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Abstract: This work is motivated by the study of local protein struc-
ture, which is defined by two variable dihedral angles that take values from
probability distributions on the flat torus. Our goal is to provide the space
P(R2/Z2) with a metric that quantifies local structural modifications due
to changes in the protein sequence, and to define associated two-sample
goodness-of-fit testing approaches. Due to its adaptability to the space ge-
ometry, we focus on the Wasserstein distance as a metric between distribu-
tions.

We extend existing results of the theory of Optimal Transport to the
d-dimensional flat torus Td = Rd/Zd, in particular a Central Limit Theo-
rem. Moreover, we assess different techniques for two-sample goodness-of-fit
testing for the two-dimensional case, based on the Wasserstein distance. We
provide an implentation of these approaches in R. Their performance is il-
lustrated by numerical experiments on synthetic data and protein structure
data.
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1. Introduction

When it comes to measure the distance between two probability distributions,
the well known Wasserstein distance, derived from the theory of Optimal Trans-
port (OT), provides both strong theoretical guarantees –it metrizes weak conver-
gence [35]– and attractive empirical performance [21]. Most of the applications
of such theory are related to the very active field of machine learning, notably in
the framework of generative networks [2], robustness [30] or fairness [9], among
others.

From a statistical point of view, one of the main caveats of the theory of
OT comes from the curse of dimensionality : the rate of convergence of the em-
pirical Wasserstein distance decreases as n−1/d with the dimension [12]. An-
other important issue is the asymptotic behavior of the fluctuations of the
empirical optimal transport cost. For probabilities supported in Rd, it has
been proved, using Efron–Stein’s inequality that, for the cost L2, the differ-
ence

√
n(W2

2 (Pn, Q) − EW2
2 (Pn, Q)) is asymptotically Gaussian [10]. Recently,

the proofs have been extended to some general costs in Rd, including the cost
Lp, for p > 1 [8]. Concerning statistical goodness-of-fit tests based on Wasser-
stein distance, the one sample case has already been addressed in [14] and, when
the probabilities are defined over R, two-sample tests can be derived from [7].

In this paper, we focus on the d-dimensional flat torus Td := Rd/Zd where,
even from the purely theoretical point of view, OT has not been explicitly ad-
dressed. However, this space appears naturally when the probability measures
are periodic (e.g. for distributions of angles). The main objective of this work is
to extend existing OT results to the space of probability measures on the flat
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torus P(Td), specially a Central Limit Theorem (CLT), and to address in par-
ticular the two-dimensional case, constructing some two-sample goodness-of-fit
testing techniques based on Wasserstein distance.

Our motivation for extending the theory of OT to T2 comes from the inves-
tigation of proteins. Understanding the relationships between protein sequence,
structure and function is the main goal of Structural Biology. In addition to
its scientific importance, a better understanding of these relationships is essen-
tial for applications in diverse areas, such as biomedicine and biotechnology.
The conformational state of a protein can be defined by a vector of angles,
corresponding to rotations around the chemical bonds between the atoms that
constitute its “backbone”. This vector contains two values per amino-acid, φ and
ψ, which follow a certain distribution, and which are usually represented using
the so-called Ramachandran plots [24] (see also Figure 5). The analysis of these
distributions has several important applications, such as the validation or re-
finement of protein structures determined from biophysical techniques [19, 16],
the prediction of some biophysical measurements to complement experiments
[31], and the development of potential energy models or scoring methods for
protein structure modeling, prediction and design [4, 26, 33].

In this context, the definition of a suitable distance between distributions on
T2 is essential. This would allow to quantify the expected magnitude of struc-
tural effects associated with local changes in the sequence, and therefore to
develop improved versions of the aforementioned modeling and prediction tech-
niques. Nevertheless, this has not been done satisfactorily in previous works.
For example, in [26] and [31] significant differences between two laws are stated
after visual comparison of two empirical distributions, and in [33] the Hellinger
distance is used to compare distributions on a non-periodic [−π, π] × [−π, π].
Efficient statistical tests remain to be defined and implemented in order to state
such differences, being based on a metric that takes geometry into consideration.
As many other commonly-used metrics, Hellinger distance ignores the underly-
ing geometry of the space. Here, we propose to use the Wasserstein distance,
whose advantageous geometrical and mathematical properties are described in
[21], [34] and [35], to define goodness-of-fit testing techniques for two measures
on T2, allowing a more accurate study of protein local conformation distribu-
tions.

The paper is organized as follows:

• Section 2 starts by introducing the general framework of measures on the
flat torus in general dimension, followed by the precise formulation of the
optimal transport problem. Here we will set the notations used through the
paper. It is divided into different subsections: Subsection 2.1 is devoted
to the study of the shape of the solutions, recalling that they are the
gradient of a periodic convex functions and showing the uniqueness of the
potential in Corollary 2.2. Section 2.2 proves through Theorem 2.4 that
the optimal transport potentials converge, up to additive constant, when
the measures converge weakly. This result implies that the method of [10]
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based on Efron–Stein’s inequality can be applied to derive a Central Limit
Theorem, see Theorem 2.5 in Subsection 2.3.

• Section 3 shows how this theory can be applied to perform two-sample
goodness-of-fit tests in the two dimensional flat torus. The main result of
the section is Theorem 3.1, which gives a concentration inequality primor-
dial for the construction of statistical tests, together with faster conver-
gence rates for the expectation.

• Section 4 reports numerical experiments supporting these theoretical re-
sults, first with synthetic data and then with real data from protein struc-
tures, showing that our methods behave well in both cases.

To facilitate reading, the proofs are relegated to the Appendix, but in some
cases the intuitions of the proofs are provided in the main text for clarity.

2. Optimal transport in Rd/Zd

Let Td := Rd/Zd be defined as the quotient space derived from the equivalence
relation xRy if x− y ∈ Zd. For each x ∈ Rd we denote as x̄ ∈ Td its equivalence
class and reserve the notation τ for the canonical projection map x 7→ τ(x) = x̄ .
The topology of the quotient space is defined as the finest one that makes τ
continuous. With this topology the space Td is a Polish space with the distance
derived from the Euclidean norm || · ||,

d(x̄, ȳ) := inf
p∈Z
||x− y + p||.

Note that the last claim is true since the projection map τ is in fact a metric
identification, (Rd, || · ||) is a Banach space and Zd is a closed subspace, then it
is complete, metrizable through d and separable.

For two probability measures P,Q ∈ P(Td), a probability measure π ∈
P(Td × Td) is said to be an optimal transport plan for the cost d2 between
P and Q if it solves

T2(P,Q) := inf
γ∈Π(P,Q)

∫
Td×Td

d2(x̄, ȳ)dγ(x̄, ȳ), (2.1)

where Π(P,Q) is the set of probability measures γ ∈ P(Td × Td) such that
γ(A × Rd) = P (A) and γ(Td × B) = Q(B) for all A,B measurable subsets of
Td.

The Kantorovich problem (2.1) can be formulated in a dual form, as follows

T2(P,Q) = sup
(f,g)∈Φ2(P,Q)

∫
Td

f(x̄)dP (x̄) +

∫
Td

g(ȳ)dQ(ȳ), (2.2)

where

Φ2(P,Q) = {(f, g) ∈ L1(P )× L1(Q) : f(x̄) + g(ȳ) ≤ d2(x̄, ȳ)}.
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ψ ∈ L1(P ) is said to be an optimal transport potential from P to Q for the
cost d2 if there exists ϕ ∈ L1(Q) such that the pair (ψ,ϕ) solves (2.2). Recall
from [35] that the solutions of (2.2) are pairs (f, fd

2

) of d2 conjugate d2-concave
functions. This means that there exists two sets Y ⊂ Td and Λ ⊂ R such that

f(x) = inf
y∈Y, α∈Λ

{d(x, y)2 − α} and fd
2

(y) = inf
x∈Td
{d(x, y)2 − f(x)}.

Moreover, since Td is a Polish space, then Theorem 4.1 in [35] implies that there
exists a solution π∗ of (2.1). Additionally Theorem 5.10 in [35] establishes that
supp(π∗) is d2-cyclically monotone. This means that for every finite sequence
{(xk, yk)}nk=1 ⊂ supp(π∗) and every bijection σ : {1, . . . , n} → {1, . . . , n} the
following inequality holds:

n∑
k=1

d2(xk, yk) ≤
n∑
k=1

d2(xk, yσ(k)).

The concept of d2-cyclical monotonicity is the generalization, to other spaces
and costs, of the concept of cyclical monotonicity in convex analysis, described
in [27]. A set A ⊂ Rd × Rd is cyclically monotone if for every finite sequence
{(xk, yk)}nk=1 ⊂ A and every bijection σ : {1, . . . , n} → {1, . . . , n} it holds that

n∑
k=1

〈xk, yk〉 ≥
n∑
k=1

〈xk, yσ(k)〉.

In some cases, that we will study latter on, there exists some measurable map
T such that optimal transport plan π satisfies π = (I × T ) #P , where I denotes
the identity map. Therefore, the problem becomes equivalent to the following
Monge formulation:

T2(P,Q) = inf
T#P=Q

∫
Td

d2(x̄, T (x̄))dP (x̄), (2.3)

where the symbol T#P denotes the push forward measure of P through T ,
which is defined by T#P (A) := P (T−1(A)), for all measurable A ⊂ Td. The
support of a probability Q is usually defined as the closed set RQ ⊂ Td composed
by x̄ ∈ Td such that for any neighborhood Ux̄ of x̄ it is satisfied that Q(Ux̄) > 0.
Yet in our case, for convenience, we will consider the interior of RQ which we
denote as

supp(Q) := int (RQ) . (2.4)

2.1. Description of the solutions

This section begins by setting the notation we will follow throughout the paper.
Then, Theorem 2.1 adapts a result of [6] to claim the existence of solutions of the
Monge problem (2.3), which is characterized in Lemma A.2. As a consequence,
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Theorem 2.2 guarantees under certain assumptions of regularity on P that the
solution of (2.2) is unique up to an additive constant.

Note that in practice a probability P ∈ P(Td) defines a periodic measure
µP ∈ M(Rd) w.r.t. any p ∈ Zd. In other words, Tp#µP = µP , for all p ∈ Zd,
where Tp : Rd → Rd is the shift operator x 7→ x + p. If µP , µQ ∈ M(Rd) are
absolutely continuous w.r.t. the Lebesgue measure on Rd, denoted as µP , µQ �
`d, [6] establishes that there exists a convex function ϕ such that ∇ϕ#µP = µQ.
Theorem 1.25 in [28] entails that there is a unique solution of the Monge problem
in the torus, described by the relation T = x − ∇f , where the sum is to be
intended modulo Zd and f is an optimal transport potential. The next Theorem
proves that in fact such a map T satisfies T ◦ τ = τ ◦ ∇ϕ, where ϕ is defined
some lines above. This intrinsic characterization of the optimal transport map
is at least surprising, meaning that we can relate the optimal transport map in
the torus with the unique gradient of a convex function pushing forward their
respective periodic measures. The proof starts by realizing that since Td is a
Polish space, then Theorem 4.1 in [35] implies that there exists a solution π∗

of (2.1). Furthermore, Theorem 5.10 in [35] establishes that supp(π∗) is d2-
cyclically monotone, which implies that, by Proposition 2 in [6], the set

Γ = {(x+p, y+p) : (x̄, ȳ) ∈ supp(π∗), x ∈ [0, 1]d, d(x̄, ȳ) = ||x−y|| and p ∈ Zd}
(2.5)

is cyclically monotone. Since every cyclically monotone set is contained in the
subdifferential of a convex function (Theorem 12.25 in [22]), then we have a
candidate of convex function that plays the main role in the following theorem.

Theorem 2.1. Let P,Q ∈ P(Td) be probability measures such that their associ-
ated periodic measures satisfy µP , µQ � `d. Then there exists an unique solution
T of (2.3). Moreover, there exists an unique convex function ϕ : Rd → R∪{∞}
such that

• the relation T ◦ τ = τ ◦ (∇ϕ) holds µP -almost surely,
• and ∇ϕ#µP = µQ.

The following result gives the uniqueness, up to additive constants, of the
optimal transport potential. The proof investigates the intrinsic relation between
the optimal transport potentials and the previously described ϕ, which serves
to use general results for convex functions which have the same gradient a.e. in
a connected domain of Rd.

Theorem 2.2. Let P,Q ∈ P(Td) be probability measures such that their asso-
ciated periodic measures satisfy µP , µQ � `d. Then there exists an unique, up
to an additive constant, d2-concave function f solution of (2.2).

The importance of Theorem 2.2 mainly lies on the study of the asymptotic
behavior of the potential, allowing us to apply Arzelá-Ascoli like reasoning.
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2.2. Asymptotic behaviour

This section deals with the asymptotic properties of the transport map and po-
tentials. We consider two sequences of probabilities {αn}n∈N, {βn}n∈N ⊂ P(Td)
convergering weakly to P and Q respectively,

αn
w−→ P and βn

w−→ Q.

Here the weak convergence is in the sense that
∫
h(x̄)dαn(x̄)→

∫
h(x̄)dP (x̄), for

every continuous function h ∈ C(Td). Note that the classic definition of weak
convergence of probabilities involves only continuous functions with compact
support, but the compactness of T allows us to relax that hypothesis. Once again
thanks to that compactness the existence of moments of order 2 is always fulfilled
by any P ∈ P(Td). In consequence Theorem 7.12 in [34] implies that αn

w−→ P if
and only if the quadratic Wasserstein distance W2(αn, P ) :=

√
T2(αn, P ) tends

to 0.
The idea of this section is to take advantage that any d2-concave function f

is continuous whereby it is finite. Moreover, it has bounded continuity modulus,
so we can apply Arzelá-Ascoli’s Theorem by fixing the constants.

Lemma 2.3. Every d2-concave function f is Lipchitz with constant 2 and with
respect to the metric d.

The proof of the next Theorem firstly proceeds by choosing the sequence
{an}n∈N to guarantee the uniform boundedness of the sequence {(fn, gn)}n∈N of
solutions of (2.2). This, together with Lemma 2.3 and Arzelá-Ascoli’s Theorem,
implies that {(fn, gn)}n∈N is relatively compact. The uniqueness of solutions of
(2.2), described in Theorem 2.2, allows us to conclude.

Theorem 2.4. Let P,Q ∈ P(Td) be probabilities with connected supports such
that their associated periodic measures satisfy µP , µQ � `d. Let {αn}n∈N and
{βn}n∈N ⊂ P(Td) be two sequences of probabilities converging weakly to P and
Q respectively. Denote by (fn, gn) (resp. (f, g)) the solution of the dual problem
between αn and βn (resp. P and Q). Then there exists a sequence of real numbers
{an}n∈N such that fn + an → f uniformly on Td.

2.3. Asymptotic normality

This section is devoted to prove a Central Limit Theorem (CLT) for the fluctu-
ations of the empirical optimal transport cost. Recall that the previous section
proves that, under certain regularity assumptions, there exists a unique opti-
mal transport potential from P to Q. Let ϕ be such a potential. We will use
Efron-Stein’s inequality to derive that

√
n (Tp(Pn, Q)− ETp(Pn, Q))

w−→ N(0, σ2
p(P,Q)),

with
σ2(P,Q) = Var(ϕ(X)), (2.6)
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where ϕ is a transport potential from P to Q and X ∼ P . Then we will see that
the same holds in the two sample case. The idea is not new: it has already been
used with the same goal in [10] for the quadratic cost in Rd, and in its extension
to general costs in [8]. Moreover, when using regularized optimal transport, [18]
showed that the same technique can be applied.

Theorem 2.5. Let P,Q ∈ P(Td) be probabilities with connected supports and
negligible boundary such that their associated periodic measures satisfy µP , µQ �
`d. Then

√
n (Tp(Pn, Q)− ETp(Pn, Q))

w−→ N(0, σ2(P,Q)),

and if nm
n+m → λ ∈ (0, 1) as n,m→∞,√

nm
n+m (Tp(Pn, Qm)− ETp(Pn, Qm))

w−→ N
(
0, (1− λ)σ2(P,Q) + λσ2(Q,P )

)
,

with σ2(P,Q) and σ2(Q,P ) are defined in (2.6) and satisfy√
nm
n+mVar(Tp(Pn, Qm)) −→ (1− λ)σ2(P,Q) + λσ2(Q,P ). (2.7)

3. Two-sample goodness-of-fit tests

Goodness-of-fit testing based in Wasserstein distance is still an open problem.
The one-sample case in Rd has recently been addressed in [14], but approaches
for two-sample testing in arbitrary dimension, and for measures on more gen-
eral spaces, have not already been proposed to the best of our knowledge. The
intrinsic difficulty of characterizing the distribution ofWp(Pn, Qm) accounts for
the lack of solutions, specially when dimension is higher than one. Our aim
here is to present some goodness-of-fit testing techniques based on the statis-
tic Tp(Pn, Qm), allowing the assessment of the null hypothesis H0 : P = Q,
for measures on T2. All of our approaches are based on the extension of re-
sults for measures on Rd. Therefore, they can also be adapted to the Euclidean
space of general dimension. If we denote by (X1, . . . , Xn) and (Y1, . . . , Ym) two
simple random samples of laws P,Q ∈ P(T2) respectively, and Pn, Qm their
corresponding empirical probability measures, we aim to test the hypothesis
H0 : P = Q via the definition of the p-value of the form

p = PH0(Tp(Pn, Qm) ≥ tnm), (3.1)

where tnm denotes the statistic realization for the given samples.
As already mentioned, knowing the distribution of the statistic under the

null remains an open (and maybe unfeasible) problem. Therefore, the three
presented approaches are not exact but based on: the projection of the problem
to a one-dimesional space, the upper bounding of p-values and the asymptotic
behaviour of the statistic under the alternative hypothesis.
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3.1. Marginal projections into R/Z

A first approach when testing the equality of two measures P , Q on R2/Z2 is to
test the equality of their corresponding marginals Px and Py on the unit circle
R/Z. This bypasses the dimension problem and allows the implementation of
testing techniques based on Wasserstein distance for one-dimensional spaces.
Optimal Transportation on the circle has been recently studied in detail in
[15], where the limit laws of the one and two-sample empirical Wasserstein
distance for measures on R/Z are derived. However, the considered statistics
are not distribution-free and only one-sample goodness-of-fit tests can therefore
be performed. Here, we propose a partical alternative to test the equality of two
marginal laws supported on the circle.

As shown in [23], given two pairwise different empirical probability measures
of equal size Pn, Qn on R/Z, the circle can be "cut" and laid out on the real line
so that computing the optimal transport between Pn and Qn is equivalent in
both spaces. This cutpoint can be found in practice and therefore computation
of Wasserstein distance on the circle can be reduced to its counterpart in R.
Once the empirical measures have been relocated on the real line, carrying out
a goodness-of-fit test based on Wasserstein distance is equivalent to directly
performing such a test on P(R/Z).

The distribution-free Wasserstein test for distributions on R introduced in
[25] therefore allows for testing Hx

0 : Px = Qx and Hy
0 : Py = Qy. The main

idea of this approach is to use Wasserstein distance to compare Gm(F−1
n ) to

the uniform distribution, where Fn and Gm are the empirical cumulative dis-
tribution functions associated to Pn and Qm, respectively. The corresponding
statistic is distribution-free under the null. In our setting, a p-value for the test
H0 : P = Q is given by twice the minimum of the p-values obtained for Hx

0

and Hy
0 , after multiplicity correction. It is obvious that sensitivity when testing

H0 may not be satisfactory, as two different measures in R2/Z2 can have the
same marginals. Nevertheless, rejection of Hx

0 or Hy
0 implies rejection of H0,

so the test can be always performed as a first move to detect differences, non-
rejections of H0 being further analyzed with an alternative procedure such as
the one described in the next section.

3.2. p-value upper bounding

A second approach to build a test of H0 is to find an upper bound for p-values
in (3.1). Such an upper bound will itself be a valid p-value for H0 if it controls
type I error (they remain with probability 1− α over a fixed signification level
α under the null). For the sake of efficiency, we will also ask that power tends
to one under the alternative.

One first strategy may consist in making use of concentration inequalities,
whose goal is to upper bound

P(Tp(Pn, P ) ≥ t), (3.2)
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and adapt them to the two-sample case under the null. If φ(n, t) is a bound for
(3.2) that is decreasing in its second argument, we can derive

PH0
(Tp(Pn, Qm) ≥ t) ≤

∫ 1

0

φ
(
n,
(
t
1
p − φ−1(m, s)

1
p

)p)
ds, (3.3)

where φ−1(m, s) denotes the inverse function of φ(m, t) with respect to t. The
proof of (3.3) is stated in the Appendix. A second strategy may be to directly
bound Tp(Pn, Qm) under the null. Using McDiarmid’s inequality, we have the
following result for the quadratic cost.

Theorem 3.1. Let P,Q ∈ P(T2) and Pn, Qm be two empirical probability mea-
sures of laws P , Q respectively. Then, for all t ∈ R, we have

P (T2(Pn, Qm)− ET2(Pn, Qm) > t) ≤ exp

(
− nm

n+m
8t2
)
. (3.4)

The previous inequality upper bounds deviations from the mean. However,
the expectation in (3.4) could be neglected under the null if its convergence speed
when measures come from the same law is proved to be fast. This would directly
provide a two-sample concentration inequality and thus an upper bound for p-
values (3.1). To study the speed of convergence of the two-sample expectation
under the null, we adapt the existing results for the one-sample case. Using
directly the results exposed in [12], only bounds of order

ET2(Pn, P ) = O
(
n−

1
2

)
(3.5)

can be expected. Another convergence result was proved in [1], when the un-
known probability is in fact the uniform one µT2 in T2. They show, using argu-
ments based on partial differential equations, that

ET2(Pn, µT2) ≈ log(n)

4πn
, if Xi ∼ µT2 for i = 1, . . . , n . (3.6)

We can observe that if the following assumption holds, the convergence of the
mean becomes faster.

Assumption 1. There exists a one to one map T such that T#µT2 = P which
is Lipschitz in T2.

Such improvement of the speed of the convergence of the mean with respect
to (3.5) is formalized in the next result.

Lemma 3.2. Let P ∈ P(T2) be such that Assumption 1 holds with constant L,
then we have that

ET2(Pn, P ) = O

(
log(n)

n

)
. (3.7)

Remark 3.3. After Remark 4.25 in [11], Assumption 1 holds for all measures
on T2 supported on an uniformly convex set and bounded away from zero and
infinity on its support.
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If Assumption 1 holds, the convergence speed of the two-sample expectation
under the null also improves, thanks to the next result.

Lemma 3.4. Let P = Q ∈ P(T2). Then, we have that

ET2(Pn, Qm) ≤ ET2(Pn, P ) + ET2(Qm, Q) +
√

ET2(Pn, P )ET2(Qm, Q). (3.8)

Thus, the convergence speed of the two-sample expectation under the null
has improved after the last result and (3.7). As it is substantiallly faster than the
one of T2(Pn, Qm) (that we can derive from (3.5) with a triangular inequality),
we can neglect the two-sample expectation and derive

PH0
(T2(Pn, Qm) ≥ t) . exp

(
− nm

n+m
8t2
)
. (3.9)

This second upper bound is sharper than the first one (3.3) with the concen-
tration inequality stated in [36]. Thus, inequality (3.9) will be used for testing.
Recalling Remark 3.3, this testing procedure can be implemented for all mea-
sures on T2 that are supported on an uniformly convex set and bounded away
from zero and infinity.

3.3. Asymptotic behaviour under the alternative

As no asymptotic distribution is known for the statistic Tp(Pn, Qm) when both
empirical measures follow the same law, we can try to detect similarities by
testing H0 : P 6= Q. A similar approach has been adressed in [9] for measures
in R, but with the advantage that the distance between the true laws Tp(P,Q)
appears in the asymptotic result, allowing testing of Tp(P,Q) ≥ ∆0, for a given
threshold ∆0. In the same way, the earlier work [13] also introduced such an
asymptotic test for assessing similarities based on the trimmed Wasserstein dis-
tance, for measures on the real line whose samples can be dependent. This can
not be applied for measures in T2, where the derived CLT 2.5 only states gaus-
sian deviations from the mean. If we use (2.7), we could consider the statistic

Tp(Pn, Qm)− ETp(Pn, Qm)

Var(Tp(Pn, Qm))

P 6=Q
≈ N(0, 1), (3.10)

where, in practice, the variance and expectation can be estimated by bootstrap-
ping the given samples. However, this result won’t allow efficient testing as the
given statistic tends faster to zero when P = Q, so the null and the alternative
cannot be distinguished under the equality of measures. As it will be illustrated
in simulations, no relevant results can be obtained from its implementation.
Further discussion about this issue can be found in Section 6.

4. Simulations and results

The three introduced testing techniques would allow appropriate goodness-of-fit
testing as long as they control type I error (sensitivity) at a fixed level α and



González-Delgado et al./Wasserstein tests on the flat torus 12

they are consistent under fixed alternatives, i.e. power (specificity) tends to one
as sample sizes tend to infinity. The validity of both conditions will be assessed
via their implementation on simulated and real protein structure data.

4.1. Simulated data

The three introduced approaches have first been applied to simulated data on
T2. Under the null H0 = Q, we first considered two uniform laws µ2

T on T2.
Under the alternative, we consider the following three cases:

H1 : P ∼ µ2
T and Q ∼ N(0.5,Σ1),

H2 : P ∼ N(0.25,Σ2) and Q ∼ N(0.75,Σ2),
H3 : P ∼ N(0.25,Σ3) and Q ∼ N(0.75,Σ3),

where Σijk = 10−4 for k = 1, 2, 3 and i 6= j, Σii1 = 0.01, Σii4 = 0.05 and Σii5 =
0.005 for i = 1, 2. Uniform and gaussian distributions satisfy Assumption 1 as
their support is uniformly convex, so inequality (3.9) can be applied. Results
for H0 and H1 are depicted in Figure 1.

(a) H0 : P = Q (b) H1 : P 6= Q

Figure 1. p-value distributions under H0 (a) and H1 (b) for the three proposed testing
methods and for different sample sizes. Values below machine precision (2.2e-16) are set to
this value (1D marginals in (b)). The dashed line indicates an arbitrary level of significancy
of α = 0.05. Figure shows superposed boxplots and violin plots.

As it was expected, the CLT-based test doesn’t provide any significant result
under the alternative, so this method should be discarded. Conversely, the two
remaining techniques show satisfactory levels of sensitivity and specificity: the
marginal test is efficient even for small (∼ 100) sample sizes, and the power of
the upper bounding test tends to zero when sample size increases, completely
rejecting the null at level α = 0.05 for more than 200 individuals. Results follow
the same trend for the two other alternatives considered.
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As the one-dimensional method compares marginals on R/Z, different mea-
sures on R2/Z2 with equal marginals become a special case of interest. An
additional alternative regarding that case is considered:

H4 : P ∼ N(0.5,Σ4) and Q ∼ N(0.5,Σ′4),

where Σii4 = Σ′ii4 = 0.02 for i = 1, 2, and Σij4 = −Σ′ij4 = 0.019 for i 6= j.
This allows the assessment of whether the upper bounding technique efficiently
retrieves significant results in scenarios where the one-dimensional method is
ineffective. The corresponding p-values have been simulated and results are de-
picted in Figure 2.

Figure 2. p-value distributions under H4 for the two first proposed testing methods and for
different sample sizes. The dashed line indicates an arbitrary level of significancy of α = 0.05.
Figure shows superposed boxplots and violin plots.

As expected, the one-dimensional approach does not retrieve significant dif-
ferences between two different laws with equal marginals. However, the upper
bounding approach does reject the null for big-enough sample sizes, as illus-
trated in Figure 2. This shows how using the upper bound (3.9) complements
the first technique when the latter is ineffective (for example here, where the only
difference between both laws is an opposite correlation). This, and conclusions
obtained after Figure 1, can be restated with another possible visualization,
as the one depicted in Figure 4, where the empirical cumulative distribution
functions of p-values corresponding to hypothesis H0, H1 and H4 are compared
for the two considered approaches. Further discussion about the convenience of
using one approach or the other depending on the situation can be found in
section 6, where computational issues are also discussed.

4.2. Protein structure data

A method to accurately compare local structural preferences in conformational
ensemble models of proteins is extremely useful to understand the sequence-
structure-function relationships, allowing, for instance, assessing structural ef-
fects of sequence mutations. The local structure of a protein is determined by
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two dihedral angles, φ and ψ, which describe the conformational state of each
amino acid residue along the sequence. For most amino acid types (for all ex-
cepting proline and glycine), the distribution of φ and ψ angles is supported
on the same subset of T2, which, even if there exist some physically forbidden
regions, is uniformly convex. This is illustrated in Figure 5. We can also assume
that density is continuous and strictly positive in its support, so conditions in
Remark 3.3 are satisfied. Both the marginal and the upper bounding test can
therefore be implemented, and sensitivity and specificity of both approaches will
be again simulated for protein structure data.

For the analysis presented here, we used a structural database of three-residue
fragments (also called tripeptides) extracted from experimentally-determined
high-resolution protein structures [20]. The reason to consider tripeptides in-
stead of single amino acid residues is that the distribution of the φ and ψ angles
does not depend only on the amino acid type, but also on the sequence context,
and particularly on the closest neighbors.

UnderH0, we will consider structural data corresponding to the central amino
acid residue of the Ala-Ala-Ala tripeptide, which is a protein fragment having
three consecutive alanine residues. To simulate under the alternative, two tripep-
tides with significant different structural properties have to be chosen. We will
again consider Ala-Ala-Ala, which has a high propensity to form helices, and
Leu-His-Leu (a fragment of leucine, histidine and leucine), which shows a low
helical ppropensity. The corresponding empirical distributions are depicted in
Figure 6. Before implementation, data have to be rescaled to [0, 1] × [0, 1] to
correctly apply the upper bound. Results are shown in Figure 3.

(a) H0 : P = Q (b) H1 : P 6= Q

Figure 3. p-value distributions under H0 (a) and H1 (b) for the two first proposed testing
methods and for different sample sizes of protein structure data. The dashed line indicates an
arbitrary level of significance of α = 0.05. Figure shows superposed boxplots and violin plots.

Both the marginal and the upper bounding test show satisfactory levels of
sensitivity and specificity. Type I error is controlled at level α = 0.05 for both
techniques and all sample sizes, and power tends to one when sample size in-
creases for the two procedures. The power of the marginal test equals one (at
level α = 0.05) for all the simulated sample sizes, and the upper bounding
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technique controls power when ∼ 500 individuals form the sample. The lack of
individuals should not prevent from performing this second procedure, as the
available structural datasets are large-enough for most of the tripeptides.

Finally, even if the Central Limit Theorem 2.5 does not allow goodness-of-fit
testing, we can, to conclude, illustrate the asymptotic behavior of Wasserstein
distance using protein structure data. For this, we used data from two very differ-
ent tripeptides from the structural point of view: Ala-Ala-Ala and Ala-Gly-Ala,
where the glycine in the middle changes abruptly the configuration. We simu-
lated their squared Wasserstein distance distribution for different sample sizes
and represent its normalized deviation from the mean. Results are depicted in
Figure 7, where all the resulting distributions are significantly standard normals
according to a Kolmogorov-Smirnov test.

5. Summary

Important results of Optimal Transport Theory have been extended to the d-
dimensional flat torus Td = Rd/Z, specially the Central Limit Theorem 2.5,
which states asymptotic Gaussian deviations from the mean. The particular case
of d = 2 has been addressed in detail, with the aim of defining goodness-of-fit
tests for measures on such space. For the first considered technique, the equality
of marginals on R/Z is tested by transferring the problem to the real line in such
a way that the computation of Wasserstein distance is equivalent in both spaces.
This is made using the work in [23] and the one-dimensional distribution free
statistic introduced in [25]. The second approach consists on upper bounding
p-values (3.9). This is possible thanks to the derived concentration inequalities
(3.4) for the two-sample empirical Wasserstein distance with the quadratic cost,
and to the improved convergence speed of its expectation (3.2).

The presented techniques should be of great interest for the Structural Bi-
ology community, as they represent a mathematically efficient solution for the
problem of comparison of local protein structures. Both approaches are built
under statistical guarantees and are based on the geometry of the underlying
space, which is fundamental when a physical problem is assessed. We believe
that the goodness-of-fit tests defined in this paper constitute a relevant building
block for the study of the sequence-structure-function relationship in proteins,
and in particular for Intrinsically Disordered Proteins (IDPs), allowing their
structural investigation with mathematical guarantees.

6. Discussion

When implementing the two testing approaches, some practical and numerical
considerations should be taken into account. The first technique shows good
empirical performance for all sample sizes, but it is by construction unable to
detect differences when both laws have equal marginals. This sensitivity issue
can be solved by applying the second approach when the first one is not con-
clusive. The upper bound test shows good empirical performance across all the
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simulation settings considered, but requires larger sample sizes to be powerful.
Both approaches are therefore complementary, and we suggest the following
guidelines. First, when only small samples are available, the marginal approach
must be used. If sample sizes are large enough to apply the upper bound, we
recommend to perform the marginal approach as a first move in all cases, as
rejections are more abrupt under the alternative. However, this technique also
requires substantially more computing time, as simulation of the statistic un-
der the null is required, and the "cutpoints" on the circle must be found to
lay the problem on the real line. This may slow down computation if a large
number of tests has to be performed. The computation of the upper bound is
substantially faster, as only the values of the statistic need to be computed. In
any case, this approach should be always performed after non-rejections of the
one-dimensional test, to detect any possible significant difference between laws
with equal marginals.

The results presented in Section 2 fulfill the fundamental study of Optimal
Transport on the d-dimensional flat torus. The issue of two-sample goodness of
fit testing studied in Section 3 remains largely open. Our contribution in this
respect is to propose easily implementable goodness-of-fit testing approaches
that are built on top of state-of-the-art tools in Optimal Transport. Finding
the exact or asymptotic distribution of the Wasserstein statistic in general di-
mension remains one of the main unsolved problems of the theory of Optimal
Transport, preventing the construction of more efficient two-sample goodness-
of-fit tests. An asymptotic approach for measures supported on a finite set has
been presented in [32] and, in the one-dimensional case, [3] have obtained a
CLT under the null P = Q for deviations of Wp(Pn, Qn) from the true distance
Wp(P,Q) (instead of E(Wp(Pn, Qn))). The results of [3] are already quite chal-
lenging mathematically, and extensions to higher dimensions are clearly beyond
the scope of the present paper. Altogether, we believe that the techniques here
presented can already be of great interest in and beyond the Structural Biol-
ogy community, as they allow solving the goodness-of-fit testing problem for
two distributions lying on general periodic spaces, which appears in many other
domains of application.

Code availability

The R code implementing the statistical test approaches presented in this work
is available at https://github.com/gonzalez-delgado/wgof_torus. For the com-
putation of empirical Wasserstein distances, we made use of the R package
transport [29].

Appendix A: Proofs

A.1. Proofs of Section 2

Proof of Theorem 2.1. Set Γ defined as in (2.5). Since, after Proposition 2 in
[6], Γ is cyclically monotone, Theorem 12.25 in [22] states that there exists a

https://github.com/gonzalez-delgado/wgof_torus
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convex function ϕ such that Γ ⊂ ∂ϕ. Moreover, note that if (x, y) ∈ Γ then
x̄ ∈ supp(P ) and x+ p ∈ supp(µP ), for all p ∈ Zd, which implies that

supp(µP ) ⊂ dom(ϕ). (A.1)

The set of differentiable points of ϕ, denoted as dom(∇ϕ) is of full Lebesgue
measure in its domain (Theorem 25.5 in [27]). This, together with (A.1) implies
that ϕ is µP -almost everywhere differentiable.

Let x ∈ supp(µP ) be such that x+ p ∈ dom(∇ϕ), for all p ∈ Zd. Then, there
exists y such that (x, y) ∈ Γ ⊂ ∂ϕ. Since x ∈ dom(∇ϕ) then y = ∇ϕ(x). For
any p ∈ Zd we have that x+p ∈ supp(µP ) and ∇ϕ(x)+p is the unique such that
(x+ p,∇ϕ(x) + p) ∈ Γ. Since the countable intersection of sets of full measure
is of full measure, (A.1) implies the relation

∇ϕ(x+ p) = ∇ϕ(x) + p, µP -almost everywhere. (A.2)

We denote as ∆P,ϕ the set of x such that (A.2) holds. In consequence the map

∇ϕ : supp(P )→ Td

x̄ 7→ ∇ϕ(x)

is P -a.s. well defined. The following Lemma is a consequence of the definition
of Γ.

Lemma A.1. If (x, y) ∈ Γ, then (x̄, ȳ) ∈ supp(π∗) and, if (x̄, ȳ) ∈ supp(π∗),
then there exists p, q ∈ Zd such that (x+ p, y + q) ∈ Γ.

Setting x ∈ ∆P,ϕ and applying Lemma A.1 we have that (x̄,∇ϕ(x̄)) ∈
supp(π∗). Moreover, if (x̄, ȳ) ∈ supp(π∗), Lemma A.1 implies that there ex-
ists p, q ∈ Zd such that (x+p, y+ q) ∈ Γ, which implies that y+ q = ∇ϕ(x) +p.
Consequently, we have that ȳ = ∇ϕ(x̄), which implies that for P -almost ev-
ery x̄ there exists a unique ȳ such that (x̄, ȳ) ∈ supp(π∗) and, furthermore,
ȳ = ∇ϕ(x̄). This final statement concludes the proof.

Proof of Theorem 2.2. For every (x, y) ∈ Γ, by definition we have that d(x̄, ȳ) =

||x−y||. Since (x̄, ȳ) ∈ supp(π∗), Theorem 5.10 in [35] establishes that if (f, fd
2

)
solves (2.2) then

f(z̄) ≤ f(x̄) + d2(z̄, ȳ)− d2(x̄, ȳ) for all z̄ ∈ Td. (A.3)

More precisely, (A.3) can be replaced by

f(z̄) ≤ f(x̄) + d2(z̄, ȳ)− ||x− y||2 for all z̄ ∈ Td.

Using that d(z̄, ȳ) ≤ ||z − y||, for all (x, y) ∈ Γ we have that

f(z̄) ≤ f(x̄) + ||z − y||2 − ||x− y||2 for all z ∈ Rd. (A.4)
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This implies that the function f̃ defined by the relation f̃(x) = 1
2

(
||x||2 − f(x̄)

)
has non empty subgradient for every x ∈ K(P ), where

K(P ) = {x ∈ [0, 1]d such that x̄ ∈ supp(P )}. (A.5)

Note that from (A.4) we have that, for all z ∈ Rd and y ∈ ∂f̃(x),

f̃(z) =
||z||2 − f(z̄)

2

≥ ||z||
2 − f(x̄)− ||z − y||2 + ||x− y||2

2

=
||z||2 − f(x̄)− ||z||2 − ||y||2 + 2〈z, y〉+ ||x||2 + ||y||2 − 2〈x, y〉

2

=
−f(x̄) + ||x||2 + 2〈z − x, y〉

2
= f̃(x) + 〈z − x, y〉.

This subgradient is defined for each x ∈ K(P ) as

∂f̃(x) =
{
y ∈ Rd : (x̄, ȳ) ∈ supp(π∗) and d(x̄, ȳ) = ||x− y||

}
.

Let us define the convex function

gf (x) = sup
z∈K(P ), y∈∂f̃(z)

{f̃(z) + 〈y, z − x〉} (A.6)

and realize that gf (x) = f̃(x) for every x ∈ K(P ). Set x ∈ K(P ) and note that,
since it is a supremum,

gf (x) ≥ f̃(x), (A.7)

and if y ∈ ∂f̃(z) we have

f̃(z) + 〈y, x− z〉 ≤ f̃(x), (A.8)

and the equality holds. Finally, the next Lemma concludes the proof.

Lemma A.2. Let P,Q ∈ P(Td) be probability measures such that their associ-
ated periodic measures satisfy µP , µQ � `d, f : Td → R∪{−∞} be a d2-concave
solution of (2.2), ϕ be defined in Theorem 2.1, and gf : Rd → R ∪ {∞} be the
convex function defined by the relation

gf (x) = sup
z∈K(P ), y∈∂f̃(z)

{1

2

(
||x||2 − f(x̄)

)
+ 〈y, z − x〉}. (A.9)

If supp(P ) is connected and with Lebesgue negligible boundary, then there
exists a constant C ∈ Rd such that gf (x) = ϕ(x) + C, for all x ∈ K(P ).

Proof. Since both functions are convex then they are locally Lipischitz. We claim
that there exists a set D ⊂ K(P ) ∩ dom(∇ϕ) ∩ dom(∇gf ) such that

`d(K(P ) \D) = 0 and ∇gf (x) = ∇ϕ(x), for all x ∈ D. (A.10)
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Once the claim is proved we can conclude by using Theorem 2.6 in [8]. To
prove the claim note that, since both convex functions are finite in K(P ), then
dom(∇ϕ)∩ dom(∇gf ) is of full Lebesgue measure in K(P ). Setting x ∈ K(P )∩
dom(∇ϕ) ∩ dom(∇gf ), and yx ∈ Rd such that (x, yx) ∈ Γ, then we deduce the
following assertions:

• Since Γ ⊂ ∂ϕ and x ∈ dom(∇ϕ), then yx = ∇ϕ(x).
• By definition of ∂f̃(x), that coincides with ∂gf (x) for x ∈ K(P ), we have

that y ∈ ∂gf (x) if ȳ ∈ ∂d
2

f(x̄) and d(x̄, ȳ) = ||x − y||. Note that yx
satisfies that condition, since x ∈ dom(∇gf ). In consequence we have that
yx = ∇gf (x).

Then (A.10) holds with D = dom(∇ϕ) ∩ dom(∇gf ).

Proof of Lemma 2.3. Set x̄ ∈ dom(f). Then, the set

∂d
2

f(x̄) = {ȳ : f(z̄) ≤ f(x̄) + d2(z̄, ȳ)− d2(x̄, ȳ), for all z̄ ∈ Td}

is non empty. Set ȳx ∈ ∂d
2

f(x), by definition, for all z̄ ∈ Td

f(z̄)− f(x̄) ≤ d2(z̄, ȳx)− d2(x̄, ȳx).

For every z̄ ∈ dom(f) we can repeat the previous reasoning and obtain that

|f(z̄)− f(x̄)| ≤ sup
(
|d2(z̄, ȳx)− d2(x̄, ȳx)|, |d2(z̄, ȳz)− d2(x̄, ȳz)|

)
.

Finally, the relation a2 − b2 = (a − b)(a + b) and the triangle inequality of the
distance d lead to

|f(z̄)− f(x̄)| ≤ d(z̄, x̄) sup (|d(z̄, ȳx) + d(x̄, ȳx)|, |d(z̄, ȳz) + d(x̄, ȳz)|)
≤ 2d(z̄, x̄) sup

z̄,x̄∈Td

(d(z̄, x̄)) ≤ 2d(z̄, x̄).

Proof of Theorem 2.4. Set p̄ ∈ supp(P ) and assume that f(p̄) = 0. Set εm → 0
and consider the sequence of balls Bεm(p̄) ⊂ supp(P ), centered in p and radius
εn. Since the ball is a continuity set of P , by Portmanteau Theorem, then Pn

w−→
P implies that for each m there exists a nm such that Pn gives mass to Bεm(p̄)
for all n ≥ mn. Then, we can extract a sequence p̄n → p̄ such that p̄n ∈ RPn

.
In consequence, we have that fn(p̄n) ∈ R, we can set an = −fn(p̄n) and define
hn = fn + an. Recall from Lemma 2.3 that all such functions are 2-Lipschitz
in their respective domains. Kirszbraun Theorem implies that, without loss of
generality, we can consider that hn (resp. f) are 2-Lipschitz functions defined in
the whole Td. The previous reasoning implies that {hn}n∈N is pointwise bounded
for the compact sequence {p̄n}n∈N. Since all such functions are 2-Lipschitz, then
Arzelá-Ascoli’s Theorem concludes that every subsequence {hnk

}k∈N admits a
convergent subsequence {hnkj

}j∈N. The uniqueness described in Theorem 2.2
and the fact that p̄n → p̄ and hn(p̄n) = f(p̄) = 0 conclude that f is the unique
possible limit of such subsequences.
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Proof of Theorem 2.5. Note that as Theorem 2.4 holds, since probabilities are
supported in a compact set, the torus, then the reasoning of [10] can be imitated.
Here the main steps of the proof for the one sample case are given. For further
details about the proof we refer to the original text.

Efron-Stein inequality, see Chapter 3.1 in [5], states that if (X ′1, . . . , X
′
n) is

an independent copy of (X1, . . . , Xn), then we have the bound

Var(f(X1, . . . , Xn)) ≤
n∑
i=1

E(f(X1, . . . , Xn)−f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).)2

+.

Moreover, if X1, . . . , Xn are i.i.d, such inequality can be written as

Var(f(X1, . . . , Xn)) ≤ nE(f(X1, . . . , Xn)− f(X ′1, . . . , Xn))2
+.

Set the empirical measures Pn = 1
n

∑n
k=1 δXk

and P ′n = 1
n (δX′

1
+
∑n
k=2 δXk

),
and the values Rn = T2(Pn, Q) −

∫
ϕdPn and R′n = T2(P ′n, Q) −

∫
ϕdP ′n. Let

ϕn and ϕ′n be solutions of the dual problem (2.2) of T2(Pn, Q) and T2(P ′n, Q)
respectively. Then from (2.2) we derive that

(Rn −R′n)+ ≤
1

n
|ϕn(X1)− ϕ(X1)− ϕn(X ′1) + ϕ(X ′1)|

+ |ϕ′n(X1)− ϕ(X1)− ϕ′n(X ′1) + ϕ(X1)|,

which together with Theorem 2.4 yields

n(Rn −R′n)+
a.s.−−→ 0.

Since the probabilities are supported in the torus, which is compact, then
n2E(Rn − R′n)2

+ → 0. Finally, we conclude by the so called Efron-Stein’s in-
equality.

A.2. Proofs of Section 3

Proof of Theorem 3.1. Note that T2(Pn, Qm) = T (X1, . . . , Xn, Y1, . . . , Ym) is a
function of X1, . . . , Xn and Y1, . . . , Ym. For each x1, . . . , xn, yn, . . . , ym ∈ Td and
x′ ∈ Td let π and π′ be both joint measures such that

T :=
∑
i,j

d(xi − yj)2πi,j = T (x1, . . . , xn, y1, . . . , ym)

s.t.
∑
i,j

πi,j =
1

n
, j = 1, . . . ,m,

∑
i,j

πi,j =
1

m
, i = 1, . . . , n,

and
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T ′ :=
∑
j

d(x′1 − yj)2π′1,j +
∑
i>1,j

d(xi − yj)2π′i,j = T (x′1, . . . , xn, y1, . . . , ym)

s.t.
∑
i,j

π′i,j =
1

n
, j = 1, . . . ,m,

∑
i,j

π′i,j =
1

m
, i = 1, . . . , n.

Then we have that

T ′ ≤
∑
j

d(x′1 − yj)2π1,j +
∑
i,j

d(xi − yj)2πi,j ,

which implies

T ′ − T ≤
∑
j

(
d(xi − yj)2 − d(x1 − yj)2

)
π1,j

≤
∑
j

1

2
π1,j =

1

2n
,

where the second inequality comes from the fact that d2(x, y) ≤ 1/2 in Td. By
symmetry we also obtain the reverse inequality. Doing the same with y′1 and y1

we obtain the bound 1
2m . By using McDiarmid’s inequality, see [17], we derive

that

P (T2(Pn, Qm)− ET2(Pn, Qm) > t) ≤ exp

(
− nm

n+m
8t2
)
.

Proof of Lemma 3.2. Denote T the function of Assumption 1. We observe that
Ui = T−1(Xi) ∼ µTd , where U1, . . . Un is a i.i.d. sample. Then, by (3.6) we
have EW2

2 (T−1#Pn, T
−1#P ) = O

(
log(n)
n

)
. Let Hn be the optimal transport

map between µTd and T−1#Pn , then the map S = T ◦Hn ◦ T−1 satisfies that
S#P = Pn. Finally, we conclude by noticing that

W2
2 (Pn, P ) ≤

∫
|S(x)− x|2dP (x) =

∫
|T (Hn(x))− T (x)|2dP (x)

≤ LW2
2 (T−1#Pn, T

−1#P ).

Proof of (3.3). Let P(Tp(Pn, P ) ≥ t) ≤ φ(n, t) and φ−1(n, s) denote the inverse
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function of φ with respect to the second variable. Under the null, we have

P(Wp(Pn, Qm) ≥ t) ≤ P(Wp(Pn, P ) +Wp(Qm, Q) ≥ t) =

= E (P(Wp(Qm, Q) ≥ t−Wp(Pn, P )) =

=

∫ 1

0

P (P (Wp(Qm, Q) ≥ t−Wp(Pn, P )) > s) ds ≤

≤
∫ 1

0

P (φ(m, (t−Wp(Pn, P ))p) > s) ds =

∫ 1

0

P
(
Wp(Pn, P ) ≥ t− φ−1(m, s)

1
p

)
ds,

as φ−1(m, s) is a decreasing function. Finally, after upper bounding one last
time:

PH0(Tp(Pn, Qm) ≥ t) ≤
∫ 1

0

φ(n,
(
t
1
p − φ−1(m, s)

1
p

)p
ds,

which concludes the proof.

Proof of Lemma 3.4. To derive (3.8), it suffices to show that E(T2(Pn, Qm))
converges, under the null, with the same speed as for the one-sample expectation
when Assumption 1 holds (recall Lemma 3.2). When P = Q we have

ET2(Pn, Qm) ≤ E
(
(W2(Pn, P ) +W2(Qm, Q))2

)
=

= ET2(Pn, P ) + ET2(Qm, Q) + E(W2(Pn, P )W2(Qm, Q)).

Finally, as the last term is in fact an inner product 〈W2(Pn, P ),W2(Qm, Q)〉,
we have, using Cauchy-Schwarz inequality,

E(W2(Pn, P )W2(Qm, Q)) ≤
√
ET2(Pn, P )ET2(Qm, Q),

which prooves the improved convergence speed of the expectation.
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Supplementary Material

Supplementary figures

Figure 4. Simulated empirical cumulative distribution functions for p-values corresponding
to the upper bound (left) and one-dimensional (right) approaches, under the hypothesis H0,
H1 and H4 and for different sample sizes.

(a) (b)

Figure 5. The support of dihedral angles conformation is uniformely convex. When data
is presented in the periodic square [−π, π] × [−π, π] (a), the band dividing the left (φ < 0)
and the right (φ > 0) cluster is physically forbidenn, as well as the band separating the left
upper (φ < 0, ψ > −2) and the left bottom (φ < 0, ψ < −2) cluster. However, one can
translate points overacross the torus and show (b) that periodicity makes support uniformely
convex. The depicted data correspond to tripeptide SER-GLN-SER, a fragment of a serine,
a glutamine and a serine residue.
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(a) ALA-ALA-ALA (b) LEU-HIS-LEU

Figure 6. Kernel density estimates of the distributions corresponding to tripeptides ALA-
ALA-ALA (a) and LEU-HIS-LEU (b), and of their one-dimensional marginals.

Figure 7. Normalized asymptotic deviations from the mean of squared Wasserstein distance
between two different empirical probability measures. Figures shows the corresponding his-
tograms and the associated kernel density estimates, for different sample sizes.
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