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ABSTRACT: In this paper we are reporting the first regio- and stereo-selective silylformylation of ynamides. This reaction 
is tolerant to a wide range of functional groups around the ynamides. The substitution of CO by an isocyanide makes this 
reaction safer and more practical than standard silylformylation reactions. It overall represents a versatile and rapid ac-
cess to various tetrasubstituted 3-silyl-2-amidoacrolein derivatives. The synthetic potential of these new building blocks 
has been evaluated by performing several post-functionalization. 

Among the different small polyfunctionalized building 
blocks available in organic chemistry, enaminals have 
demonstrated their high synthetic potential, mainly in 
heterocyclic chemistry, by being a partner of choice in 
several multicomponent reactions. However, if 3-ami-
nocrolein de- rivatives have been deeply investigated 
over the past decades, both for their synthesis and for 
their use,1 2-aminoacroleins have attracted much less 
attention.2 This can be mainly explained by a lack of 
effective and versatile synthetic accesses to this regi-
oisomer. Recently, several groups, including ours, 
have investigated the regioselective carbonylation of 
nitrogen- substituted alkynes such as ynamides3,4 as 
an efficient strategy to reach this general motif or its 
derivatives. However, there is no general and con-
trolled access to noncyclic tetrasubstituted 2-amino-
acroleins to date. To the best of our knowledge, Lam 
and co-workers on one side5 and Hou and co-workers 
on the other side6 reported the only examples of yna-
mide difunctionalization, both through carbozincation 
strategies, resulting in acyclic tetrasubstituted 2-ami-
doacrylate derivatives (Figure 1). Notably, these reac-
tions require the use of sensitive organozinc reagents 
which are not always easy to obtain when they are not 
commercially available. Thus, to offer a higher degree 
of versatility, we have decided to focus our attention on 
silylcarbonylations of ynamides. Indeed, in this case 
the reaction would lead to fully substituted 2-amino-
acroleins incorporating an easily transformable vi-
nylsilane functionality,7 thus making this platform par-
ticularly tuned to molecular diversity.  

 
Figure 1 Reported difunctionalization of ynamides 
leading to 2-amidoacrolein derivatives and proposed 
strategy 

To our knowledge, only the groups of Oestreich and 
Perez-Luna reported a silylcarbonylation of ynamides 
based on a key regio- and stereoselective silylzincation 
step followed by a copper-mediated nucleophilic attack 
on an acyl chloride.8 Nicely, this work allowed either the 
Z or the E isomer to be obtained selectively. However, 
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this reaction appeared to be limited to a single terminal 
ynamide bearing a 2,2-dimethyl- oxazolidinone as a ni-
trogen substituent. Interestingly, this reaction has been 
subsequently extended to germylcarbonyla- tions of 
ynamides with similar limitations.9 

In this global context, inspired by Fukumoto’s and 
Chatani’s work on terminal alkynes,10 we have decided 
to develop the formal silylformylation11 of ynamides us-
ing readily available reagents such as silanes and iso-
cyanides to make it as practical as possible. Our choice 
to avoid carbon monoxide was additionally dictated by 
the dangerousness of this gas as well as by the need 
to use expensive specific equipment (high- pressure 
reactor, detector). However, this approach comes with 
several important challenges. First, we must mention 
the issues of stereoisomeric mixtures (E/Z) of the prod-
ucts that are frequently reported in the field of alkyne 
silylformylations. Another classical problem is the com-
petitive hydrosilylation reaction that could easily 
emerge in the case of electron rich alkynes such as 
ynamides. Moreover, it is important to note that very 
few examples of silylformylation of unsymmetrical in-
ternal alkynes have been reported due to major regi-
ose- lectivity problems.11 Finally, as this reaction leads 
to an intermediate imine that needs to be hydrolyzed at 
the end of the reaction, it is hard to anticipate the ste-
reostability of the C�C double bond during this last pro-
cess.  

Pleasingly, after optimization, while using ynamide 1a 
bearing an alkyl chain on the alkyne and an oxazoli-
dinone, we defined our best reaction conditions as fol-
lows: toluene as solvent, 2.5 equiv of 1,1,3,3-tetra-
methylbutyl isocyanide and phenyldimethylsilane, 
Rh4(CO)12 (1.5 mol %) as a catalyst. Under these con-
ditions, complete conversion occurred after 3 h at 85 
°C to furnish the corresponding silyl-imine product 2a 
with a very good 93% NMR yield as a single regio- and 
stereoisomer (Table 1, entry 1).  

 
Table 1 Control Reactions of Optimized Conditions 

 
Entry Deviations Yield (%)a 

1 none 93 (79) 
2 THF as solvent 84 
3 CH3CN as solvent 37 
4 CH2Cl2 as solvent n.r. 
5 [Rh(acac)(CO)2] (1.5 mol%)  

Xantphos (3 mol%) 84 

6 [Rh(acac)(CO)2] (1.5 mol%) 32b, c 

PPh3 (3 mol%) 
7 Pd(PPh3)4 (1.5 mol%) n.r. 
8 1 equiv. of isocyanide 27 c 
9 1 equiv. of silane 13c 
10 Room temperature 0d 

a Yields determined by1H NMR using dimethylterephtalate 
as an internal standard (isolated yield into brackets); b A mix-
ture of two isomers with a ratio of 8:2 was observed; c Incom-
plete conversion; d Only starting material and traces of the 
hydrosilylation product were observed in 1H NMR. 

Notably, THF appeared to be the only other solvent 
that could efficiently be used (Table 1, entry 2). How-
ever, while investigating the scope of the reaction we 
noticed that yields were significantly lower with THF 
than toluene when ynamides bearing a nitrogen moiety 
different from oxazolido- none were employed as sub-
strates. Similarly, the only other catalytic system that 
appeared to be efficient was the combination of 
[Rh(acac)(CO)2] as a precursor with Xantphos as lig-
and (Table 1, entry 5). Again, this system of the nature 
of isocyanide regents, and it appeared that noncyclic 
alkyl isocyanides such as 1,1,3,3-tetramethylbutyl or 
butyl isocyanide gave the best results with respective 
yields of 3a of 71% and 77%. Due to its volatility and 
its very strong odor, we preferred to avoid the use of 
butyl isocyanide and to continue our study with the 
more practical 1,1,3,3- tetramethylbutyl isocyanide 
(Table 2).  

With the optimal conditions in hand, we decided to in-
vestigate the scope and limitations of this silylformyla-
tion reaction (Table 3). First, we demonstrated that the 
reaction with arylsilanes, such as diphenylmethylsilane 
or triphenylsi- lane for instance, was always leading to 
the targeted aldehyde in good yields (82% (3b) and 
79% (3c)). Contrastingly, the use of a trialkylsilane, 
such as triethylsilane, led to a significant loss of reac-
tivity as the complete conversion was only reached af-
ter 72 h. Moreover, the corresponding aldehyde 3d was 
obtained in a moderate 38% yield as a 3:7 mixture of 
Z/E isomers. The reaction with ethoxydimethylsilane, 
to reach a valuable alkoxyvinylsilane that could subse-
quently be engaged in a Hiyama−Denmark cross-cou-
pling,7d,12 led to the intermediate imine product 2e in a 
good 60% yield (determined by NMR with an internal 
standard). However, this compound appeared to be ex-
tremely sensitive which made its hydrolysis and purifi-
cation impossible to achieve with an acceptable yield. 
To follow our investigations, we then evaluated the ef-
fect of the ynamide substitutions on the course of the 
reaction. On the one hand, alkyl groups on the alkyne 
moiety always gave the targeted aldehydes (3f−3i) in 
good yields (63−82%). Notably, the bulky tert-butyl 
substitution totally inhibited the reaction. On the other 
hand, all ynamides bearing an aryl substituent on the 
alkyne moiety, such as a phenyl group (1j) for instance, 
that were investigated led systematically to the hydros-
ilylated products without traces of the desired imine 
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intermediate 2j.13 Regarding the electron- withdrawing 
groups on the nitrogen of the ynamides, this transfor-
mation revealed to be widely permissive, as various 
groups such as amides, sulfonamides and carbamates 
appeared to be well compatible with this reaction 
(3k−3t). Interestingly, if a Boc group was allowed to 
reach the corresponding aldehyde 3k in a good 76% 
yield, the products were obtained in a mixture of E/Z 
isomers in a 78:22 ratio.   

Table 2 Influence of the isocyanide structure 
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Table 3 Scope of the reaction 

 
a In this case the kinetic of the reaction is very slow and the 
mixture had to be left for 72 h to reach complete conversion 
resulting in the formation of several byproducts; b the imine 
2e was too sensitive to be hydrolyzed into the corresponding 
aldehyde and an NMR yield has been performed using dime-
thylteriphtalate as internal standard; c the reaction led only to 
the formation of the hydrosilylation product (4 - Figure 2); d 
butyl isocyanide was used instead of 1,1,3,3-tetramethyl bu-
tyl isocyanide. 

Notably, about 10% of the β-E isomer has been also 
detected. This loss of selectivity can reasonably be at-
tributed to the significant steric hindrance of the Boc 
group. Similarly, in a less intuitive way, a β-lactam moi-
ety as the nitrogen part of the substrate also led to a 
light erosion of the stereoselectivity as the correspond-
ing aldehyde 3p was obtained in 61% yield as a 9:1 E/Z 
mixture. Remarkably, switching a tosyl group (3m) to a 
mesyl group (3q) as the nitrogen protecting group in-
creased the yield by approximately 10% presumably 
due to its relative smaller steric hindrance. Inversely, a 
bigger substituent on the nitrogen such as a butyl 
group induced a significant erosion of the yield, but not 
of the stereoselectivity, in comparison to an equivalent 
substrate bearing a methyl group. To overcome this 
limitation, the use of the less hindered butyl isocyanide 
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allowed a significant increase in the efficiency of the 
transformation, and the corresponding aldehyde 3r 
was obtained in a good 60% yield. Pleasingly, the use 
of this alternative isocynanide allowed extension of the 
scope of this transformation to substrates bearing var-
ious substituents on the nitrogen such as a benzyl 
group (3s) or an ethyl-morpholine chain (3t). Various 
terminal ynamides were also tested but were system-
atically degraded under our silylformylation conditions.  

Based on previous reports on silylformylation reac-
tions, a speculative mechanism can be proposed (Fig-
ure 2).10,11,14  

 
Figure 2 Speculative mechanism for the formation of 
2 & 4 

After an activation step of Rh4(CO)12 precatalyst, the 
[Si−Rh] newly formed complex could proceed to a silyl-
metalation to lead to the intermediate I. The high regi-
oselectivity could be explained by a combined effect of 
the polarization of the C−C triple bond and a possible 
coordination of rhodium to the electron-withdrawing 
group carried by the nitrogen of the ynamides.4f,15 Then 
the insertion of the isocyanide could lead to the acyl-
rhodium II which can then react with the silane to form 
a complex that will undergo a reductive elimination to 
form the targeted imine 2 while regenerating the active 
[Si− Rh] catalyst. On its side, the competitive hydrosi-
lylation product that has been observed while using a 
phenyl substituted ynamides (i.e., to reach the product 
3j for instance) could come from the direct reaction of 
intermediate I with the silane without previous insertion 
of the isocyanide (red pathway in Figure 2)  

Finally, to investigate the synthetic potential of our new 
building blocks, several postfunctionalizations have 
been performed to selectively change different posi-
tions around the double bond (Figure 3). To start, by 
means of an NBS- mediated bromodesilylation reac-
tion, we obtained the tetrasubstituted vinyl bromide 5a 
in a nonoptimized yield of 64% and a 58:42 E/Z ratio. 
Then various transformations of the aldehyde moiety 
have been performed. Nicely, a Wittig reaction with the 
(carbethoxymethylene)triphenylphosphorane led effi-
ciently to the diene 6a as a single isomer in 84% yield. 
It has also been possible to obtain the allylic alcohol 7a 
in 79% yield thanks to a classical reduction reaction 
using NaBH4 in methanol. Subsequently, we per-
formed a protodesilylation reaction on this compound 

to obtain the corresponding alcohol 8a in 84% yield. 
Notably, the protodesilylation reaction directly applied 
to the substrate 3a led to a complex mixture. Finally, a 
two-step reductive amination allowed us to form the al-
lylic amine 9a in 40% yield.  

 
Figure 3 Follow-up chemistry 

In conclusion, we have developed the first silylcar-
bonylation of ynamides selectively leading to tetrasub-
stituted 2- amidoacroleins. This difunctionalization 
proved to be highly regio- and stereoselective with var-
iously substituted substrates in the alkyne or nitrogen 
position. The main limitation proved to be the use of 
arylsubstituted ynamides, as these substrates mainly 
lead to the corresponding hydrosilylation products. 
Furthermore, as long as they carried at least one aro-
matic substituent, all silanes tested were evaluated as 
effective in this reaction. Finally, in order to evaluate 
the synthetic potential of these new molecular building 
blocks, different transformations were performed to 
provide selectively highly functionalized molecules.  
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