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Abstract

In this paper, we develop boundary output feedback control laws for the simplest nontrivial example of a traffic flow network system:
two cascaded freeway segments connected by a junction. The macroscopic traffic dynamics are governed by the Aw-Rascle-Zhang (ARZ)
network model in which two subsystems of second-order nonlinear partial differential equations (PDEs) describe the evolution of traffic
density and velocity on each segment. Due to the change of road access at the junction, different equilibria are considered for the two
connected segments. To suppress stop-and-go traffic oscillations on the cascaded roads, we consider a ramp metering that regulates the
traffic flow rate entering from the on-ramp to the mainline freeway. Different control designs are proposed such that the output feedback
stabilization is realized with either the ramp metering located at the middle junction or the outlet with only boundary measurements of
flow rate and velocity. The control objective is to simultaneously stabilize the upstream and downstream traffic to a given spatially-uniform
constant steady-state. The distinct actuation locations motivate our design of two different delay-robust full state feedback control laws.
The proposed designs are based on the PDE backstepping methodology and guarantee the exponential stability of the under-actuated
network of two systems of two hyperbolic PDEs. Two types of collocated boundary observers are proposed to construct output feedback
controllers where the sensor location is the same as the actuator location. Numerical simulations are performed to validate the control
designs. The two collocated output feedback controllers are compared for their stabilization performance. Robustness to delays is also
investigated. The proposed controllers are also compared with some Proportional Integral (PI) boundary feedback controllers.

Key words: ARZ traffic network; output feedback; boundary observer: PDE backstepping.

1 Introduction

Freeway traffic modeling and management have been inten-
sively investigated over the past decades. Various models
from microscopic to macroscopic have been developed for
freeway traffic and numerous control approaches have been
applied to mitigate the traffic congestion.

1.1 Macroscopic modeling of traffic network

Macroscopic modeling is well-established to describe free-
way traffic dynamics since the aggregated state values used
by the models are easy to sense and actuate, leading to a par-
ticular interest in freeway traffic management. The macro-
scopic models predict the evolution of continuous traffic
states in the temporal and spatial domain by employing hy-
perbolic PDEs to govern the dynamics of traffic density
and velocity. The most widely-used macroscopic traffic PDE
models include the classical first-order Lighthill-Whitham-
Richards (LWR) model [27] [29] and the state-of-art second-
order Aw-Rascle-Zhang (ARZ) model [2] [33]. The LWR
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model corresponds to the conservation law of the traffic
density. It predicts the formation and propagation of traffic
shockwaves on the freeway but fails to describe the stop-
and-go oscillatory phenomenon [31], which causes unsafe
driving conditions, increased fuel consumption, and delays
in travel time. Over decades of studies, the second-order
ARZ traffic model is then developed to describe this stop-
and-go traffic congestion by allowing a velocity PDE added
to the LWR model and thus providing a wider variety of dy-
namics. A family of flow-density relation is parameterized in
the ARZ model by characterizing each vehicle’s property as
opposed to the averaged static dynamics of the flow-density
relation depicted by the LWR model. The ARZ traffic model
presents as nonlinear second-order hyperbolic PDEs.

More recently, the macroscopic road networks based on the
ARZ family of models have been developed in [18] [22].
Considering the problem of suppressing the stop-and-go
congested traffic on cascaded freeway segments, it is, there-
fore, essential to study the state-of-art second-order macro-
scopic traffic network models. In this work, we adopt the
second-order macroscopic traffic network model in [22] for
the two cascaded freeway segments. The model is chosen
such that the junction connecting the two roads conserves the
mass and drivers’ properties, as detailed later in the paper.
This property is not smooth across the junction in [18]. The
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solution in [22] is a weak solution (in the sense of the conser-
vative variables of the ARZ model) that guarantees the well-
posedness of a closed-loop system for our control design.
The considered system of two cascaded freeway segments
can then be rewritten as a network of two interconnected
hyperbolic PDE systems coupled through their boundaries.

1.2 Traffic boundary control strategies

Traffic control strategies have been developed and suc-
cessfully implemented for the traffic management infras-
tructures, namely, ramp metering and varying speed limits
(VSL). The flow rate from the on-ramp to mainline freeway
is controlled by the ramp metering and velocity at a certain
location is actuated by the VSL. Boundary feedback control
algorithms are studied for traffic regulation on a freeway
segment in [6] [23] [35] [39]. Previous contributions of traf-
fic network control strategies, including [11] [19] [20] [38],
focus on controlling the spatially discretized approxima-
tion of LWR model, namely cell transmission model and
its derivation, but the discretized systems sometimes ex-
hibit discrepancies from the original continuous traffic
PDE model. [26] develops an optimal control framework
based on Hamilton-Jacobi formulation of the LWR model.
[21] consider adjoint-based optimization formulation for
the control problem of a LWR-based traffic network by
regulating nodes of the network.

Boundary control algorithms have been developed for
traffic PDE modeling of a single freeway segment in
[6] [23] [35] [39]. These control laws are restricted to
control problem of traffic on one freeway segment which
necessitates certain road homogeneity. Using the integra-
tion of ramp metering and VSLs, [39] firstly considers PI
boundary control of a cascaded freeway network, which is
modeled by the linearized homogeneous AR model. The
static errors of boundary conditions are suppressed since
the instabilities do not arise from the transport PDEs. This
paper differs in focusing on the oscillations generated by
the in-domain traffic that can only be modeled by the inho-
mogeneous ARZ model. The PDE backstepping method is
firstly used for this traffic network problem. More impor-
tantly, the cascaded freeway network is underactuated in
this work; namely, feedback design is implemented for only
one boundary among the four boundary conditions while all
boundaries are actuated in [39]. In practice, only one ramp
metering is employed with the proposed control designs.
This boundary control problem of the traffic network based
on the ARZ PDE model has not been studied to the authors’
best knowledge.

Boundary control of the network of hyperbolic PDEs has
been intensively studied over the past years. Despite many
theoretical results in the literature, boundary control of PDE
networks remains a challenging research topic. This is be-
cause these systems are underactuated. For practical consid-
eration, only the PDEs located at some nodes of the network
can be actuated. To tackle this problem, multiple approaches
have been proposed: PI boundary controllers for fully actu-
ated networks [5], flatness based design of feedforward con-
trol laws for tree-like transmission networks [30]. While the
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Fig. 1. Traffic flow on upstream and downstream roads of a junc-
tion, actuation is implemented at the junction or at the outlet of
the downstream road segment.

backstepping approach has been successfully applied to de-
sign boundary controls for a large class of hyperbolic PDE
system [1] [12] [9], the considered system always have (at
least) one boundary which is fully actuated. Recently [4] de-
velops backstepping-based state feedback control laws for
the underactuated network of hyperbolic PDEs. This class of
system is used to model the dynamics of many industrial ap-
plications, including water networks in open-channels, com-
munication networks, and gas networks in pipeline. In this
paper, we will develop backstepping PDE output feedback
controllers for the underactuated traffic network system. To
the best of the authors’ knowledge, this problem has never
been studied before.

1.3 New challenges and contribution

In the authors’ previous work [35], backstepping boundary
control laws for ramp metering are designed to suppress
the stop-and-go traffic oscillations on the freeway either up-
stream or downstream of the ramp. As shown in Fig 1, the
traffic flow rate is actuated through on-ramp traffic lights so
that either the upstream or the downstream traffic is stabi-
lized. Such control design can not stabilize the two segments
simultaneously, and distinct traffic scenarios appearing on
the cascaded segments are not addressed by the model. Ramp
metering control of the upstream traffic may cause conges-
tion for downstream traffic and vice versa. In the conference
versions of our work, we propose a full-state feedback con-
trol from the middle boundary [36] and an anti-collocated
output feedback controller [37].

This paper’s contributions are twofold: First, novel PDE
backstepping output feedback controllers and observers are
developed for under-actuated hyperbolic PDE system which
has not been studied before in theory for such class of sys-
tem; Second, we provide answers to relevant traffic flow
control questions by firstly applying advanced backstepping
control for cascaded freeway traffic. This paper introduces
output-feedback control designs that simultaneously stabi-
lize the traffic on two cascaded segments modeled as an
underactuated fourth-order PDE system. The actuation and
measurement are only taken from either the middle junction
or the outlet. Four output-feedback controllers are proposed,
as shown in Table. 1: two collocated and two anti-collocated
ones. They are robust to input delays. This paper also pro-
vides a conclusive comparison between the PI and backstep-
ping controllers for the stabilization of the cascaded freeway
traffic.

Notation. For any function of two variables f (x, t) de-
fined on x ∈ [0,L], t ∈ [0,∞), the L2-norm is denoted as
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Table 1
Output feedback law

actuator/sensor location sensor x = 0 sensor x = L

actuator at x = 0 collocated anti-collocated

actuator at x = L anti-collocated collocated

|| f ||2 :=
∫ L

0 f (x, t)2dx. For L2 function, f (x, t) ∈ L2([0,T ])
denotes

∫ T
0 f (x, t)2dt < ∞. and f (x, t) ∈ L2([0,L]) denotes∫ L

0 f (x, t)2dx < ∞. For any bounded set T of R2, we
denote B(T ) the set of bounded real functions on T .
This set is a Banach space for the sup-norm. We define
the following sets: T1 = {(x,ξ ) ∈ [0,L]2, ξ ≥ x}, T̄1 =
{(x,ξ ) ∈ [0,L]2, ξ ≤ x}, T2 = {(x,ξ ) ∈ [−L,0]2, ξ ≤ x},
T̄2 = {(x,ξ ) ∈ [−L,0]2, ξ ≥ x}, T = {(x,ξ ) ∈ [0,L]×
[−L,0]}, and T̄ = {(x,ξ ) ∈ [−L,0]× [0,L]}.

2 Problem Statement

We consider a road network that consists of two connected
road segments with unidirectional traffic flow and different
road conditions, as shown in Fig 1. The two segments are
assumed to be the same length for simplicity of notation.
The spatial scaling can be easily made for equations that
describe traffic states on segments with different lengths.

2.1 ARZ PDE traffic network model

The evolution of traffic density ρ1(x, t) and velocity v1(x, t)
(with (x, t) ∈ [0,L]× [0,∞)) on the downstream road seg-
ment and traffic density ρ2(x, t) and velocity v2(x, t) ((x, t)∈
[−L,0]× [0,∞)) on the upstream road segment are modeled
by the following ARZ model.

∂tρi +∂x(ρivi) =0, (1)

∂t(ρi(vi + pi))+∂x(ρivi(vi + pi)) =−
ρi(vi−V (ρi)))

τi
,

(2)
where PDE states ρi,vi : [0,L]× [0,∞)→ R+ and i ∈ {1,2}
represents downstream and upstream road respectively. The
labeling of freeway segments is chosen as the reverse direc-
tion of traffic flow but same as the propagation direction of
the control signal, which will be explained later. The traf-
fic pressure pi(ρi) is defined as an increasing function of
the density pi(ρi) = ciρ

γi
i , where γi,ci ∈ R+ is defined as

ci = vm/ρ
γi
m,i. The coefficient γi represents the overall drivers’

property, reflecting their change of driving behavior to the
increase of density. The positive constant vm represents the
maximum velocity and the positive constant ρm,i is the max-
imum density defined as the number of vehicles per unit
length. The equilibrium density-velocity relation Vi(ρi) is
given by V (ρi) = vm− pi(ρi) for both segments, which as-
sumes the same maximum velocity for the two segments
when there are no vehicles on the road ρi = 0. We define
the following variable

wi = vi + pi(ρi), (3)
which is interpreted as traffic “friction” or drivers’ property
[17]. This property transports in the traffic flow with ve-
hicle velocity, representing the heterogeneity of individual

Q2(⇢)

Q1(⇢)

⇢⇢m,2⇢m,1⇢⇢m,1 ⇢m,2

vm

V1(⇢)

V2(⇢)

⇢?2⇢?1

q?

Fig. 2. The equilibrium density and velocity relation Vi(ρ) on the
left, the equilibrium density and flux relation Qi(ρ) on the right

driver with respect to the equilibrium density-velocity rela-
tion Vi(ρi). The maximum velocity vm is assumed to be the
same for the two road segments while the maximum density
ρm,i and coefficient γi are allowed to vary. The positive con-
stant τi is the relaxation time that represents the time scale
for traffic velocity vi adapting to the equilibrium density-
velocity relation Vi(ρi). We denote the traffic flow rate on
each road as qi = ρivi. The equilibrium flow and density re-
lation, also known as the fundamental diagram, is then given
by Qi(ρi) = ρiV (ρi) = ρivm

(
1− (ρi/ρm,i)

γi
)
.

We consider the situation that the upstream road segment
2 for x ∈ [−L,0] has more lanes than the downstream road
segment for x ∈ [0,L], in which congested traffic is usu-
ally formed up from downstream to upstream. Therefore,
the maximum density ρm,2 > ρm,1. The maximum driving
speed vm is assumed to be the same for the two segments.
The critical density ρc segregates the free and congested
regimes of traffic states. The critical density is given by
ρc,i = ρm,i/(1+ γi)

1/γi such that Q′i(ρ)|ρ=ρc = 0. The traf-
fic is free when the density satisfies ρ < ρc,i. The traffic
is defined as the congested one when the density satisfies
ρ > ρc,i. The traffic is defined as the congested one when
the density satisfies ρ > ρc,i. For the free traffic, oscillations
around the steady states will be damped out fast. For the
congested traffic, there are two directional waves on road
with one being the velocity oscillation propagating upstream
and the other one being the density oscillation propagating
downstream with the traffic.

2.2 Actuated boundary from two different locations

Regarding the boundary conditions connecting the two PDE
systems, the Rankine-Hugoniot condition is satisfied at the
junction such that the weak solution exists for the network
(1)-(2). This condition implies piecewise smooth solutions
and corresponds to the conservation of the mass and of the
drivers’ properties defined in (3) at the junction. Thus the
flux and drivers’ property are assumed to be continuous
across the boundary conditions at x = 0, that is

ρ1(0, t)v1(0, t) =ρ2(0, t)v2(0, t), (4)
w2(0, t) =w1(0, t). (5)

For open-loop system, we assume a constant inflow q? en-
tering the inlet boundary x =−L and a constant outflow q?
at the outlet boundary for x = L:

q2(−L, t) =q?, (6)
q1(L, t) =q?, (7)

The control problem we solve consists in stabilizing the traf-
fic flow in both the upstream and downstream road segments
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with a single actuator. Three possible locations for imple-
menting a ramp metering control input are either at the inlet
x =−L, at the junction x = 0 or at the outlet x = L. We only
present the control and estimation results for control input
either from the middle junction or from the outlet, as shown
in Fig.1. Actuation at the inlet is a less challenging con-
trol problem that can be solved following [35] by reducing
the traffic inflow. Except for the controlled boundaries, the
boundary conditions remain to be the same with the open-
loop system in (4)-(7).

Ramp metering control U0(t) from the junction x = 0:
The traffic flow entering from the junction to the mainline
road is controlled by U0(t). Given the flux continuity con-
dition, the boundary condition at the junction is

q1(0, t) =q2(0, t)+U0(t), (8)
where the downstream segment flow consists of the inflow
from the mainline upstream segment and the actuated traffic
flow from the on-ramp.

Ramp metering control UL(t) from the outlet x = L: The
downstream outflow at x = L is actuated by UL(t),

q1(L, t) =q?+UL(t), (9)
where the outflow rate equals to the summation of the on-
ramp metering flow and the constant mainline flow. In what
follows, when we implement one choice of control input,
the other control input equals to zero. It should be noted that
the designed controllers U0 in (35) and UL in (49) are the
flow rate perturbations around a nominal flow rate.

2.3 Linearized model in the Riemann coordinates

We are concerned with the congested traffic and assume that
the equilibrium of both segments (ρ?

1 ,v
?
1), (ρ

?
2 ,v

?
2) are in the

congested regime, which is the only one of theoretical con-
trol interest among all four traffic scenarios including free
and free, free and congested, congested and free, congested
and congested. The steady states (ρ?

1 ,v
?
1), (ρ

?
2 ,v

?
2) are con-

sidered to be in the congested regime and the boundary con-
ditions (4) and (5) are satisfied, i.e.,

ρ
?
1 v?1 =ρ

?
2 v?2 = q?, (10)

w?
1 =w?

2 = vm, (11)
where the steady state velocities satisfy the equilibrium
density-velocity relation v?i =Vi(ρ

?
i ). According to (3), the

constant driver’s property in (11) implies that we have the
same maximum velocity vm for the two segments (which cor-
responds to our initial assumption): v?1 + p?1 = v?2 + p?2 = vm,
where p?i = pi(ρ

?
i ).

We linearize the ARZ based traffic network model (ρi,vi)
in (1), (2) with the boundary conditions (4), (5), (6), (7)
around the steady states (ρ?

i ,v
?
i ). In order to obtain simplify

the model for control design, the linearized model is then
rewritten into the Riemann variables and then a invertible
spatial transformation is applied

w̃i =exp
(

x
τiv?i

)(
γi p?i
q?

(ρivi−ρ
?
i v?i )+

1
ri
(vi− v?i )

)
, (12)

ṽi =vi− v?i , (13)

L�L 0

U0(t) UL(t)

v̄2

w̄2

v̄1

w̄1

Fig. 3. Control diagram for the closed-loop system with either the
actuation from the middle junction x = 0 or from the outlet x = L.

where the constant coefficients ri are defined as ri =

− v?i
γi p?i −v?i

. For the congested regime we have ρ?
i >

ρm,i

(1+γi)
1/γi

so that the characteristic speed γi p?i − v?i > 0. The veloc-
ity variations ṽi(x, t) transport upstream which means the
action of velocity acceleration or deceleration is repeated
from the leading vehicle to the following vehicle.

With such a change of variable, the linearized system with
the controlled boundary conditions (8) and (9) rewrites as

∂t w̃i + v?i ∂xw̃i =0, (14)
∂t ṽi− (γi p?i − v?i )∂xṽi =ci(x)w̃i, (15)

w̃1(0, t) =w̃2(0, t), (16)

ṽ1(L, t) =r1 exp
( −L

τ1v?1

)
w̃1(L, t)

+
1− r1

ρ?
1

UL(t), (17)

w̃2(−L, t) =exp
( −L

τ2v?2

)
1
r2

ṽ2(−L, t), (18)

ṽ2(0, t) =δ
r2

r1
ṽ1(0, t)+ r2(1−δ )w̃2(0, t)

+
1− r2

ρ?
2

U0(t), (19)

where the spatially varying coefficients ci(x) are defined as
ci(x) = − 1

τi
exp
(
− x

τiv?i

)
. and the constant coefficient δ is

δ =
γ2 p?2
γ1 p?1

> 0. The constant δ represents the ratio related
to the traffic pressure of the segments. Derivation of the
linearization and the spatial transformation is straightfor-
ward to obtain by following [35] and thus are omitted here.
The control diagram is shown in Fig. 3 for the transformed
system (14)-(19). The well-posedness (in the weak sense)
of the linearized system (14)-(19) is stated in [6, Theorem
A.4]. The control operator is admissible: in presence of L2

control inputs and for any initial conditions (ṽ0)1,(w̃0)1 ∈
(L2([0,L]))2 and (ṽ0)2,(w̃0)2 ∈ (L2([−L,0]))2, there is only
one L2-solution. It is shown in [35] that only marginal lin-
ear stability holds for the open-loop system of one segment.
Our objective is to design the control law U0(t) or UL(t) to
stabilize the system (14)-(19) in the sense of the L2-norm.
Note that we could obtain more regular solutions (strong so-
lutions) by imposing some additional regularity conditions
on the initial conditions or the coupling terms, and adding
compatibility conditions (see [6] for instance). We make the
following non-restrictive assumption so that the proposed
feedback laws have some (delay)-robustness margins.
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Assumption 1 The boundary couplings of the system (14)-
(19) are such that

δ <
1+ exp( L

τ2v?2
)

1+ exp( −L
τ1v?1

)
. (20)

If this assumption is not satisfied, then it is not possible to
robustly stabilize the system (14)-(19) when there are input
delays (as the open-loop transfer function would have an
infinite chain of poles in the complex right half-plane).

3 State feedback Control Designs

In this section, we design full-state feedback laws that guar-
antee the stabilization of the system (14)-(19) for the dif-
ferent actuation locations. In each case, the backstepping
method is employed. Using a Volterra transformation (even-
tually combined with an affine transformation in the case
of the actuation located at the outlet), we map the original
under-actuated system to a target system for which the in-
domain coupling terms c1 and c2 have been moved at the
actuated boundary in the form of integral couplings. We can
then use the actuation to eliminate these terms. The result-
ing system is exponentially stable due to Assumption 1. As
such a control law does not modify the boundary couplings,
it is strictly proper, and consequently, the robustness mar-
gins are preserved (see [3] for details).

3.1 Feedback law U0(t) with flow rate control from x = 0

The control input U0(t) for full-state feedback stabilization
is given by

U0(t) =
ρ?

2
1− r2

(∫ 0

−L
Kvw

2 (0,ξ )w̃2(ξ , t)+Kvv
2 (0,ξ )ṽ2(ξ , t)dξ

−δ
r2

r1

∫ L

0
Kvw

1 (0,ξ )w̃1(ξ , t)+Kvv
1 (0,ξ )ṽ1(ξ , t)dξ

)
(21)

More details of the control design can be found in [36].
This control input is a L2 function. For any initial con-
ditions (ṽ0)1,(w̃0)1 ∈ (L2([−L,0]))2 and ((ṽ0)2,(w̃0)2) ∈
(L2([−L,0]))2, there is only one L2-solution to the closed-
loop system for (14)-(19) with (21). Moreover, since the
kernels are bounded functions, our control operator is a
linear bounded operator. Consequently, it is a continuous
operator. Thus the control law U0 : [0,T ]→R is continuous.
More regularity can be obtained, if necessary, by increasing
the regularity of the coupling coefficients ci. For practical
implementation of the ramp metering control input, we need
to modulate the changing frequency of the on-ramp traffic
light. The event-triggered control in [16] provides a way
to implement the continuous-time controllers into digital
forms by updating the input values only when needed. It
is strictly proper as it is only composed of integral terms.
Following the ideas of [4], we can prove that it is robust
with respect to delays in the actuation and uncertainties on
the parameters. We have the following theorem.

Theorem 1 Consider the PDE system (14)-(19) with the
feedback law U0 defined in (21). Then, for any L2 initial
condition (w̃i(·,0), ṽi(·,0)), the closed-loop system is expo-
nentially stable at the origin.

The definition of exponential convergence can be found, e.g.,
in [6, Definition 3.1].

3.2 Feedback law UL(t) with flow rate control from x = L

We now consider that the available actuation is located at the
outlet x = L. Our approach is adjusted from [4]. However,
the control law given in [4] is obtained after two succes-
sive backstepping transformations since it makes the well-
posedness proof of kernels easier. We choose here to do it
using only one transformation, as we already know that such
a transformation exists.
ᾱ1(x, t) =w̃1(x, t), (22)

β̄1(x, t) =ṽ1(x, t)−
∫ x

0
K̄vw

1 (x,ξ )w̃1(ξ , t)dξ

−
∫ x

0
K̄vv

1 (x,ξ )ṽ1(ξ , t)dξ −
∫ 0

−L
Mw(x,ξ )w̃2(ξ , t)dξ

−
∫ 0

−L
Mv(x,ξ )ṽ2(ξ , t)dξ , (23)

ᾱ2(x, t) =w̃2(x, t), (24)

β̄2(x, t) =ṽ2(x, t)−
∫ x

−L
K̄vw

2 (x,ξ )w̃2(ξ , t)dξ

−
∫ x

−L
K̄vv

2 (x,ξ )ṽ2(ξ , t)dξ , (25)

where the kernels K̄vw
1 and K̄vv

1 are defined on the set T̄1,
the kernels K̄vw

2 and K̄vv
2 are defined on the set T2. Finally

the kernels Mw and Mv are bounded functions defined on
T . Note that the transformation (24)-(25) is invertible (as it
is a Volterra transformation [34, Chapter 4]). Thus, the first
transformation (22)-(23) is invertible as it is a combination
of a Volterra transformation with an affine transformation.
The different kernels satisfy the following set of PDEs on
their corresponding domains of definition

(γi p?i − v?i )∂xK̄vw
i − v?i ∂ξ K̄vw

i = ci(ξ )K̄vv
i , (26)

∂xK̄vv
i +∂ξ K̄vv

i = 0, (27)
(γ1 p?1− v?1)∂xMv +(γ2 p?2− v?2)∂ξ Mv = 0, (28)

(γ1 p?1− v?1)∂xMw− v?2∂ξ Mw = c2(ξ )Mv, (29)
along with the boundary conditions

K̄vw
i (x,x) =−ci(x)

γi p?i
, K̄vv

1 (x,0) =
v?2
v?1

δMv(x,0), (30)

K̄vv
2 (x,−L) =−exp

( −L
τ2v?2

)
K̄vw

2 (x,−L), (31)

Mw(0,ξ ) =
r1

δ r2
K̄vw

2 (0,ξ ), Mv(0,ξ ) =
r1

δ r2
K̄vv

2 (0,ξ ),

(32)

Mw(x,0) = (1−δ )Mv(x,0)+
v?1
v?2

K̄vw
1 (x,0), (33)

Mv(x,−L) =−exp
( −L

τ2v?2

)
Mw(x,−L). (34)
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We have the following lemma.

Lemma 2 For system (26)-(34), there exists a unique solu-
tion K̄vw

1 , K̄vv
1 in B(T̄1), K̄vw

2 , K̄vv
2 in B(T2) and Mv,Mw in

B(T ).

PROOF. We start by assessing the existence of K̄vw
2 and

K̄vv
2 using [9]. The rest of the proof is based on an induction

argument and is adjusted from the one given in [4, Lemma
2]. Let us define χ =

γ2 p?2−v?2
v?2

and let us define the sequence
xk by

xk = min(χ× k,1).
Let us now define the following triangular domains defined
for k ≥ 1.

Rk = {(x,ξ ) ∈ [0,1]× [−1,0], ξ ≤− 1
χ
(x− xk−1)},

R̄k = {(x,ξ ) ∈ [0,1]× [−1,0], ξ ≥− 1
χ
(x− xk−1)},

Sk = {(x,ξ ) ∈ [0,xk]
2, x≥ ξ}

Applying [15, Theorem 3.2] on equation (28)-(29) with the
boundary conditions (32) and (34), we can prove the exis-
tence of the kernels Mv and Mw on the triangular domain R1.
Consequently, these kernels are defined on the line x=−χξ .
Let us now perform the change of variables ξ̄ = − 1

χ
ξ to

map the domain S1 to R̄1. Consequently, we can express
the kernels K̄··1 on the domain R̄1 (when x≤ χ). We denote
by K̂1 the corresponding kernels after this change of vari-
ables. Again, we can apply [15, Theorem 3.2] to prove the
existence of the kernels Mw, Mv and K̂··1 on R̄1. This imply
the existence of K̄··1 on S1. We then iterate the procedure on
the intervals [xk−1,xk] to conclude the proof. 2

The kernels here are bounded functions (instead of contin-
uous functions) since we decided to apply the results from
[15, Theorem 3.2]. This theorem has been stated in a more
general framework where the kernels may present some dis-
continuities. However, these discontinuities occur along the
characteristic lines and do not have any consequence on the
backstepping transformation. Adjusting the proof given in
[15], it is possible to show that the kernels are piecewise
continuous functions whose discontinuities occur along the
characteristic lines. Again, more regularity can be obtained,
if necessary, by increasing the regularity of the coupling co-
efficients ci. The transformation (23)-(25) maps the original
system (14)-(19) to the following decoupled target system

∂tαi + v?i ∂xαi = 0, (35)
∂tβi− (γi p?i − v?i )∂xβi = 0, (36)

α1(0, t) = α2(0, t), (37)

β1(L, t) = r1 exp
(
− L

τ1v?1

)
α1(L, t), (38)

α2(−L, t) = exp
( −L

τ2v?2

)
1
r2

β2(−L, t), (39)

β2(0, t) = δ
r2

r1
β1(0, t)+ r2(1−δ )α2(0, t).

(40)

The control input UL(t) is obtained as

UL(t) =
ρ?

1
1− r1

(∫ L

0
K̄vw

1 (L,ξ )w1(ξ , t)dξ+K̄vv
1 (L,ξ )v1(ξ , t)dξ

+
∫ 0

−L
Mw(L,ξ )w2(ξ , t)dξ +Mv(L,ξ )v2(ξ , t)dξ

)
. (41)

We have the following theorem.

Theorem 3 Consider the PDE system (14)-(19) with the
feedback law UL defined in (41). Then, for any L2 initial
condition (w̃i(·,0), ṽi(·,0)), the closed-loop system is expo-
nentially stable at the origin.

4 Boundary Observer Designs

The control laws designed in the previous section require
the value of the state all over the spatial domain. There-
fore we design boundary observers which either rely on the
measurement of traffic states from the junction or from the
outlet of the system.

4.1 Observer with measurement Y0(t) at x = 0

This section discusses the case of an observer that relies on
the measurement of q̃i and ṽi at the left side of the junction.
Since it holds that w̃2(0, t) =

γ2 p?2
q? q̃2(0, t)− 1

r2
ṽ2(0, t), we

consider that the following measurement is available
Y0(t) = w̃2(0, t). (42)

The observer equation are proposed in [37]. They are a copy
of the original dynamics with output injection gains. They
read as follows

∂t ŵi + v?i ∂xŵi =−φi(x)(w̃2(0, t)− ŵi(0, t)), (43)
∂t v̂i− (γi p?i − v?i )∂xv̂i =ci(x)ŵi−χi(x)(w̃2(0, t)− ŵi(0, t)),

(44)
ŵ1(0, t) =ŵ2(0, t), (45)

v̂1(L, t) =r1 exp
( −L

τ1v?1

)
ŵ1(L, t)+

1− r1

ρ?
1

UL(t),

(46)

ŵ2(−L, t) =exp
( −L

τ2v?2

)
1
r2

v̂2(−L, t), (47)

v̂2(0, t) =δ
r2

r1
v̂1(0, t)+(1−δ )r2ŵ2(0, t)

+
1− r2

ρ?
2

U0(t), (48)

where ŵi(x, t), v̂i(x, t) are the estimates of the state variables
w̃i(x, t) and ṽi(x, t). The terms φi and χi are output injection
gains, defined as

φ1(x) =−v?1Nww
1 (x,0), χ1(x) =−v?1Nvw

1 (x,0), (49)
φ2(x) = v?2Nww

2 (x,0), χ2(x) = v?2Nvw
2 (x,0), (50)

where the kernels N are given in [37].

Theorem 4 Consider the PDE system (43)-(48) with the
output injections gains defined in (49)-(50). Then, for any
L2 initial condition (ŵi(·,0), v̂i(·,0)), the states (ŵi, v̂i) ex-
ponentially converge to the states (w̃i, ṽi).
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Although the use of the trace operator in (43)-(50) induces
a loss of regularity, it is not a problem since the kernels that
define the observer gains are regular enough (H1 functions).
Strong solutions remain possible by adding compatibility
and regularity conditions.

4.2 Observer with measurement YL(t) at x = L

In this section, we now assume that the measure-
ment available correspond to the values of q̃i and ṽi
at the left side of the outlet x = L. Since we have
w̄1(L, t) = exp

(
L

τ1v?1

)(
γ1 p?1
q? q̃1(L, t)− 1

r1
ṽ1(L, t)

)
, we can

consider that the boundary measurement corresponds to
YL(t) = w̃1(L, t). (51)

The observer system is given by
∂t ŵi + v?i ∂xŵi =−µi(x)(w̃1(L, t)− ŵ1(L, t)), (52)

∂t v̂i− (γi p?i − v?i )∂xv̂i =ci(x)ŵi−νi(x)(w̃1(L, t)− ŵ1(L, t)),
(53)

ŵ1(0, t) =ŵ2(0, t), (54)

v̂1(L, t) =r1 exp
(
− L

τ1v?1

)
ŵ1(L, t)

+
1− r1

ρ?
1

UL(t), (55)

ŵ2(−L, t) =exp
( −L

τ2v?2

)
1
r2

v̂2(−L, t), (56)

v̂2(0, t) =δ
r2

r1
v̂1(0, t)+(1−δ )r2ŵ2(0, t)

+
1− r2

ρ?
2

U0(t), (57)

where ŵi(x, t), v̂i(x, t) are the estimates of the state variables
w̃i(x, t) and ṽi(x, t). The terms µi and νi are output injection
gains that still have to be designed. They are bounded func-
tions (actually piecewise continuous) respectively defined
on ([0,L])2 and ([−L,0])2. The corresponding initial con-
ditions of the observer are L2 functions. Defining the error
estimates w̌i = w̃i− ŵi and v̌i = ṽi− v̂i, the error system is
obtained by subtracting the observer equations in (53)-(57)
from (14)-(19). Let us consider the following backstepping
transformations

α̌1(x, t) =w̌1(x, t)−
∫ L

x
N̄ww

1 (x,ξ )w̌1(ξ , t), (58)

β̌1(x, t) =v̌1(x, t)−
∫ L

x
N̄vw

1 (x,ξ )w̌1(ξ , t)dξ , (59)

α̌2(x, t) =w̌2(x, t)−
∫ 0

x
N̄ww

2 (x,ξ )w̌2(ξ , t)dξ

−
∫ L

0
Fw(x,ξ )w̌1(ξ , t)dξ , (60)

β̌2(x, t) =v̌2(x, t)−
∫ 0

x
N̄vw

2 (x,ξ )w̌2(ξ , t)dξ

−
∫ L

0
Fv(x,ξ )w̌1(ξ , t)dξ , (61)

where the kernels N̄ww
1 and N̄wv

1 are bounded functions de-
fined on the set T1, while the kernels N̄ww

2 and N̄wv
2 are

bounded functions defined on the set T̄2. The kernels Fα and

Fβ are bounded functions defined on the set T̄ . Note that
the transformation (58)-(59) is invertible (as it is a Volterra
transformation [34]). The transformation (60)-(61) is a com-
bination of a Volterra transformation with an affine transfor-
mation and is consequently invertible. The kernels satisfy
the following set of PDEs:

(γi p?i − v?i )∂xN̄vw
i (x,ξ )− v?i ∂ξ N̄vw

i (x,ξ ) =0, (62)
∂xN̄ww

i (x,ξ )+∂ξ N̄ww
i (x,ξ ) =0, (63)

v?2∂xFw(x,ξ )+ v?1∂ξ Fw(x,ξ ) =0, (64)
(γ2 p?2− v?2)∂xFv(x,ξ )− v?1∂ξ Fv(x,ξ ) =0, (65)

with the boundary conditions

N̄vw
2 (x,x) =

c2(x)
γ2 p?2

, N̄vw
1 (x,x) =

c1(x)
γ1 p?1

, (66)

N̄ww
2 (−L,ξ ) =exp(− L

τ2v?2
)

1
r2

N̄vw
2 (−L,ξ ) (67)

Fv(x,0) =
v?2
v?1

N̄vw
2 (x,0), Fw(x,0) =

v?2
v?1

N̄ww
2 (x,0), (68)

Fw(−L,ξ ) =exp(
−L
τ2v?2

)
1
r2

Fv(−L,ξ ), (69)

Fv(0,ξ ) =δ
r2

r1
N̄vw

1 (0,ξ )+(1−δ )r2Fw(0,ξ ), (70)

N̄ww
1 (0,ξ ) =Fw(0,ξ ), (71)

The well-posedness of this kernel PDE-system is guaranteed
by the following lemma.

Lemma 5 Consider system (62)-(71). There exists a unique
solution N̄ww

1 , N̄vw
1 in B(T1), N̄ww

2 , N̄vw
2 in B(T̄2) and

Fw, Fv in B(T̄ ).

PROOF. The well-posedness of the kernels N̄ww
2 and N̄vw

2
is proved following [32]. Then we prove the well-posedness
of the kernels Fw, Fv, N̄ww

1 and N̄vw
1 adjusting [4, Lemma

2]. 2

Let us now define the output injection gains µi and νi as

µ1(x) =− v?1N̄ww
1 (x,L)+

∫ L

x
µ1(ξ )N̄ww

1 (x,ξ )dξ , (72)

ν1(x) =− v?1N̄vw
1 (x,L)+

∫ L

x
µ1(ξ )N̄vw

1 (x,ξ )dξ , (73)

µ2(x) =− v?1Fw(x,L)+
∫ 0

x
µ2(ξ )N̄ww

2 (x,ξ )dξ

+
∫ L

0
µ1(ξ )F̄w(x,ξ )dξ , (74)

ν2(x) =− v?1Fv(x,L)+
∫ 0

x
µ2(ξ )N̄vw

2 (x,ξ )dξ

+
∫ L

0
µ1(ξ )F̄v(x,ξ )dξ . (75)

These output injection gains are perfectly defined: since (72)
is a Volterra equation of second kind, it is invertible and we
can obtain µ1. Once µ1 is obtained, then equation (74) be-
comes a Volterra equation and we can compute µ2. Once
µ1 and µ2 are obtained, the expressions of ν1 and ν2 are
explicit. With this choice of injection gains, differentiating
the transformations (58)-(59) and (60)-(61) with respect to
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time and space, it is straightforward to obtain that the con-
vergence of the observer in the following theorem.

Theorem 6 Consider the PDE system (53)-(57) with the
output injections gains defined in (72)-(73). Then, for any
L2 initial condition (ŵi(·,0), v̂i(·,0)), the states (ŵi, v̂i) ex-
ponentially converge to the states (w̃i, ṽi).

5 Output Feedback Laws

The two state feedback laws and the two observers that we
have previously designed are employed to construct four
possible output feedback laws, which consist of two collo-
cated and two anti-collocated ones, as shown in Table. 1.
We are now able to give the main theorem of this paper.

Theorem 7 Consider the system (14)-(19) with the control
law at x = 0 or at x = L

U0(t) =
ρ?

2
1− r2

(∫ 0

−L
Kvw

2 (0,ξ )ŵ2(ξ , t)+Kvv
2 (0,ξ )v̂2(ξ , t)dξ

− r2

r1

∫ L

0
Kvw

1 (0,ξ )ŵ1(ξ , t)+Kvv
1 (0,ξ )v̂1(ξ , t)dξ

)
,

(76)

UL(t) =
ρ?

1
1− r1

(∫ L

0
K̄vw

1 (L,ξ )ŵ1(ξ , t)dξ+K̄vv
1 (L,ξ )v̂1(ξ , t)dξ

+
∫ 0

−L
Mw(L,ξ )ŵ2(ξ , t)dξ +Mv(L,ξ )v̂2(ξ , t)dξ

)
.

(77)
where the estimated states are either given by equations (43)-
(48) or (53)-(57), depending on the available measurements.
Then, for any L2 initial condition, the closed-loop system
with the controller (76) or (77) is exponentially stable at
the origin. This implies the local convergence of the initial
states of ρi and vi to the steady states ρ?

i and v?i .

6 Simulation results

In this section, we first validate the control design with nu-
merical simulations and compare the two collocated output
feedback laws. Then we demonstrate the robustness of the
proposed controllers to delays in the actuation path. In the
end, our control design is compared with PI boundary con-
trollers, which fully actuate the interconnected system. As
stated in Table.1, there are four proposed output feedback
controllers, but only the simulation results of the two col-
located ones are conducted. The collocated controllers are
the most relevant in practice since the anti-collocated sen-
sor and actuator in the distance will have delays and errors
caused by long-distance communication.

The length of each freeway segment is chosen to be L =
0.5 km so the total length of the two connected segments

Fig. 4. The closed-loop simulation of traffic flow rate and velocity,
with the ramp metering control input U0(t) and measurement Y0(t)
from the middle junction x = 0, converges to steady states. The
controlled flow rate evolution at x = 0 is highlighted in red.

Fig. 5. The closed-loop simulation of traffic flow rate and velocity,
with the ramp metering control input UL(t) and measurement YL(t)
from the outlet boundary x = L, converges to steady states. The
controlled flow rate evolution at x = L is highlighted in red.

are 1 km. The simulation time is T = 12min. The max-
imum speed limit is vm = 40 m/s = 144 km/h. We con-
sider 6 lanes for the downstream freeway segment 1. As-
suming the average vehicle length is 5 m plus the minimum
safety distance of 50% vehicle length, the maximum den-
sity of the road is obtained as ρm,1 = 6/7.5 vehicles/m =
800 vehicles/km. The upstream segment has less functional
lanes thus its maximum density is ρm,2 = 700 vehicles/km.
We take γi = 0.5. The steady states (ρ?

1 ,v
?
1) and (ρ?

2 ,v
?
2)

are chosen respectively as (600 vehicles/km,19.4 km/h)
and (488.6 vehicles/km,23.8 km/h), both of which are in
the congested regime and satisfy (10) and (11). The con-
stant flow rate is q? = ρ?

1 v?1 = ρ?
2 v?2 = 11640 vehicles/h,

same for the two segments. If we consider the segment 1
with 6 lanes, then the averaged flow rate of each lane is
1940 vehicles/h/lane. The equilibrium steady state of the
downstream road has higher density and lower velocity, thus
is more congested than the upstream road. The relaxation
time is τ1 = 90 s and τ2 = 60 s. We use sinusoid initial
conditions for flow rate and velocity field which represent
the stop-and-go oscillations on the connected freeway and
are highlighted in the figures with blue. The two-step Lax-
wendroff numerical scheme [25] is applied.

6.1 Output feedback stabilization

We consider in this traffic scenario that the downstream traf-
fic in segment 1 is denser with slower velocity, compared
with the upstream traffic in segment 2, as illustrated by the
steady states. The closed-loop simulation with the collo-
cated output feedback control input from the middle junc-
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Fig. 6. Comparison of the closed-loop performance of the two
collocated output feedback controllers at x = 0 or x = L.
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Fig. 7. The temporal evolution of S(t) of the closed-loop with
delayed control inputs with delay time to be 0 min, 0.5 min, 1
min and 2 min.

tion shows that the exponential convergence to the steady
states is achieved simultaneously for the upstream and down-
stream segments in Fig. 4, where the actuated junction flow
rate by the on-ramp metering is highlighted in red. Note
that the steady-state velocities are different for two freeway
segments and the flow rates are constant across the two seg-
ments. The output feedback stabilization with the control
input and measurement of velocity and flow rate from the
outlet boundary is shown in Fig. 5. The controlled flow rate
at the outlet boundary is highlighted in red. Comparing the
two output feedback closed-loop simulations in Fig. 4 and
Fig. 5, we find out that the outlet controller takes around the
same convergence time but presents a larger transient before
stabilizing the system. The controlled flow rate at the middle
junction with ramp metering input U0(t), highlighted in red
in Fig. 4, firstly decreases such that less traffic is allowed
into the downstream where traffic is denser. The controlled
flow rate at the outlet with UL(t), highlighted in red in Fig. 5,
increases initially such that more traffic is discharged from
the segment.

To further compare the two collocated output feedback sta-
bilization results, the closed-loop performance is demon-
strated with the temporal evolution of the state variables in

the spatial averaged L2-norm, defined as

Sqi(t) =

∣∣∣∣∣1L
∫

X

(
qi(x, t)−q?

q?

)2

dx

∣∣∣∣∣
1/2

, (78)

Svi(t) =

∣∣∣∣∣1L
∫

X

(
vi(x, t)− v?i

v?i

)2

dx

∣∣∣∣∣
1/2

, (79)

where X = [−L,0]∪ [0,L] represents the spatial domain of
the two segments. As shown in Fig. 6, the closed-loop con-
vergence time of both output controllers are around the same
at t = 9min, whereas the output feedback controller at the
outlet has a larger transient for all the state variables than the
output feedback at the middle junction. At around t = 2min,
the blue highlighted line has a bigger overshoot than the red
one. In addition, the appearance of transient peaks appears
later in the blue line than in the red one. We explain these
observations by the different mechanisms of the proposed
two controllers.

The ramp metering control input located at the downstream
outlet is carried upstream by the propagation of velocity
variations to mitigate traffic oscillations in both segments.
In contrast, the ramp metering control input located at the
middle junction works so that the actuated velocity variation
at the junction travels upstream, and the actuated flow rate
variations travel downstream with the traffic. Therefore, it
takes a longer time for the control input to take effect on the
upstream segment 2 when the output feedback is applied at
the downstream outlet, whereas the output feedback at the
middle junction instantly starts stabilizing both the upstream
segment 2 and downstream segment 1. In addition, before
the oscillations states are suppressed, the overshoot develops
into a larger value and appears a bit later, as demonstrated
in Fig. 6.

The proposed output feedback controllers are robust to ex-
ternal boundary disturbances and delays in actuation path
(due to Assumption 1, [4]). Here we conduct a simulation
for the closed-loop system with actuation constant delays
D0 and DL that are respectively 0 s,30 s,60 s,120 s, where
0 s represents no delay and 120 s is the time length for the
control input signal to traverse the two segments. Based on
the definition in (78)-(79), we define an overall closed-loop
performance index

S(t) = Sqi(t)+Svi(t), (80)
where i = 1,2. Then the temporal evolution of S(t) is plot-
ted for the closed-loop system with the delayed collocated
output feedback in Fig. 7.

6.2 Comparison with PI controllers

PI control has been applied for traffic control by ramp me-
tering [7]. For macroscopic second-order PDE model, [39]
and [40] developed PI boundary feedback controllers for the
linearized ARZ model. For control of traffic on two cas-
caded freeway segments, boundary controllers are employed
by [40] including one ramp metering at inlet x = −L, one
ramp metering and one VSL at middle junction x = 0, and
one VSL at outlet x = L, as illustrated in Fig. 8. The con-
trolled system is fully actuated since there are four boundary
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Fig. 8. The fully-actuated traffic system with two ramp metering
R−L, R0 and two VSL PI controllers V0 and VL.

Fig. 9. The closed-loop simulation with two PI boundary feedback
ramp metering controllers R−L(t), R0(t), highlighted in red, and
two VSL PI controllers V0(t) and VL(t), highlighted with green.
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Fig. 10. The closed-loop performance with ramp metering back-
stepping controller U0(t), ramp metering backstepping controller
UL(t) and with four PI controllers including two ramp metering
R−L(t), R0(t), and two VSLs V0(t) and VL(t).

conditions and all of them are being actuated, whereas, in
our design, only one boundary is actuated by ramp metering,
either at the middle junction or at the outlet.

The four PI boundary controllers R−L,R0,V0,VL are defined
respectively for the controlled flow rate at inlet x =−L, the
controlled flow rate at middle junction x = 0, the controlled
velocity at middle junction x = 0 and the controlled velocity
at outlet x = L. The fully actuated boundaries are defined as

q2(−L, t) =R−L(t), v2(0, t) =V0(t), (81)
q1(0, t) =R0(t), v1(L, t) =VL(t), (82)

where the boundary feedback controllers are given by

R−L(t) =q?+ kr
Pρ̃2(0, t)+ kr

I

∫ t

0
ρ̃2(0, t)ds, (83)

V0(t) =v?2 + kv
Pṽ2(−L, t)+ kv

I

∫ t

0
ṽ2(−L, t)ds, (84)

R0(t) =q?+ lr
Pρ̃1(L, t)+ lr

I

∫ t

0
ρ̃1(L, t)ds, (85)

VL(t) =v?1 + lv
Pṽ1(0, t)+ lv

I

∫ t

0
ṽ1(0, t)ds. (86)

where kr
P,k

r
I ,k

v
P,k

v
I are tuning gains for the upstream segment

2, lr
P, l

r
I , l

v
P, l

v
I are tuning gains for the downstream segment 1

and q?,v?i are the steady states. We use the previous model
parameters and conduct the simulation under the same initial
conditions such that the PI controllers can be directly com-
pared with the control design in this paper. The tuning gains
are chosen to be kr

P = −55,kr
I = −0.035,kv

P = −0.6,kv
I =

−0.025 and lr
P =−10, lr

I =−0.035, lv
P =−0.5, lv

I =−0.005.

The closed-loop system behavior is shown in Fig. 9 where
the temporal evolution of the four PI control inputs are high-
lighted, including two ramp metering in red and two VSLs
in green. We then compare the closed-loop performance of
the PDE backstepping controller and the PI controllers with
the evolution of state variables in the spatial averaged L2-
norm, defined with S(t) in (80). In Fig. 10, the closed-loop
performance with the ramp metering backstepping controller
at middle junction U0(t) is plotted with the blue line, the
one with the ramp metering backstepping controller at out-
let UL(t) is plotted in red dotted line and the one with the
four PI controllers is plotted with the yellow dashed line.
We can see that the convergence time and the transient is
about the same for U0(t) and four PI controllers. The outlet
backstepping controller UL(t) takes a relatively larger time
to stabilize the system.

7 Concluding remarks

We design stabilizing output feedback control laws that guar-
antee the simultaneous stabilization of the traffic flow on
two cascaded roads around given steady states. The flow ac-
tuation is realized with the ramp metering at the junction
or the downstream outlet. The observers are designed collo-
cated by sensing traffic velocity and flow rate at the two lo-
cations. The proposed controllers are robust to actuation de-
lays. A more comprehensive robust control design to model
parameters, external boundary, and in-domain disturbances
will be of future research interest. Comparing the two collo-
cated output feedback controllers, the middle junction one
presents faster convergence and a smaller transient than the
outlet one. The trade-offs between the proposed PDE back-
stepping controller with the PI static output feedback con-
trollers are also discussed.
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