. Federal policies that prioritize funding for the development of targeted GM 457 

therapies for populations experiencing disproportionate burdens of disease would advance these 458 

efforts.  459 

Additionally, targeted GM therapies are likely to be distributed through channels 460 

constrained by unequal access, such as health care or prescription medications, which are already 461 

recognized as important drivers of population health disparities. As a result, populations with the 462 

greatest potential to benefit from these interventions may be less likely to have access to them. 463 

Here, transformative policy interventions that strive for universal access to emerging health 464 

technologies, and to healthcare more generally, will be essential for ensuring that new GM 465 

developments reach the populations that would most benefit from them. 466 

 467 

Ecologically-inspired interventions  468 

To complement targeted GM therapies, ecologically-inspired interventions that support 469 

the development and maintenance of a stable, resilient GM community may be important tools 470 

for leveraging the GM to address health inequities. Specifically, policy interventions should be 471 

designed to counteract structurally-induced disparities in environments and behaviors that affect 472 

the development of robust GM communities in minoritized populations. While some policies, 473 

such as antibiotic stewardship programs and improvements to water and sewage infrastructure, 474 

already are informed by knowledge of microbial impacts on health (164, 165), most health 475 

policies do not integrate goals motivated by an understanding of host-environment-GM 476 

interactions. Explicitly integrating the GM into both new and existing policy at local, state and 477 
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federal levels is likely to fill critical gaps and substantially improve associated health outcomes. 478 

Continued research is necessary to optimize these approaches by identifying keystone GM traits 479 

and determining the most effective pathways for promoting stable and resilient GM ecologies 480 

(166). Nevertheless, our current knowledge of the factors promoting diverse, interconnected GM 481 

ecologies, particularly during early life, provide an important foundation upon which new policy 482 

perspectives can be built as the field advances (Fig. 1). 483 

 Breastfeeding is an excellent example of an area in which our current understanding of 484 

the GM can be used to improve health policy. In many global settings, breastfeeding rates tend to 485 

be lower among low-SES or minoritized populations (60, 61). Programs to support breastfeeding 486 

for mothers have the potential to reduce health inequities through multiple mechanisms (167), 487 

including by facilitating the development of stable and resilient GM communities in infants. In 488 

the US, many workplace efforts to facilitate breastfeeding provide space and resources for 489 

mothers to express milk. While this practice partially facilitates infant GM development through 490 

the provision of breastmilk, it also reduces physical contact between mothers and infants, which 491 

may alter microbial transmission patterns. It is similarly unclear whether freezing, thawing, and 492 

reheating breastmilk affects microbes and other bioactive human milk components essential for 493 

the normal development of the infant GM (58). Recent movements in the U.S. to guarantee a 494 

minimum period of paid maternal leave, reflecting policies implemented in nearly all other high 495 

income countries, could substantially diminish risks for developing a range of conditions that 496 

have been linked to reduced breastfeeding and altered GM ecology, including obesity, diabetes 497 

and asthma (167). 498 

Similarly, policies aimed at reducing health disparities by improving access to affordable, 499 

non-processed foods could be tailored to maximize beneficial impacts on the GM. Existing 500 
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nutritional policies tend to emphasize the nutritive importance of lean protein sources and fresh 501 

produce and do not recognize the role of food in shaping GM ecology. However, as one 502 

example, high-fiber diets are strongly associated with diverse, interconnected GM communities 503 

(70, 168, 169). This information should be used to update policy and improve access to high-504 

fiber, ‘microbe-friendly’ foods through food banks and food supplement programs such as WIC 505 

in the U.S. The feasibility of such efforts would be enhanced by the design of fresh food 506 

production and delivery systems that are more efficient, flexible, and resilient to disruption than 507 

those currently in use (170, 171).  508 

 509 

6. Conclusion 510 

Although there are many biological systems through which socially-determined 511 

differences in environments lead to health inequities, the GM represents an important set of 512 

pathways that have yet to be fully explored. Given its sensitivity to myriad environmental factors 513 

as well as its prominent role in shaping host physiology and health, the GM is likely to both 514 

respond to and perpetuate the structural inequities created by racism and other forms of 515 

discrimination. Because the environments that drive GM composition are modifiable, the GM 516 

represents an important new tool for mitigating the impact of structural inequities and their 517 

downstream health consequences. In this context, both biomedical approaches targeting 518 

individual GM taxa and functions, as well as ecological approaches promoting the maintenance 519 

of stable and resilient GM communities, should be combined with policy interventions aimed at 520 

equalizing access to resources, environmental exposures, and disease risk and adopting an anti-521 

racist stance in healthcare. Achieving this goal will require collaborations between GM 522 

researchers and those in fields specializing in the assessment of social environments and their 523 
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impacts on health, including epidemiology and health-focused fields in the social sciences (172, 524 

173), as well as medical doctors, nurses, and policy makers that can put key findings into 525 

practice. 526 

 527 
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Figure 1. Experiences of discrimination across multiple scales are likely to affect the structure 532 
and function of the microbiome through a variety of pathways across multiple life stages. Given 533 
links between the microbiome and metabolism, immunity, and nervous system function, 534 
microbiome perturbations incited by discrimination can result in negative health outcomes. 535 
These include acute symptoms, various chronic diseases, and heterogenous immunity to 536 
pathogens including respiratory viruses. Behaviors and treatments associated with these factors 537 
can feed back to further alter the microbiome, creating a positive feedback cycle. (Created with 538 
BioRender.com) 539 
 540 
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Figure 2. The gut microbiome represents a potential target for interrupting health inequities via 542 
complementary approaches that integrate both research and policy. These approaches include 543 
targeted biomedical interventions that aim to introduce key microbial taxa or functions into an 544 
altered microbiome and ecologically-inspired interventions that support the environmental 545 
conditions favoring the development of a stable and resilient microbiome community. A variety 546 
of stakeholders and key considerations for addressing structural inequities operate within both 547 
the policy and research toolkits that contribute to these interventions. Although often considered 548 
separately, they are interrelated. We list some key examples here. (Created with BioRender.com) 549 
 550 
 551 

  552 
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