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Abstract: Qatar’s water resource has been largely overexploited, leading to the severe depletion of
its aquifers and degradation of water quality due to saline intrusions. Qatar envisions employing
regional aquifers to store water via forced injection of desalinated water and thus increase available
from a few days to two months. A strategy for the implementation of forced injections is proposed
based on a spatially distributed model of groundwater flow at the scale of the whole country. The
model is based on calibration under steady-state flow conditions and for a two-dimensional single
regional aquifer due to the lack of data. Injection scenarios include various mean injection rates at
the scale of the whole system and are interpreted under the assumption that the additional storage
should feed 2.7 M inhabitants for two months at a rate of 100 L/person/day. When this water supply
stock is reached, the model is run to define the infiltration rate, which allows the stock to remain
constant over time as a result of an even balance between infiltrations, withdrawals and also leaks or
inlets through the boundary conditions of the system.

Keywords: water resources; groundwater recharge; groundwater flow

1. Introduction

Qatar is one of the driest countries in the world, with an average annual gross precipi-
tation of 80 mm per year. There is no accumulation of water at the surface (rivers, lakes,
ponds, etc.), except during rare but intense rainy episodes, with water running off and then
accumulating over short periods before infiltration straight at the topographic depressions.
The average annual rainfall is around 80 mm, which is not enough to recharge its aquifers.
Groundwater is the only natural source of water suitable for consumption and was the only
freshwater resource until the early 1960s, when desalination was introduced. This resource
has been largely overexploited, leading to the depletion of aquifers and water quality
degradation because of saline intrusions facilitated by a very weak piezometric gradient
along the coastal areas. This is evident in high-salinity areas, especially on the eastern coast
of northern Qatar around Al-Khor town. Despite an extremely arid climatic context, Qatar
is one of the most water-consuming countries, with an average household consumption
of more than 500 L/capita/day [1]. This is because of the high living standards and other
socioeconomic factors [2].

To meet the ever-increasing demand for water, Qatar currently operates several desali-
nation plants that produced a gross volume of 600 million m3 of water in 2016, becoming
almost the sole drinking water resource for the country. These plants were produced just
in time, and Qatar has only a few days of freshwater reserves [3].

Faced with this challenging situation, Qatar envisions forcing the natural reservoirs
(aquifers) with injections of desalinated water and increasing the stocks and availability
of water from a few days to two months. Unlike other means of storage, such as on-land
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tanks, aquifer recharge can accommodate large quantities of water and is less prone to
damage or contamination. Compared to the mega storage tanks that Qatar has built that
are capable of storing a one-week supply, aquifers can store water quantities for several
months according to population needs. The objective of the present work is to propose a
strategy for the implementation of recharge wells to meet at best the storage objectives.

The first part of this manuscript is devoted to the geological and hydrogeological
context of the country. The second part deals with the hydrogeological model developed to
build the recharge scenarios. The last part is dedicated to strategies fitting the volumes of
water to be stored and the hydrogeological context.

2. Geological and Hydrogeological Context
2.1. Qatar’s Main Geological Structures

Qatar is a country located in the Persian Gulf. This country is a peninsula, sharing
with the south a 70 km long land border with Saudi Arabia. The country is 180 km long
and 80 km wide and has an area of 11,570 km2. The topography is very flat, with altitudes
varying between 0 m and 107 m.

The sedimentary formations visible at the outcrop in Qatar (Figure 1) are mainly
limestone layers dating from the Neogene (23–2.5 Ma, BP) but with few occurrences of
earlier formations dating from the Paleocene (65–55 Ma, BP) and Eocene (55–35 Ma, BP).
Some Quaternary formations, such as beach deposits and Sabkha formations (evaporites),
are observed along the southeast coast. In general, three main formations comprise the
sedimentary pile visible at the outcrop in Qatar: the Umm er Radhuma formation, the Russ
formation and the Dam and Dammam formation, from bottom to top.
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Figure 1. Simplified geological map of Qatar (from Baalousha [4]).

2.1.1. Umm er Radhuma Formation

This geological layer inherits its name from a well “Umm Radmah” located in the
locality of the same name in Saudi Arabia [5]. The first studies reporting on this formation
date back to 1952 [6]. Significant outcrops are observed in the Arabian shield from Iraq to
Saudi Arabia, whereas in Qatar, the Umm er Radhuma formation is only visible in a few
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topographic depressions. Data from the various drillings in Qatar indicate that Umm er
Radhuma has an almost uniform thickness of approximately 300 m and mainly consists of
chalk and limestone of the Paleocene age.

2.1.2. Rus Formation

This geological layer inherits its name from a hill located in Saudi Arabia, “Umm
er Ru’us.” Powers et al. [7] used this terminology, replacing the usual name, “chalky
zone,” which was initially assigned to the formation. In Qatar, it is possible to observe
some outcrops, notably to the north of Doha (districts of Umm Salal, Abuthaylah and
Al-Khor) and along the Dukhan Anticline Fold (Fhaihil and Dukhan domes), as illustrated
in Figure 1. The thickness of this layer ranges from 20 m (in the center of the country) to
110 m (in the southeast). This layer consists of Eocene chalk, shale and some gypsum beds
located in the south of the country.

2.1.3. Dam and Dammam Formation

This geological formation was first mentioned in 1956 by Thralls and Hasson, [8]. The
formation is present over a large surface area of Qatar. The thickness of this layer varies
from 30 to 50 m. It consists of limestones and dolomites dating from the Miocene.

2.2. Qatar’s Hydrogeology

Qatar’s aquifers are part of a larger system named the Eastern Arabian Peninsula.
It originates in Saudi Arabia and is distributed from east to west to Bahrain and Qatar.
These aquifers are not well documented, which renders difficult the characterization of
their geometry and hydraulic properties. In the literature, the Qatar underground is often
separated into three hydrogeological zones [5,9], mostly distinguished according to their
difference in water salinity (Figure 2.).
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The northern basin is the most exploited zone for drinking water resources. Ground-
water can be described as “floating lenses” of freshwater over salty water [10]. Freshwater
is usually located in areas of topographic depressions. The northern basin is bounded to
the north by the shore with the Persian Gulf and to the south by an evaporite formation
(from the southern basin). It is also the best-documented area, as it is the main natural
freshwater resource of the country. Nowadays, this aquifer is almost exclusively exploited
to support agricultural activity.

The southern basin is less documented than the northern part and is also less exploited
because of the high salt concentrations in water (local concentrations reaching 5 g/L—
Schlumberger Water Service [11]). More than half of the southern part of Qatar’s upper
geological formations is dominated by evaporitic deposits that form discontinuous thin
aquitards of lesser importance compared to the northern aquifer. These evaporites consist
of thick, impermeable, compact gypsum beds overlain by a thin layer of microporous
dolomitic limestone of the upper aquifer. The gypsum beds are underlain by a thick
layer of carbonates representing the lower aquifer. This zone resembles for its permeable
formations to a connected multi-layered system, located in the Rus formation.

The southwestern basin is the least documented hydrogeological zone and is often
aggregated with the south basin. The literature reports on an aquifer of approximately 30 m
thickness, occurring in the form of limestone, predominantly dolomitic, and interspersed
with marl. The water is also very salty, making it unfit for consumption (local concentrations
of 2 to 4 g/L, Al-Hajari [5]).

2.3. Groundwater Recharge

Qatar’s climate is desert-like, with very hot summers and mild winters. In summer,
temperatures can vary from 35 ◦C to 45 ◦C, while in winter, temperatures fluctuate between
15 ◦C and 25 ◦C. The amount of rainfall is small, with a gross annual average precipitation
established by the Department of Agriculture and Water Research (DAWR) at 82 mm/year
between 1990 and 2008. Rainfall events in Qatar are not very intense and generally occur
in winter. Due to the karstification of the carbonate formations, the aquifers are covered
with multiple areas of topographic depressions and sinkholes that actively participate in
groundwater recharge. The contribution of precipitation is the main source of natural water
in the country, justifying that several studies tried to quantify this effective recharge, whose
main estimated values are gathered in Table 1.

Table 1. Groundwater recharge estimates (* averaged over the whole Qatar surface area).

Recharge (Million m3/year) Recharge (mm/Year) *

Eccleston et al. [12] 50 4.32
Harhash and Yousif [13] 42 3.54

Kimrey [14] 27 2.33
Lloyd et al. [10] 10 0.86

Schlumberger Water Service [11] 56 4.84
Baalousha [15] 25 2.16

2.4. Available Piezometric Data

Several piezometric head measurements have been carried out over the last 50 years.
However, they were mainly measured only once at a given location and not at the same
time. Therefore, to feed the task of groundwater modeling with a consistent set of data, we
only selected 166 piezometer heads measured in 2017, during the campaign held by the
Qatar General Electricity and Water Corporation (Figure 3). Out of the 166 values retained,
only 15 points (or 9% of the total) are in the southern part of the country. This lack of data
in the southern part is a severe limiting factor for the groundwater model calibration in
this region.
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3. The Groundwater Model: Concepts and Calibration
3.1. Groundwater Flow Model

Given the lack of piezometric data to characterize the multiple aquifers, the model
was simplified to represent the three basins in Qatar (north, south and southeast) via a
single-layer system.

The single measurement campaign carried out in 2017, with no duplication of mea-
surements over time at the same location, does not allow for transient model calibration.
Therefore, only the transmissivity values of a single-layer model in a two-dimensional
approach to flow will be calibrated based on the 2017 measured piezometric heads. It is
assumed that the system is under steady-state flow conditions.

The two-dimensional saturated groundwater flow model is based on the combination
of Darcy’s law and the mass conservation equation, considering Dupuit–Forchheimer’s
assumption of constant hydraulic head over depth:

∇·T∇h(x) = F(x)
h(x) = hD(x) x ∈ ∂ΩD

T∇h(x)·n = qN(x)

x ∈ ∂ΩN
where h is the groundwater head (L), and T is the transmissivity tensor (L2T−1). It is
given by T = Ke, where e is the aquifer saturated thickness (L), and K is the hydraulic
conductivity tensor (LT−1). F is the sink-source term (LT−1), which represents recharge
and injection/pumping wells.
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∂ΩD and ∂ΩN are partitions of the domain boundaries that correspond to Dirichlet
and Neumann conditions, respectively, and n is the unit vector normal to the boundary,
counted positive outward. hD(x) is the prescribed head value at the Dirichlet boundaries,
qN(x) is the prescribed flux at the Neumann boundaries. The mathematical model is solved
by a two-dimensional nonconforming finite element method [16].

The boundary conditions are shown in Figure 4.
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The piezometric head at the Dirichlet boundary corresponds to the seaside and was
set to 0.0 m neglecting the effects of density-driven flow and eventual seawater intrusion.
A Neumann boundary was set up at the border with Saudi Arabia [9], with a total inlet
flux estimated at 1 Mm3/year [12].

Based on the different estimated values (Table 1), a recharge of 42 million m3/year
was distributed over 6 zones according to a spatial distribution described in Baalousha [15]
and given in Figure 5.

Pumping wells were inventoried by Schlumberger Water Service between 10 May 2008,
and 9 May 2009 [11]. The 4000 identified wells were gathered into various subareas of the
domain (Figure 5), their exact locations being unknown. Without any further information
on local extraction rates in each well, the total amount of pumped water (which is roughly
known) was uniformly distributed over these wells (more precisely over the subareas and
proportionally to the number of wells enclosed), which lead to a flow rate of 161 m3/day
and per well.

3.2. Groundwater Model Calibration

Model calibration consisted of estimating the transmissivity values. It was performed
using an inverse procedure by seeking iteratively a spatial transmissivity distribution
minimizing an objective function (OF) as the sum of the quadratic differences between
measured and computed heads. Minimization was performed by relying upon the adjoint
state equation [16,17] and a multiscale parameterization [18,19]. The multiscale parameter-
ization discretizes here the distribution of transmissivity values over the domain with a
mesh independent of the mesh used for the groundwater flow modeling. Each cell of the
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flow grid is assigned a transmissivity value calculated by interpolation of the seed values
at the nodes of the parameter mesh. The latter can be refined (mainly for seeking a better
representation of parameter spatial heterogeneity) after each optimization iteration (or set
of iterations) until the OF reaches an acceptable value of 10−1 m2. This approach is an
alternative to pilot-point methods applied to the northern part of Qatar [20].
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Because of the aquifer’s heterogeneity and the limited amount of information, the
model calibration may not lead to a unique solution. Therefore, the calibration was per-
formed several times with different initial parameter values for each parameter mesh. In
our case, the calibration procedure was run 90 times, each calibration being iteratively con-
ducted until both the criterion on the OF value was reached and also no significant changes
were found in mean and standard deviation of the transmissivity value distribution.

Figure 6 shows that, out of the 90 solutions obtained, the north and northeast region
of Qatar conceal the highest local mean values of transmissivity (over the 90 solutions).
Moreover, the standard deviation associated with this mean (Figure 6) in these areas is low,
which means that this pattern is substantially common to each solution. Some extreme
values have few physical meaning for aquifers with a saturated thickness of approximately
20 m. The values obtained during the calibration indicate that the northern and north-
eastern regions may show average transmissivities 10 to 100 times higher than the usual
range of 100 to 1000 m2/day reported by the literature [5,9,21].
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In the various approaches used to identify hydraulic conductivity at the Qatar scale,
the northern area is often considered as the most conductive [10,20,21]. These high trans-
missivities can also be explained by the presence of karst formations mainly located in the
north of Qatar [22].

The uncertainty on transmissivity evaluated by the standard deviation of the 90 inverse
solutions is the highest in the southern part of the country, probably because it is very
poorly documented, since only 15 of the 166 piezometers used for calibration are available
in the area.

The spatial distribution of mean piezometric heads averaged over the 90 solutions is
presented in Figure 7 and its standard deviation in Figure 7.
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The simulated piezometric heads appear reliable and stable over the 90 inverse so-
lutions, as shown by the low values of the standard deviation. This is due to computed
heads close to measured values and weakly sensitive to the various calibrated transmis-
sivity. Note also that the computed head values are to some extent conditioned by a long
perimeter of Dirichlet boundary conditions prescribing the heads along the coasts.

The highest uncertainties can be associated with the recharge areas (Figure 5), where
the piezometric heads are more sensitive to the transmissivity values.

Intensive withdrawals that are significantly higher than the natural recharge (Table 2)
also lead to hydraulic heads below sea level and, therefore, possible saltwater intrusion
along two broad coastal strips (east and west) in the northern part of the country. This is
consistent with the work of Al-Hajari [5], which reported saline intrusion in the western
part of the country.

Table 2. Water balance for the Qatar aquifer based on the 90 calibrated models.

Water Fluxes Inflow (Million m3/Year) Outflow (Million m3/Year)

Recharge 42.0 -
Neumann boundary 1.00 -

Pumping wells - 235
Dirichlet boundary 203 ± 4 11.0 ± 4

Total 246 246

It can also be mentioned that the 90 different hydrogeological models only slightly
differ inon their water fluxes at the Dirichlet boundaries. This feature agrees with the small
differences in head values close to this boundary (see Figure 7) due to the prescribed head
value at the boundary and also the small differences in transmissivity values between the
90 simulations (see also Figure 6) along the coastal boundary between the 90 simulations.

3.3. Groundwater Storage Strategy

On the basis of the United NationsNation recommendations [23], 3 levels of wa-
ter consumption werehave been retained: 70, 100 and 200 L/capita/day. The level of
70 L/capita/day corresponds to the minimum value to ensure survival over a medium-
term crisis period, i.e., the stress on water distribution envisioned for this study. To com-
pensate for eventual losses during water distribution, the level of 100 L/capita/day was
also used to define the storage strategy. Finally, a much higher value of 200 L/capita/day
was also studied. This value, well beyond the minimum recommendation, would account
for the doubling of the population at the time of crisis, or simply because Qatar, as a large
consumer of water, cannot enforce a brutal and severe reduction of its consumption with a
decrease of more than a factor of 5 on the ongoing values.

The artificial recharge was defined based on two objectives: (i) estimate an infiltration
rate to store the requested amount of water within less than 5 years, and (ii) estimate the
infiltration rate to maintain the groundwater water level when the required storage is
reached without additional withdraw associated with the redistribution of stored water.

Many different strategies were analyzed using a steady-state calibrated model repre-
sentative (with a transmissivity distribution close to the average solution) of the
90 calibrated models. The most appropriate strategy relies upon 60 infiltration wells
grouped in 3 zones (20 wells/zone) located in the central northern part of the aquifer
(Figure 8).
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The simulations were performed using the following parameters and assumptions:

- The amount of water pumped out of the aquifer is the value used for model calibration
(235 million m3/year), the same hypothesis applies for groundwater recharge set at
42 million m3/year.

- The population is estimated at 2.7 M inhabitants.
- The water storage must meet 60 days of daily demand. Considering the daily water

consumption of 70, 100 and 200 L/capita/day, the total amount of water to store is 11,
16 and 32 million m3, respectively.

- The porosity (storage capacity) of the (unconfined) aquifer is assumed to be uniform.
- The simulations were performed in a transient flow regime to estimate the time needed

to store the required amount of water over 5 years, considered a reasonable time to
reach the objectives. The initial conditions correspond to the piezometric situation
observed in 2017.

Three different infiltration rates were studied to estimate the time needed to reach the
required volume of injected water: 10 million m3/year (456.6 m3/day/well), 20 million
m3/year (913.2 m3/day/well) and 30 Mm3/year (1369.9 m3/day/well), and three values
of porosity (2%, 5% and 8%) were used, following field data from Dietrich et al. [24].

The water is mainly stored at the central part of the aquifer, as it can be observed by
comparing the piezometric levels estimated for 2017 (Figure 7) and the new piezometric
levels obtained when the requested storage is reached (Figure 8).

Figure 9 shows an almost linear evolution of the amount of stored water over time,
the slope being proportional to the total infiltration rate for a given porosity. In the range
of the used values, the porosity does not significantly affect the evolution of the amount of
stored water over time.

The times required to reach the 3 objectives within 5 years are summarized in Table 3.
Most of the objectives are reached in less than 5 years, except for the highest storage value
(32 million m3) and the lowest infiltration rate (10 million m3/year).
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Table 3. Time (year) needed to reach the required amount of water storage (* objective not reached
within 5 years).

Infiltration Rate
(Million m3)

Objective
(L/Capita/Day) Porosity: 0.02 Porosity: 0.05 Porosity: 0.08

10
70 2.2 1.8 1.7

100 3.7 2.7 2.5
200 * - - -

20
70 0.9 0.8 0.8

100 1.4 1.2 1.1
200 3.7 2.7 2.5

30
70 0.6 0.5 0.5

100 0.9 0.8 0.7
200 2.0 1.6 1.5

The objective of storing 11 million m3 (70 L/capita/day) in the underground can
be easily reached, in less than one year for a recharge plan of 20 or 30 million m3/year.
The objective of 100 Ll/capita/day for 60 days of supply (16 million m3) can be reached,
according to the model, within one year if the recharge plans are of 20 or 30 Mm3/year.
The objective of 200 L/capita/day, which corresponds to slightly more than a third of the
current daily consumption of the inhabitants, represents a water mass of 32 million m3 for
60 days of supply. This ambitious objective is only reached after a few years for recharge
plans greater than or equal to 20 million m3/year.

It is worth noting that water storage in the aquifer also increases the amount of water
leaving the aquifer by its coastal boundaries. This water loss depends on both the total
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infiltration rate and the porosity (Table 4). The total amount of water going back to the sea
is larger for small porosity values (up to more than 50% of the total artificial infiltration).
For the same amount of stored water, a small porosity value increases the mean water level
in the central part of the aquifer and, therefore, the head gradients between this central
part and the seashore, which explains the higher losses. The losses also increase with the
infiltration rate.

Table 4. Total amount of infiltrated water (Inf.) and of outflow at the coasts in Mm3.

Infiltration Rate
(Million m3)

Objective
(Million m3)

Porosity: 0.02
(Inf.–Outflow) Porosity: 0.05 Porosity: 0.08

10
11 22.0–11.0 18.0–7.0 17.0–6.0
16 37.0–21.0 27.0–11.0 25.0–9.0
32 - - -

20
11 19.0–8.0 16.0–5.0 15.0–4.0
16 29.0–13.0 24.0–8.0 23.0–7.0
32 74.0–42.0 53.0–21.0 49.0–17.0

30
11 17.0–6.0 15.0–4.0 14.0–3.0
16 26.0–10.0 23.0–7.0 21.0–5.0
32 60.0–28.0 49.0–17.0 45.0–13.0

Once the system has reached the target of 16 million m3 of stored water, the infiltration
rate must be adjusted to maintain the amount of stored water. To estimate this conservation
rate, new simulations were performed, and it was concluded that an infiltration rate of
5.1 Mm3/year (respectively 1.6 million m3/year) was necessary to maintain the ground-
water levels for a porosity of 2% (respectively 8%). For both anthropic injection rates, the
shape of the piezometric maps are similar (Figure 10) the stored water quantity being the
same.
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4. Conclusions

This study was mainly motivated by increasing the stocks of freshwater in Qatar by
injecting desalinated water into the regional aquifer. This study is highly prospective and
needs various forecasts that cannot be discussed without a model of the regional aquifer.
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This model was built and conditioned onto available data before proceeding with various
scenarios of forced reinjections in the aquifer.

Unfortunately, the lack of data compromised building a sophisticated model. For
example, the absence of history (duplication of measurements over time) of groundwater
levels at various locations over the Qatar territory became a shadow area of the study.
It only allowed us to set up a steady-state flow model within a two-dimensional single
aquifer taken as a single-porosity medium. This model was inverted for its transmissivity
values based on available head levels measured once at various wellbore locations.

The model showed that the central and northern areas of the Qatar territory are as-
signed very high transmissivity values that also go with the fact that the regional limestone
aquifer is highly karstified in these regions. It could have been well advised to locally rely
upon more sophisticated settings of the hydrogeological model; for example, by treating the
highly conductive areas as a dual-continuum porous matrix + fractures or by posing some
explicit draining networks over the single-porosity system. Notwithstanding, these more
sophisticated approaches are only relevant for simulating transient flow conditions, as the
physics of flow are mainly conditioned by the exchanges of fluxes between compartments.
If the problem is not treated in the transient mode (with transient data for conditioning),
the models come back to a steady-state flow regime in a single-porosity medium with
contrasted transmissivity values.

Fortunately, the geological and geometrical settings of the regional aquifer are such
that the system is inertial with very flat head gradients. These should naturally render
smooth and weak flushes of freshwater from the central part of the aquifer toward the
seashore. This makes it so that weak, average or high values of the storage capacity (a
parameter not seen by steady-state flow) in the system do not influence the capability of
artificially storing water. Small water storage would increase the head gradients from the
central area of the aquifer to the seashore. This increase is small enough to simply favor the
loss of injected water toward the sea without canceling out the efforts for storing water. It
thus takes more time to reach the storage objectives, as there are more leaks. In opposition,
a high storage capacity allows the head gradients to remain very flat but improves the
yield of total injected water versus leaks, which quickens the process of storing water.

To feed a population of more than 2.5 M inhabitants, at the rate of 100 L per day and
per capita over two months, with no other resource, approximately 20 Mm3 of stock is
needed.million m3. This storage value is reached in less than two years for forced recharge
rates of approximately 20 million m3/year, irrespective of the conjectured storage capacity
of the aquifer. That being said, after reaching the requested stock, keeping it as such
by simply compensating for the leaks would necessitate a continuous injection of less
than 5 million m3/year. This appears a small value compared with the total amounts of
desalinated water (600 million m3/year) produced by plants in Qatar.

Finally, the idea of storing desalinated water in aquifers in Qatar appears a feasible
option in order to mitigate the case of a crisis stemming from the total failure of a desali-
nated water supply. The question of how a limestone aquifer subjected to injection of partly
demineralized water (which is the case for desalinated water) behaves still holds, especially
regarding the reactivity of the host rock. Incidentally, the model proposed in this study
appears stable, meaning that it does not render awkward inverse solutions. This is a good
indicator of reliability, but it does not mean that the model behavior over transient flow is
a good one. Stated differently, and to improve the efficiency of reinjection scenarios, it is
best suited to rehandle the basis of the present study by carrying out model calibrations in
the transient mode and by accounting for preferential flow paths in a contrasted karstified
system. In this projection, the key point is to be able to rely upon available data rendering
information on the transient behavior of the actual system.
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